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INDUCED OPEN PROJECTIONS AND C∗-SMOOTHNESS

BY

WŁODZIMIERZ J. CHARATONIK (Rolla, MO), ALEJANDRO ILLANES (México)
and VERÓNICA MARTÍNEZ-DE-LA-VEGA (México)

Abstract. We show that there exists a C∗-smooth continuum X such that for every
continuum Y the induced map C(f) is not open, where f : X × Y → X is the projection.
This answers a question of Charatonik et al. (2000).

1. Introduction. A continuum is a nondegenerate, compact, connected
metric space. A map is a continuous function. Given a continuum X, let 2X
denote the hyperspace of all nonempty closed subsets of X, endowed with
the Hausdorff metric H [6, Definition 2.1]. Let C(X) denote the hyperspace
of connected elements of 2X . Given a map between continua f : X → Y , we
consider the induced maps 2f : 2X → 2Y and C(f) : C(X) → C(Y ) given
by 2f (A) = f(A) (the image of A under f) and C(f)(A) = f(A). A map
between continua f : X → Y is open provided that the image of each open
subset of X is an open subset of Y . A continuum X is said to be C∗-smooth
provided that the map A 7→ C(A) from C(X) into C(C(X)) is continuous.

Openness of induced maps has been studied by several authors. For a
surjective map f : X → Y , consider the following conditions: (a) f : X →
Y is open, (b) 2f : 2X → 2Y is open, and (c) C(f) : C(X) → C(Y ) is
open. It is known that (a) and (b) are equivalent and each one of them is
implied by (c). In [4] an example is shown of an open map f : X → Y
between locally connected continua X and Y such that the induced map
C(f) : C(X) → C(Y ) is not open. In [5] it was proved that if the induced
map C(C(f)) : C(C(X))→ C(C(Y )) is open, then f is a homeomorphism.
A recent result about openness of the induced map of C(f), when the domain
of f is a dendroid, has been obtained in [1].

Given continua X and Y , a natural open map is given by the projection
πYX : X×Y → X on the first coordinate. In [2] some results on the openness
of C(πYX) were obtained. In [3, Theorem 4], it was proved that if there exists
a continuum Y such that C(πYX) is open, then X is C∗-smooth, and it was
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asked if the converse holds [3, Problem 6]. In this paper we answer this
question in the negative. We also show that if X is a compactification of the
ray [0, 1) with an arc as remainder, then C(π[0,1]X ) is open.

2. Atriodicity. A continuum X is said to have the open projection
property provided that C(πYX) : C(X × Y )→ C(X) is open for each contin-
uum Y . Given A ⊂ X and ε > 0, let N(ε,A) =

⋃
{B(ε, a) : a ∈ A}, where

B(ε, a) is the ε-neighborhood of a in X. An n-od in the continuum X is
a subcontinuum B of X for which there exists an element A ∈ C(B) such
that B − A has at least n components. A triod is a 3-od. An atriodic con-
tinuum is a continuum containing no triods. A simple triod is a continuum
X = J1 ∪ J2 ∪ J3, where each Ji is an arc, Ji ∩ Jj = {p} if i 6= j and p is an
end point of each Ji. A weak triod is a continuum W = C1 ∪C2 ∪C3, where
each Ci is a subcontinuum ofW , C1∩C2∩C3 6= ∅ and Ci is not contained in⋃
{Cj : j ∈ {1, 2, 3} − {i}}. By Theorem 1.8 of [11] a continuum X contains

a weak triod if and only if X contains a triod.

Theorem 2.1. Let X and Y be continua. Suppose that the map C(πYX) :
C(X × Y ) → C(X) is open and Z is a nondegenerate subcontinuum of X.
Then the map C(πYZ ) = C(πYX)|C(Z×Y ) : C(Z × Y )→ C(Z) is open.

Proof. Let U be an open subset of C(Z × Y ). Let V be an open subset
of C(X ×Y ) such that V ∩C(Z ×Y ) = U . By hypothesis C(πYX)(V) is open
in C(X). Since C(πYZ )(U) = C(πYX)(V)∩C(Z), C(πYZ )(U) is open in C(Z).

Theorem 2.2. Let X be a continuum. Suppose that T is a triod in X
and there exists a sequence of arcs {Jm}∞m=1 in X such that lim Jm = T .
Then for each continuum Y , C(πYX) : C(X × Y )→ C(X) is not open.

Proof. Suppose to the contrary that there exists a continuum Y such that
C(πYX) : C(X × Y )→ C(X) is open. For each m ∈ N, let xm, ym be the end
points of Jm. We can consider the natural order in Jm satisfying xm < ym.
Let A ∈ C(T ) be such that T −A = K1∪K2∪K3, where clX(Ki)∩Kj = ∅ if
i 6= j and each Ki is nonempty. For each i ∈ {1, 2, 3}, fix a point qi ∈ Ki and
an open subset Qi of X such that qi ∈ Qi, clX(Qi) ∩ T ⊂ Ki and clX(Q1),
clX(Q2) and clX(Q3) are pairwise disjoint. Fix points w, z ∈ Y such that
w 6= z. Let

M = ((K2 ∪A ∪K1)× {w}) ∪ ((K3 ∪A ∪K1)× {z}) ∪ ({q1} × Y ).

Then M is a subcontinuum of X × Y . Fix open subsets W and Z of Y such
that clY (W ) ∩ clY (Z) = ∅, w ∈W and z ∈ Z.

By [3, Theorem 4], X is C∗-smooth, so limC(Jm) = C(T ). Thus, for each
m∈N we can choose an element Lm∈C(Jm) such that limLm=K2∪A∪K3.
Shortening Lm a little if necessary, we may assume that xm, ym /∈ Lm.
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Let V =
(
(X−clX(Q3))×W

)
∪
(
(X−clX(Q2))×Z

)
∪(Q1×Y ). Then V

is an open subset of X×Y containingM . Let V = {B ∈ C(X×Y ) : B ⊂ V }.
Since V is open in C(X×Y ) and C(πYX) is open, C(π

Y
X)(V) is an open subset

of C(X). Since T = πYX(M) ∈ C(πYX)(V) and lim Jm = T , there existsm ∈ N
such that Jm ∈ C(πYX)(V). We may assume that Lm∩Q2 6= ∅ 6= Lm∩Q3 and
clX(Q1)∩Lm = ∅. Thus, there exists B ∈ V such that πYX(B) = Jm. Choose
points a ∈ Lm ∩ Q2 and b ∈ Lm ∩ Q3. Without loss of generality we may
assume that xm < a < b < ym. Let E, F , G be the respective subarcs of Jm
joining the pairs of points xm and a; a and b; b and ym. Notice that F ⊂ Lm.

Let

B1 = B ∩ (πYX)
−1(E),

B2 = B ∩ (πYX)
−1(F ) ∩ ((X −Q3)× clX(W )),

B3 = B ∩ (πYX)
−1(F ) ∩ ((X −Q2)× clX(Z)),

B4 = B ∩ (πYX)
−1(G).

Clearly, B1 ∪B2 ∪B3 ∪B4 ⊂ B. Given p ∈ B such that πYX(p) /∈ E ∪G, we
have πYX(p) ∈ F ⊂ Lm ⊂ X − clX(Q1). Since B ⊂ V and πYX(p) /∈ clX(Q1),
we obtain p ∈

(
(X−clX(Q3))×W

)
∪
(
(X−clX(Q2))×Z

)
. Thus, p ∈ B2∪B3.

We have shown that B = B1 ∪ B2 ∪ B3 ∪ B4. Notice that each Bi is closed
in X × Y .

Now, suppose that there exists a point p ∈ (B1 ∪B2)∩ (B3 ∪B4). In the
case that p ∈ B1, since B1 ∩ B4 ⊂ (πYX)

−1(E) ∩ (πYX)
−1(G) = ∅, we have

p ∈ B3. This implies that πYX(p) = a ∈ Q2 and p /∈ B3, a contradiction.
A similar contradiction can be obtained by supposing that p ∈ B4. Thus,
p ∈ B2 ∩ B3, but this is impossible since clX(Z) ∩ clX(W ) = ∅. We have
proved that (B1∪B2)∩(B3∪B4) = ∅. Since πYX(B) = Jm, there exists a point
p ∈ B such that πYX(p) = xm. Thus, p ∈ B1 and B1 ∪ B2 6= ∅. Similarly,
B3 ∪ B4 6= ∅. We have obtained a separation of the connected set B. This
contradiction completes the proof of the theorem.

Problem 2.3. Is Theorem 2.2 true when we replace arcs by atriodic con-
tinua? That is, suppose that X is a continuum, T is a triod in X and there ex-
ists a sequence {Jm}∞m=1 of atriodic subcontinua of X such that lim Jm = T .
Is it true that for each continuum Y , C(πYX) : C(X × Y ) → C(X) is not
open?

Related to Problem 2.3, we have the following result.

Theorem 2.4. Let X be a continuum. Suppose that K is a 4-od in X
and there exists a sequence {Jm}∞m=1 of atriodic subcontinua of X such that
lim Jm = K. Then for each continuum Y , C(πYX) : C(X × Y ) → C(X) is
not open.
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Proof. Suppose to the contrary that there exists a continuum Y such
that C(πYX) : C(X × Y ) → C(X) is open. Let A ∈ C(K) be such that
K−A = K1∪K2∪K3∪K4, where clX(Ki)∩Kj = ∅ if i 6= j and each Ki is
nonempty. For each i ∈ {1, 2, 3, 4}, fix a point qi ∈ Ki and an open subset Qi
of X such that qi ∈ Qi, clX(Qi) ∩K ⊂ Ki, and clX(Q1), clX(Q2), clX(Q3)
and clX(Q4) are pairwise disjoint. Fix points w, z ∈ Y such that w 6= z and
fix open subsets W and Z of Y such that clY (W )∩ clY (Z) = ∅, w ∈W and
z ∈ Z. For each i ∈ {1, 2, 3}, let
Mi = ((K4 ∪A ∪Ki)× {w}) ∪ ((K1 ∪K2 ∪K3 ∪A)× {z}) ∪ ({qi} × Y ).

Then Mi is a subcontinuum of X × Y . Let

Vi =
((
X −

⋃
{clX(Qj) : j ∈ {1, 2, 3} − {i}}

)
×W

)
∪ (Qi × Y ) ∪

(
(X − clX(Q4))× Z

)
.

Then Vi is an open subset of X × Y such that Mi ⊂ Vi. Let Vi = {B ∈
C(X × Y ) : B ⊂ Vi}. Since Vi is open in C(X × Y ) and C(πYX) is open,
C(πYX)(Vi) is an open subset of C(X) that contains K = πYX(Mi). Thus,
there exists m ∈ N such that Jm ∈ C(πYX)(Vi) and Jm ∩ Qi 6= ∅ for each
i ∈ {1, 2, 3, 4}. For i ∈ {1, 2, 3, 4}, fix a point pi ∈ Jm ∩Qi.

Given i ∈ {1, 2, 3}, let Bi ⊂ Vi be such that Bi is a subcontinuum of
X × Y and πYX(Bi) = Jm. Fix a point bi ∈ Bi such that πYX(bi) = p4 ∈ Q4.
Let Ui = (X −

⋃
{clX(Qj) : j ∈ {1, 2, 3} − {i}}) ×W . Notice that bi ∈ Ui.

Fix j ∈ {1, 2, 3} − {i}. Since pj ∈ πYX(Bi) ∩ Qj and Bi ⊂ Vi, we see that
Bi 6⊂ Ui. Let Si be the component of Bi ∩ Ui that contains bi. By [8,
Theorem 20.3], clBi(Si) ∩ bdBi(Bi ∩ Ui) 6= ∅. Take a point si ∈ clBi(Si) ∩
bdBi(Bi ∩ Ui) and let Ci = clBi(Si). Then Ci is a subcontinuum of Bi and
si ∈ Vi ∩ (clX×Y (Ui)− Ui). Since clY (W )∩clY (Z) = ∅, we have si ∈ Qi×Y .
Thus, πYX(Ci) is a subcontinuum of Jm that contains p4 and intersects Qi.
Moreover, since

πYX(Ci) ⊂ clX(π
Y
X(Si)) ⊂ clX(π

Y
X(Ui)) ⊂ X −

⋃
{Qk : k ∈ {1, 2, 3} − {i}},

we have πYX(Ci)∩Qk = ∅ for each k ∈ {1, 2, 3}−{i}. Hence, πYX(C1), πYX(C2)

and πYX(C3) are subcontinua of Jm such that p4 ∈ πYX(C1)∩πYX(C2)∩πYX(C3)
and no πYX(Ci) is contained in the union of the other two. Hence, T =
πYX(C1)∪πYX(C2)∪πYX(C3) is a weak triod. Therefore [11, Theorem 1.8], Jm
is not atriodic. This contradiction completes the proof of the theorem.

3. The example. In Problem 6 of [3] it was asked if each C∗-smooth
continuum X has the open projection property. In the following example,
we give a negative answer to this question. Bruce Hughes (see [8, p. 495])
constructed a continuum X that is a compactification of the ray [0,∞) with
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remainder a simple triod T in such a way that each subcontinuum of T is a
limit of subcontinua of [0,∞). In our example we construct a continuum X
that is a compactification of the ray [0,∞) with remainder a simple triod T in
such a way that X is C∗-smooth. Thus, X must have the following property:
if A is a subtriod of T and {An}∞n=1 is a sequence of arcs in the ray such that
limAn = A, then for each subtriod B of A, there exists a sequence {Bn}∞n=1

of arcs in the ray such that Bn ⊂ An for each n ∈ N and limBn = B. That
is, if An describes a path close to the triod A, then the path An must also
contain subarcs approximating many of the subtriods of A. The construction
of such X requires a very careful and technical description of the ray.

Example 3.1. There exists a C∗-smooth continuum X such that for
each continuum Z the induced map C(πZX) : C(X×Z)→ C(X) is not open.

Let R3 be the Euclidean 3-dimensional space. Let π, π0 : R3 → R2 be
given by π(x, y, z) = (x, y) and π0(x, y, z) = (y, z). For each i ∈ {1, 2, 3},
let πi : R3 → R be the projection on the ith coordinate. Given p, q ∈ R3,
with p 6= q, let pq be the convex segment in R3 that joins p and q.
Let θ = (0, 0, 0), e1 = (1, 0, 0), e2 = (cos(2π/3), sin(2π/3), 0) and e3 =
(cos(4π/3), sin(4π/3), 0). Let T = θe1 ∪ θe2 ∪ θe3. Then T is a simple triod.
We will construct a compactification X of the ray [0,∞) with remainder T
such that X is C∗-smooth.

Let Y be the infinite triod defined by Y = {sei : i ∈ {1, 2, 3} and
s ∈ [0,∞)}. Given two maps δ1 : [u, v] → Y and δ2 : [v, w] → Y such that
δ1(v) = δ2(v), let δ1 ∗ δ2 : [u,w]→ Y be the common extension of the maps
δ1 and δ2.

Let N3 = N× N× N. Given α = (n,m, r) ∈ N3 − {(1, 1, 1)}, let M(α) =
{(a, b, c) ∈ N3 : a ≤ n, b ≤ m and c ≤ r} − {α} and K(α) = M(α) ∪ {α}.
Then |M(α)| = nmr − 1. Given t ∈ N ∪ {0}, define

ω(t) : {t+ 1, . . . , t+ 2n} → K(α) ∩ ([1, n]× {1} × {1})
by

ω(t)(i) =

{
(i− t, 1, 1) if i ∈ {t+ 1, . . . , t+ n},
(t+ 2n+ 1− i, 1, 1) if i ∈ {t+ n+ 1, . . . , t+ 2n}.

Notice that ω(t) covers two times the set K(α)∩ ([1, n]×{1}× {1}), first it
runs in the natural order and then in the opposite. The discrete path ω(t)
starts and finishes at (1, 1, 1).

Define

ψ0(t) : {t+ 1, . . . , t+ 4nm} → K(α) ∩ ([1, n]× [1,m]× {1})
by

ψ0(t)(i) = ω(t+ (j − 1)2n)(i) + (0, j − 1, 0)
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if i ∈ {t+ (j − 1)2n+ 1, . . . , t+ j2n} for some j ∈ {1, . . . ,m}, and

ψ0(t)(i) = ω(t+ (j − 1)2n)(i) + (0, 2m− j, 0)

if i ∈ {t+ (j − 1)2n+ 1, . . . , t+ j2n} for some j ∈ {m+ 1, . . . , 2m}.
Notice that ψ0(t) is a discrete path that starts filling twice the discrete

segment ([1, n]× {1} × {1}) ∩K(α), starting and finishing at (1, 1, 1), then
it fills twice the discrete segment ([1, n] × {2} × {1}) ∩K(α), starting and
finishing at (1, 2, 1), next it continues filling the discrete segments of the form
([1, n]×{s}×{1})∩K(α), starting and finishing at (1, s, 1), until it fills the
discrete segment ([1, n]×{m}×{1})∩K(α); then it fills this segment again
and then the segment ([1, n] × {m − 1} × {1}) ∩K(α), and continues until
it finishes filling again the segment ([1, n]×{1}× {1})∩K(α). The discrete
path ψ0(t) starts and finishes at (1, 1, 1).

Define ϕ(α) : {1, . . . , 4nmr} → K(α) by

ϕ(α)(i) = ψ0((j − 1)4nm)(i) + (0, 0, j − 1)

if i ∈ {4(j − 1)nm+ 1, . . . , 4jnm} for some j ∈ {1, . . . , r}.
Notice that ϕ(α) is a discrete path that uses the first discrete segment

{1, . . . , 4nm} to fill the bottom K(α) ∩ ([1, n]× [1,m]× {1}) of K(α) (level
one) finishing at the point (1, 1, 1), then it climbs up to the next level (level
two) and then fills level two, starting and finishing at the point (1, 1, 2). Then
it climbs up to the next level (to the point (1, 1, 3)) and then it fills level
three and so on. Notice also that ϕ(α) finishes at the point (1, 1, r).

Define g(α) = min{i ∈ {1, . . . , nmr} : ϕ(α)(i) = (n,m, r)} − 1.
Let ϕ(α) = (ϕ1(α), ϕ2(α), ϕ3(α)). We will need the following properties

of ϕ(α):

(a) ϕ(α)(1) = (1, 1, 1).
(b) ϕ(α)(g(α) + 1) = (n,m, r).
(c) ϕ(α)({1, . . . , g(α)}) =M(α).
(d) For each 1 ≤ i ≤ g(α),

|ϕ1(α)(i)− ϕ1(α)(i+ 1)|+ |ϕ2(α)(i)− ϕ2(α)(i+ 1)|
+ |ϕ3(α)(i)− ϕ3(α)(i+ 1)| ≤ 1.

(e) If 1 ≤ i ≤ j ≤ g(α), then there exists i ≤ k ≤ j such that
{ϕ(α)(l) ∈ N3 : i ≤ l ≤ j} ⊂ K(ϕ(α)(k) + (1, 1, 1)).

(f) Let β = (n1,m1, r1) ∈ N3 − {(1, 1, 1)} be such that |n − n1| ≤ 1,
|m−m1| ≤ 1 and |r−r1| ≤ 1. Let i ∈ {1, . . . , g(α)}, j ∈ {1, . . . , g(β)},
A = {ϕ(α)(l) ∈ N3 : 1 ≤ l ≤ i}, B = {ϕ(β)(l) ∈ N3 : 1 ≤ l ≤ j}
and for each k ∈ {1, 2, 3}, let uk = maxπk(A) and vk = maxπk(B).
Then K((u1, u2, u3)) ⊂ K((v1, v2, v3) + (1, 1, 1)) or K((v1, v2, v3)) ⊂
K((u1, u2, u3) + (1, 1, 1)).
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Properties (a)–(d) are immediate. We prove property (e). Take 1 ≤ i <
j ≤ g(α). Let A = {ϕ(α)(l) ∈ N3 : i ≤ l ≤ j}. For each s ∈ {1, 2, 3}, let
us = minπs(A) and vs = maxπs(A). Then [u1, v1]× [u2, v2]× [u3, v3] is the
minimal box in N3 containing A. We analyze three cases.

Case 1: 2 ≤ v3 − u3. Since ϕ(α) fills each level of the form K(α) ∩
([1, n]× [1,m]×{s}) before going to the next one, {1, . . . , n}×{1, . . . ,m}×
{v3−1}⊂A. So, there exists i≤ k≤ j such that ϕ(α)(k) = (n,m, v3 − 1)∈A.
Clearly, A ⊂ K(ϕ(α)(k) + (1, 1, 1)).

Case 2: v3 = u3. If 2 ≤ v2 − u2, since ϕ(α) fills each row of the form
[1, n]×{s}× {v3} before going to the next one, {1, . . . , n}× {v2− 1}× {v3}
⊂ A. So, there exists i ≤ k ≤ j such that ϕ(α)(k) = (n, v2 − 1, v3) ⊂ A.
Clearly, A ⊂ K(ϕ(α)(k) + (1, 1, 1)). Thus, we may assume that v2− u2 ≤ 1.
In the case that v2 = u2, A = ([u1, v1] ∩ N) × {u2} × {u3}. Thus, taking
i ≤ k ≤ j such that ϕ(α)(k) = (v1, u2, u3), we are done. In the case that
v2 = u2 + 1, A is of the form

A = (([1, x] ∩ N)× {u2} × {v3}) ∪ (([1, y] ∩ N)× {v2} × {v3}).
Then taking i ≤ k ≤ j such that ϕ(α)(k) = (x, u2, v3) if y ≤ x, and
ϕ(α)(k) = (y, v2, v3) if x ≤ y, we are done.

Case 3: v3 = u3+1. The case that v2 = 1 is similar to the last subcase
of Case 2. Thus, we may assume that v2 > 1 and {u2, v2} 6= {n}. Then either

(i) π0(A) = (([1, y] ∩ N)× {u3}) ∪ (([1, v2] ∩ N)× {v3}), or
(ii) π0(A) = (([1, y] ∩ N)× {v3}) ∪ (([1, v2] ∩ N)× {u3}).

In case (i), we have {1, . . . , n} × {v2 − 1} × {v3} ⊂ A; then it is enough to
take i ≤ k ≤ j such that ϕ(α)(k) = (n, v2 − 1, v3). In case (ii), we have
{1, . . . , n} × {v2 − 1} × {u3} ⊂ A; then it is enough to take i ≤ k ≤ j such
that ϕ(α)(k) = (n, v2 − 1, u3).

This completes the proof of (e).
Finally, we prove (f). We consider three cases.
Case 1: max{u3, v3} > 1. Suppose, for example, that u3 ≥ v3. In this

case, u1 = n, u2 = m and ([1, n] × [1,m] × [1, u3 − 1]) ∩ N3 ⊂ A, so
K((v1, v2, v3)) ⊂ ([1, v1]× [1,m+1]× [1, v3])∩N3 ⊂ ([1, n+1]× [1,m+1]×
[1, u3]) ∩ N3 ⊂ K((u1, u2, u3) + (1, 1, 1)).

Case 2: u3 = v3 = 1 and max{u2, v2} > 1. Suppose, for example, that
u2 ≥ v2. In this case, u1 = n and ([1, n] × [1, u2 − 1] × {1}) ∩ N3 ⊂ A, so
K((v1, v2, v3)) ⊂ ([1, n+1]× [1, v2]×{1})∩N3 ⊂ ([1, n+1]× [1, u2]×{1})∩
N3 ⊂ K((u1, u2, u3) + (1, 1, 1)).

Case 3: u3 = v3 =1 and u2 = v2 =1. Suppose, for example, that u1 ≥ v1.
In this case K((v1, v2, v3)) ⊂ K((u1, u2, u3)) ⊂ K((u1, u2, u3) + (1, 1, 1)).

This completes the proof of (f).
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Given a subcontinuum A of Y such that θ ∈ A, for each i ∈ {1, 2, 3}, let
λi(A) = length of A ∩ {tei : t ∈ [0,∞)}.

Given subcontinua A,B of Y such that θ ∈ A ∩B, set
D(A,B) = |λ1(A)− λ1(B)|+ |λ2(A)− λ2(B)|+ |λ3(A)− λ3(B)|.

Given i ∈ {1, 2, 3}, n ∈ N and u < v, let η(i, n, u, v) be the map
η(i, n, u, v) : [u, v]→ Y

given by the conditions: η(i, n, u, v) is linear on each one of the intervals
[u, (u+ v)/2] and [(u+ v)/2, v], η(i, n, u, v)(u) = θ, η(i, n, u, v)((u+ v)/2)
= nei and η(i, n, u, v)(v) = θ. Notice that

max{|η(i, n, u, v)(t)| : t ∈ [u, v]} = n.(3.1)
Given α = (n,m, r) ∈ N3 and u < v, we will define a map

σα : [u, v]→ Y

(we write σα(u, v) when it is necessary to mention the interval [u, v]) by
induction on the number of elements of M(α). In order to define σ(1,1,1),
divide the interval [u, v] by a partition u = s0 < s1 < s2 < s3 = v, where
si+1 − si = (v − u)/3 for each i and define σ(1,1,1) by the following con-
ditions: σ(1,1,1)|[s0, s1] = η(1, 1, s0, s1), σ(1,1,1)|[s1, s2] = η(2, 1, s1, s2) and
σ(1,1,1)|[s2, s3] = η(3, 1, s2, s3). This defines σα for the case that |M(α)| = 0.
Notice that σ(1,1,1)(u) = σ(1,1,1)(v) = θ.

In the case that α = (2, 1, 1), divide the interval [u, v] by a partition
u = s0 < s1 < s2 < s3 = v, where si+1−si = (v − u)/3 for each i, and define
σα as the map σ(1,1,1)(s0, s1) ∗ η(1, 2, s1, s2) ∗ σ(1,1,1)(s2, s3). Inductively, in
the case α = (k, 1, 1) for some k ≥ 3, divide the interval [u, v] by a partition
u = s0 < s1 < · · · < s2k−1 = v, where si+1 − si = (v − u)/(2k − 1) for
each i, and define σα as the map σ(1,1,1)(s0, s1) ∗ · · · ∗ σ(k−1,1,1)(sk−1, sk) ∗
η(1, k, sk, sk+1) ∗ σ(k−1,1,1)(sk+1, sk+2) ∗ · · · ∗ σ(1,1,1)(s2k−2, s2k−1).

In a similar way, define σ(1,k,1) and σ(1,1,k) for each k ≥ 2.
Now, suppose that 0 < |M(α)| and σβ has been defined for every β ∈ N3

and u < v; when |M(β)| < |M(α)|, suppose also that α is not of any of the
forms (k, 1, 1), (1, k, 1), (1, 1, k) (k ∈ N) and suppose that each σβ satisfies

σβ(u) = θ = σβ(v).(3.2)
Here, we use the map ϕ(α) defined before. Divide the interval [u, v] by a parti-
tion u = s0 < s1 < · · · < s2g(α)−1 = v, where si+1−si = (v − u)/(2g(α)− 1)
for each i, and define
σα = σϕ(α)(1) ∗ · · · ∗ σϕ(α)(g(α)−1) ∗ σϕ(α)(g(α)) ∗ σϕ(α)(g(α)−1) ∗ · · · ∗ σϕ(α)(1).

Using (c), it can be shown that
ne1 ∈ Imσα, me2 ∈ Imσα, re3 ∈ Imσα.(3.3)
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Using (3.1) and (3.2), it can be proved by induction that for each α =
(n,m, r) ∈ N3,

σα(u) = θ = σα(v)(3.4)

and

(3.5)
λ1(σα([u, v])) = n, λ2(σα([u, v])) = m, λ3(σα([u, v])) = r,

max{|σα(t)| : t ∈ [u, v]} = max{n,m, r}.
Inductively, the following properties can be shown:

(3.6.1) σ−1α (θ) can be ordered as a partition u = u0 < u1 < · · · < uk = v;
(3.6.2) each interval [uj−1, uj ] can be divided in two subintervals [uj−1, vj ]

and [vj , uj ] such that σα|[uj−1, vj ] and σα|[vj , uj ] are linear.

In the definition of σα(u, v), for each i ∈ {2, . . . , g(α)−1}, the map σϕ(α)(i)
is defined on two possible subintervals of [u, v], and the map σαϕ(α)(g(a)) is de-
fined on one subinterval of [u, v]. The total number of these specific functions
is 2g(α)− 1.

We use the notation σγ(x, y) C σα(u, v) to indicate that γ = σϕ(α)(i) for
some i ∈ {2, . . . , g(α)} and [x, y] is one of the intervals mentioned in the
previous paragraph, so [x, y] ⊂ [u, v] and [x, y] is the domain of σγ(x, y).

For eachm∈N, let βm−1=(m,m,m) and consider the map σβm(m−1,m)
(defined on the interval [m− 1,m]), then define ξm : [m − 1,m] → Y and
ψm : [m− 1,m]→ T by

ξm(t) = σβm(m− 1,m)(t) and ψm(t) =
1

m+ 1
ξm(t).

By (3.5), the image of ψm is contained in the set T .
Finally, define ξ : [0,∞)→ Y and ψ : [0,∞)→ R3 by

ξ(t) = ξm(t) and ψ(t) =

(
ψm(t),

1

t+ 1

)
if t ∈ [m − 1,m] for some m ∈ N. By (3.4), ξ(m) = θ = ξ(m + 1) and ξ
and ψ are well defined.

Now, we can define

R = {ψ(t) : t ∈ [0,∞)} and X = T ∪R.
Notice that R is a ray in R3 and (π(ψ(t)), 0) ∈ T for each t ∈ [0,∞). For

each m ∈ N, {(m+ 1)e1, (m+ 1)e2, (m+ 1)e3} ⊂ Imσβm = ξm([m− 1,m]).
Hence, {e1, e2, e3} ⊂ Imψm ⊂ π(Imψ) × {0}. This implies that {e1, e2, e3}
⊂ cl(Imψ). Thus, T ⊂ cl(Imψ). Therefore, X is a compactification of the
ray [0,∞) with remainder T .

A nondegenerate subinterval [u, v] of [0,∞) is called basic provided that
there exists w ∈ (u, v) such that ξ|[u,w] and ξ|[w, v] are linear and ξ(u) =
θ = ξ(v). With an easy induction it can be shown that there exists a unique
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infinite partition 0 = t0 < t1 < · · · of [0,∞) such that each interval [tj−1, tj ]
is basic.

For each m ∈ N, the interval [m − 1,m] is called canonical of order 1.
An interval [u, v] is called canonical of order 2 provided that there exist
m ∈ N and γ ∈M(βm)−{(1, 1, 1)} such that σγ(u, v) C σβm(m− 1,m). By
definition, ξ|[u, v] = σγ(u, v). Inductively, an interval [u, v] is called canonical
of order k + 1 provided that there exist a canonical interval [x, y] of order
k and α, γ ∈ N3 − {(1, 1, 1)} such that σγ(u, v) C σα(x, y). An interval is
called canonical if it is canonical of some order.

Claim 0. Suppose that x ∈ [0,∞) is such that 2 ≤ |ξ(x)|. Then there
exist j, k ∈ N, i ∈ {1, 2, 3} and 0 ≤ u < v such that ξ(x) = σα(x) =
η(i, k, tj−1, tj)(x), where α ∈ {(k, 1, 1), (1, k, 1), (1, 1, k)} − {(1, 1, 1)}, [u, v]
is the canonical interval that is a domain of σα and ξ|[u, v] = σα(u, v).

Proof. Letm ∈ N be such that x ∈ [m−1,m]. By the inductive definition
of βm, there exist finite sequences [u1, v1], . . . , [ur, vr] and α1, . . . , αr such
that σαr(ur, vr) C σαr−1(ur−1, vr−1) C · · · C σα1(u1, v1) = σβm(m − 1,m),
x ∈ [ur, vr] and r is the maximum possible integer. Since 2 ≤ |ξ(x)| =
|σαr(x)|, we have αr 6= (1, 1, 1). Let α = αr. By the maximality of r, the
interval [ur, vr] cannot be partitioned into canonical subintervals, so α ∈
{(k, 1, 1), (1, k, 1), (1, 1, k)} for some k≥ 2 and ξ(x) = σα(x) = η(i, k, ur, vr)(x)
for some i ∈ {1, 2, 3}. Let j ∈ N be such that [ur, vr] = [tj−1, tj ] and let
[u, v] = [ur, vr]. This finishes the proof of Claim 0.

The following claim is the key to proving that X is C∗-smooth.
Claim 1. Let P,Q be subtriods of Y such that Q ⊂ P and λi(Q) > 5

for each i ∈ {1, 2, 3}. Suppose that 0 ≤ t < u are such that ξ([t, u]) = P .
Then there exist v, w ∈ [t, u] such that v ≤ w and for each i ∈ {1, 2, 3},
|λi(ξ([v, w]))− λi(Q)| ≤ 3.

Proof. We will need two preliminary results.
Claim 1.1. If there exist α = (a, b, c) ∈ N3 − {(1, 1, 1)} and a canonical

interval [x, y] such that ξ|[x, y] = σα(x, y), [x, y] ⊂ [t, u], and for each i ∈
{1, 2, 3}, |λi(Imσα) − λi(P )| ≤ 3, then there exist v, w ∈ [t, u] with the
required properties.

Proof. Since λi(P ) > 5 for each i ∈ {1, 2, 3}, by (3.5), 5 < min{a, b, c}.
Let (a1, b1, c1) ∈ N3 be such that Q ⊂ θ(a1e1)∪θ(b1e2)∪θ(c1e3) and a1, b1, c1
are minimal (that is, θ(a1e1)∪θ(b1e2)∪θ(c1e3) is the minimal subtriod of Y
containing Q, with integer length of its legs). By the hypothesis of Claim 1,
we find that 5 ≤ min{a1, b1, c1}. By the hypothesis of Claim 1.1,

Imσα(x, y) = θ(ae1) ∪ θ(be2) ∪ θ(ce3) ⊂ P
⊂ θ((a+ 3)e1) ∪ θ((b+ 3)e2) ∪ θ((c+ 3)e3).
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Since Q ⊂ P , we get 2 ≤ min{a1−3, b1−3, c1−3} and a1−3 ≤ a, b1−3 ≤ b
and c1 − 3 ≤ c. Let β = (a1 − 3, b1 − 3, c1 − 3). Notice that either β = α or
β ∈M(α)−{(1, 1, 1)}. In both cases, by (c), there exists a canonical interval
[v, w] such that [v, w] ⊂ [x, y] ⊂ [t, u] and ξ|[v, w] = σβ(v, w). By (3.5),
ξ([v, w]) = θ((a1 − 3)e1) ∪ θ((b1 − 3)e2) ∪ θ((c1 − 3)e3). Clearly, for each
i ∈ {1, 2, 3}, |λi(ξ([v, w]))− λi(Q)| ≤ 3. This proves Claim 1.1.

Claim 1.2. There exist α ∈ N3−{(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)} and
a canonical interval [x, y] such that t ≤ x < y ≤ u and ξ|[x, y] = σα(x, y).

Proof. Let x1, x2 ∈ [t, u] be such that ξ(x1) and ξ(x2) are in different legs
of Y and 5 ≤ min{|ξ(x1)|, |ξ(x2)|}. Let j1, j2, k1, k2 ∈ N, i1, i2 ∈ {1, 2, 3},
0 ≤ u1 < v1, 0 ≤ u2 < v2, α1 and α2 be as in Claim 0 applied to the points
x1 and x2, respectively. We may assume that j1 = 1. Since x1, x2 ∈ [t, u], we
have [u1, x1] ⊂ [t, u] or [x1, v1] ⊂ [t, u]. Notice that 5 ≤ k1 and the intervals
[u1, x1] and [x1, v1] contain a canonical interval [x, y] which is the domain
of the map σ(3,1,1). Hence, t ≤ x < y ≤ u and ξ|[x, y] = σ(3,1,1)(x, y). Let
α = (3, 1, 1). This proves Claim 1.2.

Let x, y and α be as in Claim 1.2. By (3.2), ξ(x) = θ = ξ(y). Since
ξ−1(θ) ∩ [t, u] is finite, the number of possible intervals [x, y] is finite. From
all the possible choices of intervals [x, y], we choose one having minimal
order. We analyze two cases.

Case 1: k = 1. In this case there exists m ∈ N such that α = βm and
we can take the maximum such m. Then [x, y] = [m− 1,m]. We will prove
that for each i ∈ {1, 2, 3}, |λi(Imα)− λi(P )| ≤ 1.

Given n < m, by (3.5), we have Imσβn ⊂ Imσβm . Then Im ξ([1,m]) =
Im ξ([m− 1,m]) = ξ([x, y]) ⊂ P . By the maximality of m, [m,m+1] cannot
be contained in [x, y]. Hence, m+ 1 /∈ [x, y]. Thus, [x, y] ⊂ [1,m+ 1) and

θ((m+1)e1)∪ θ((m+1)e2)∪ θ((m+1)e3) = Imσβm ⊂ P ⊂ Im ξ([1,m+1))

⊂ Im ξ([1,m+ 1]) = Im ξ([m,m+ 1]) = Imσβm+1(m,m+ 1)

= θ((m+ 2)e1) ∪ θ((m+ 2)e2) ∪ θ((m+ 2)e3).

This implies that for each i ∈ {1, 2, 3}, |λi(Imα) − λi(P )| ≤ 1. By the
hypothesis of Claim 1, λi(P ) > 5 for each i ∈ {1, 2, 3}. Therefore 5 < m+2.
Hence, we can apply Claim 1.1 to conclude that there exist v, w ∈ [t, u] with
the required properties.

Case 2: k > 1. By the definition of k, there exists a canonical interval
[v0, w0] of order k − 1 and there exists γ = (a1, b1, c1) ∈ N3 − {(1, 1, 1)}
such that σγ(v0, w0) = ξ|[v0, w0] and σα(x, y) C σγ(v0, w0). Then α ∈M(γ).
This implies that a ≤ a1, b ≤ b1 and c ≤ c1 and one of these inequalities
is proper. By the minimality of k, [v0, w0] is not contained in [t, u]. Since
[x, y] ⊂ [v0, w0] ∩ [t, u], we have [v0, w0] ∩ [t, u] 6= ∅.
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Let [v1, w1] be a canonical interval of order k − 1 such that [v1, w1] is
adjacent to [v0, w0] (that is, v0 = w1 or w0 = v1). By the minimality of k,
[v1, w1] is not contained in [t, u].

By the choice of α, α /∈ {(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)}. This implies
that there are two different canonical intervals [v1, w1] and [v2, w2], of order
k − 1, adjacent to the interval [v0, w0] and there exist ζ, ϑ ∈ N3 − {(1, 1, 1)}
such that ξ|[v1, w1] = σζ(v1, w1) and ξ|[v2, w2] = σϑ(v2, w2). By the previous
paragraph, [v0, w0] is not contained in [t, u] and [vj , wj ] is not contained in
[t, u] for each j ∈ {1, 2}. This implies that [t, u] ⊂ [v0, w0]∪ [vj , wj ] for some
j ∈ {1, 2}. We may assume that [t, u] ⊂ [v1, w1]∪ [v0, w0]. Let ζ = (a2, b2, c2).

We will prove that λ1(P ) ≤ min{a1+1, a2+1}, λ2(P ) ≤ min{b1+1, b2+1}
and λ3(P ) ≤ min{c1 + 1, c2 + 1}. We only prove that λ1(P ) ≤ a1 + 1, the
rest of the proof is similar. We consider two cases.

If k = 2, then there exists m ∈ N such that γ = βm, so w0 = m and
(a1, b1, c1) = (m+ 1,m+ 1,m+ 1). Notice that

P ⊂ ξ([0,m] ∪ [m,m+ 1]) = βm+1([m,m+ 1])

= θ((m+ 2)e1) ∪ θ((m+ 2)e2) ∪ θ((m+ 2)e3).

Hence, λ1(P ) ≤ m+ 2 = a1 + 1 .
If k > 2, there exist a canonical interval [v3, w3] of order k − 2, κ ∈

N3 − {(1, 1, 1)} and i ∈ {1, . . . , g(κ)} such that σγ(v0, w0) C σκ(v3, w3),
σζ(v1, w1) C σκ(v3, w3), γ = σϕ(κ)(i) and ζ ∈ {σϕ(κ)(i−1), σϕ(κ)(i+1)}. By (d),
a2 ≤ a1 + 1. Since

P = ξ([t, u]) ⊂ ξ([v1, w1] ∪ [v0, w0])

= θ(a2e1) ∪ θ(b2e2) ∪ θ(c2e3) ∪ θ(a1e1) ∪ θ(b1e2) ∪ θ(c1e3),

we obtain λ1(P ) ≤ a1 + 1.
Therefore, λ1(P ) ≤ min{a1+1, a2+1}, λ2(P ) ≤ min{b1+1, b2+1} and

λ3(P ) ≤ min{c1 + 1, c2 + 1}.
If the canonical interval [x1, y1] contained in [v0, w0], where [x1, y1] is the

domain for γϕ(γ)(g(γ)), satisfies [x1, y1] ⊂ [t, u], let γϕ(γ)(g(γ)) = (a4, b4, c4).
Then a4 ≤ λ1(P ) and, by (b) and (d) applied to γ, |a1 − a4| + |b1 − b4| +
|c1 − c4| ≤ 1. Thus, a1 ≤ a4 + 1 ≤ λ1(P ) + 1 ≤ a1 + 2 and |a1 − λ1(P )| ≤ 1.
Proceeding similarly,max{|a1−λ1(P )|, |b1−λ2(P )|, |c1−λ3(P )|} ≤ 1. Hence,
max{|a4−λ1(P )|, |b4−λ2(P )|, |c4−λ3(P )|} ≤ 2. Therefore, Claim 1.1 implies
that there exist v, w ∈ [t, u] with the required properties. Hence, we may
assume that the canonical interval [x1, y1], contained in [v0, w0], that is the
domain for γϕ(γ)(g(γ)) is not contained in [t, u].

Similarly, we can assume that the canonical interval [x2, y2], contained
in [v1, w1], that is the domain for ζϕ(ζ)(g(ζ)) is not contained in [t, u].

We consider two subcases.
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Subcase 2.1: [t, u] is not contained in [v0, w0]. We may assume that
w1 = v0. Then v0 ∈ [t, u]. By definition, [v0, w0] is the domain of the map

σγ = σϕ(γ)(1) ∗ · · · ∗ σϕ(γ)(g(γ)−1) ∗ σϕ(γ)(g(γ)) ∗ σϕ(γ)(g(γ)−1) ∗ · · · ∗ σϕ(γ)(1)
and [v1, w1] is the domain of

σζ = σϕ(ζ)(1) ∗ · · · ∗ σϕ(ζ)(g(ζ)−1) ∗ σϕ(ζ)(g(ζ)) ∗ σϕ(ζ)(g(ζ)−1) ∗ · · · ∗ σϕ(ζ)(1).
For each i ∈ {1, . . . , g(γ)}, let Ji be the domain on the left of the map σϕ(γ)(i)
in the interval [v0, w0] and, for each j ∈ {1, . . . , g(ζ)}, let Lj be the domain
on the right of the map σϕ(ζ)(j) in the interval [v1, w1]. Since v0 ∈ [t, u] and
Jg(γ) and (by the fact we mention three paragraphs above) Lg(ζ) are not
contained in [t, u], we see that [v0, w0] ∩ [t, u] is contained in J1 ∪ · · · ∪ Jg(γ)
and [v1, w1]∩ [t, u] is contained in L1 ∪ · · · ∪Lg(ζ). Let i ∈ {1, . . . , g(γ)} and
j ∈ {1, . . . , g(ζ)} be such that Ji−1 ⊂ [t, u] and Lj−1 ⊂ [t, u] and j and l are
maximal (we define J0 = {v0} = L0 in order that i and j be well defined).
Then

J1 ∪ · · · ∪ Ji−1 ∪ L1 ∪ · · · ∪ Lj−1 ⊂ [t, u] ⊂ J1 ∪ · · · ∪ Ji ∪ L1 ∪ · · · ∪ Lj .
So the only possible intervals of order k in [t, u] are the intervals J1, . . . , Ji−1,
L1, . . . , Lj−1. Thus, 1 < i or 1 < j.

Since [v0, w0] and [v1, w1] are consecutive intervals of order k − 1, either
they are two intervals of the form [m− 1,m] or [m,m+ 1] (in some order),
or there exist γ0 ∈ N3 − {(1, 1, 1)} and i0 ∈ {2, . . . , ϕ(γ0)(g(γ0))} such that
{γ, ζ} = {σϕ(γ0)(i0), σϕ(γ0)(i0+1)}. In both cases (see (d)), γ and ζ satisfy the
hypothesis of (f).

If 1< i and 1< j, let A= {ϕ(γ)(l) ∈N3 : 1≤ l < i}, B = {ϕ(ζ)(l) ∈N3 :
1 ≤ l < j} and for each e ∈ {1, 2, 3}, let re = maxπe(A) and se = maxπe(B).
By (f), we may assume that

K((s1, s2, s3)) ⊂ K((r1, r2, r3) + (1, 1, 1)).

By (d),

K(ϕ(γ)(i)) ⊂ K(ϕ(γ)(i− 1) + (1, 1, 1)) ⊂ K((r1, r2, r3) + (1, 1, 1)),

K(ϕ(ζ)(j)) ⊂ K(ϕ(ζ)(j − 1) + (1, 1, 1)) ⊂ K((s1, s2, s3) + (1, 1, 1))

⊂ K((r1, r2, r3) + (2, 2, 2)).

Thus, ϕ(γ)(i) ∈ K((r1+1, r2+1, r3+1)), so for each e ∈ {1, 2, 3}, πe(ϕ(γ)(i))
≤ re + 1. Similarly, for each e ∈ {1, 2, 3}, πe(ϕ(γ)(i)) ≤ re + 2.

Applying (3.5), we obtain

P = ξ([t, u]) ⊂ ξ(J1 ∪ · · · ∪ Ji ∪ L1 ∪ · · · ∪ Lj)
= σϕ(γ)(1)(J1) ∪ · · · ∪ σϕ(γ)(i)(Ji) ∪ σϕ(ζ)(1)(L1) ∪ · · · ∪ σϕ(ζ)(j)(Lj)
⊂ θ(r1 + 2)e1 ∪ θ(r2 + 2)e2 ∪ θ(r3 + 2)e3.
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In the case j = 1, we have i > 1 (the case i = 1 is similar). In this case we
can also define A, r1, r2 and r3 and we also obtain

P ⊂ σϕ(γ)(1)(J1) ∪ θ(r1 + 2)e1 ∪ θ(r2 + 2)e2 ∪ θ(r3 + 2)e3

= θ(r1 + 2)e1 ∪ θ(r2 + 2)e2 ∪ θ(r3 + 2)e3.

Therefore, we can assume that i > 1, A, r1, r2 and r3 are defined, and
P ⊂ θ(r1 + 2)e1 ∪ θ(r2 + 2)e2 ∪ θ(r3 + 2)e3.

On the other hand, by (e), there exists 1 ≤ k0 < i with

{ϕ(γ)(l) ∈ N3 : 1 ≤ l < i} ⊂ K(ϕ(γ)(k0) + (1, 1, 1)).

This implies that

r1 ≤ π1(ϕ(γ)(k0)) + 1, r2 ≤ π2(ϕ(γ)(k0)) + 1, r3 ≤ π3(ϕ(γ)(k0)) + 1.

Thus,

θ(r1 + 2)e1 ∪ θ(r2 + 2)e2 ∪ θ(r3 + 2)e3

⊂ θ
(
π1(ϕ(γ)(k0)) + 3

)
e1 ∪ θ

(
π2(ϕ(γ)(k0)) + 3

)
e2 ∪ θ

(
π3(ϕ(γ)(k0)) + 3

)
e3.

By (3.5),
σϕ(γ)(k0)(Jk0)

= θ
(
π1(ϕ(γ)(k0))

)
e1 ∪ θ

(
π2(ϕ(γ)(k0))

)
e2 ∪ θ

(
π3(ϕ(γ)(k0))

)
e3 ⊂ P

⊂ θ
(
π1(ϕ(γ)(k0)) + 3

)
e1 ∪ θ

(
π2(ϕ(γ)(k0)) + 3

)
e2 ∪ θ

(
π3(ϕ(γ)(k0)) + 3

)
e3.

We can apply Claim 1.1 to deduce that there exist v and w with the
required properties.

Case 2.2: [t, u] is contained in [v0, w0]. Recall that [v0, w0] is the domain
of the map

σγ = σϕ(γ)(1) ∗ · · · ∗ σϕ(γ)(g(γ)−1) ∗ σϕ(γ)(g(γ)) ∗ σϕ(γ)(g(γ)−1) ∗ · · · ∗ σϕ(γ)(1).

For each i ∈ {1, . . . , g(γ)}, let Ji be the domain on the left of the map
σϕ(γ)(i) in the interval [v0, w0] and let J ′i be the domain on the right of the
map σϕ(γ)(i) in the interval [v0, w0]. Since Jg(γ) is not contained in [t, u],
we see that either [t, u] is contained in J1 ∪ · · · ∪ Jg(γ) or it is contained in
J ′1 ∪ · · · ∪ J ′g(γ). We analyze the case [t, u] ⊂ J1 ∪ · · · ∪ Jg(γ), the other one is
similar. Let i, j ∈ {1, . . . , g(γ)} be such that [t, u] ⊂ Ji ∪ · · · ∪ Jj and i is the
maximum and j is the minimum. By the choice of [x, y], we note that one of
the intervals J2, . . . , Jg(γ)−1 coincides with [x, y], so i and j are well defined.
Then 1 ≤ i ≤ j ≤ g(γ) and Ji+1 ∪ · · · ∪ Jj−1 ⊂ [t, u] ⊂ Ji ∪ · · · ∪ Jj .

By (e), there exists i < k0 < j such that {ϕ(γ)(l) ∈ N3 : i < l < j}
⊂ K(ϕ(γ)(k0) + (1, 1, 1)). By (d),

K(ϕ(γ)(j)) ⊂ K(ϕ(j − 1) + (1, 1, 1)) ⊂ K(ϕ(γ)(k0) + (2, 2, 2)).
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Similarly, K(ϕ(γ)(i)) ⊂ K(ϕ(γ)(k0) + (2, 2, 2)). This implies that

P = ξ([t, u]) ⊂ ξ(Ji ∪ · · · ∪ Jj) = σϕ(γ)(i)(Ji) ∪ · · · ∪ σϕ(γ)(j)(Jj)
⊂ θ
(
π1(ϕ(γ)(k0))+2

)
e1 ∪ θ

(
π2(ϕ(γ)(k0))+2

)
e2 ∪ θ

(
π3(ϕ(γ)(k0))+2

)
e3.

By (3.5),

σϕ(γ)(k0)(Jk0)

= θ
(
π1(ϕ(γ)(k0))

)
e1 ∪ θ

(
π2(ϕ(γ)(k0))

)
e2 ∪ θ

(
π3(ϕ(γ)(k0))

)
e3 ⊂ P

⊂ θ
(
π1(ϕ(γ)(k0)) + 2

)
e1 ∪ θ

(
π2(ϕ(γ)(k0)) + 2

)
e2 ∪ θ

(
π3(ϕ(γ)(k0)) + 2

)
e3.

We can apply Claim 1.1 to conclude that there exist v and w with the
required properties.

This completes the proof of Claim 1.

Claim 2. X is C∗-smooth.

Proof. First, consider a triod A ⊂ T and a sequence of arcs {An}∞n=1 in R
such that limAn = A. Let B ∈ C(A). We need to show that B ∈ limC(An),
that is, there exists a sequence {Bn}∞n=1 such thatBn ∈ C(An) for each n ∈ N
and limBn = B. If B is a one-point set, it is easy to see that B ∈ limC(An).
So, suppose that B is nondegenerate.

First, we consider the case that B is a triod. Then θ ∈ B and λ0 =
min{λ1(B), λ2(B), λ3(B)} is positive. For each n ∈ N, choose Bn ∈ C(An)
such that H(B,Bn) = min{H(B,D) : D ∈ C(An)}; we need to show that
limBn = B.

Take ε > 0. We are going to find N ∈ N such that for each n ≥ N ,
H(B,Bn) < ε. Let B0 ∈ C(B) be such that B0 is a triod, H(B,B0)
< ε/4 and λ0/2 < λi(B0) < λi(B) for each i ∈ {1, 2, 3}. Since B ⊂ A =
lim(π(An) × {0}), there exists N1 ∈ N such that 10/N1 < min{λ0, ε} and
B0 ⊂ π(An)× {0} for all n ≥ N1.

For each n ∈ N, let An = ψ([tn, un]), with 0 ≤ tn ≤ un. Since limAn = A,
lim tn =∞ = limun. Thus, there exists N2 ∈ N such that N1 ≤ tn for each
n ≥ N2. Let n = max{N1, N2}.

Let n ≥ N . We consider two cases.

Case 1: There exists m ∈ N such that [m− 1,m] ⊂ [tn, un]. In this case

B0 ⊂ T = ψm([m− 1,m]) =
1

m+ 1
ξ([m− 1,m]) ⊂ 1

m+ 1
ξ([tn, un]).

Thus, (m + 1)B0 is a triod contained in ξ([m − 1,m]). Since m ≥ tn ≥ N1,
10/(m+ 1) < 10/N1 < λ0 ≤ min{2λ1(B0), 2λ2(B0), 2λ3(B0)}. This implies
that 5 < min{(m + 1)λ1(B0), (m + 1)λ2(B0), (m + 1)λ3(B0)}. By Claim 1,
there exist v, w ∈ [m − 1,m] such that v ≤ w and for each i ∈ {1, 2, 3}, we
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have |λi(ξ([v, w]))− λi((m+ 1)B0)| ≤ 3. Therefore,∣∣λi(π(ψ([v, w]))× {0})− λi(B0)
∣∣ = |λi(ψm([v, w]))− λi(B0)|

=

∣∣∣∣λi( 1

m+ 1
(ξ([v, w]))

)
− λi(B0)

∣∣∣∣ ≤ 3

m+ 1
<
ε

3
.

Given t ∈ [u, v], there exists i ∈ {1, 2, 3} such that
(
π(ψ(t)), 0

)
∈ θei.

Since
∣∣λi(π(ψ([v, w])) × {0}) − λi(B0)

∣∣ < ε/3, there exists q ∈ B0 ∩ θei
such that |ψm(t) − q| =

∣∣(π(ψ(t)), 0) − q∣∣ < ε/3. Since m − 1 ≤ v ≤ t, we
get 1/(t+ 1) ≤ 1/m < ε/9. Thus, |ψ(t) − q| < ε/2. We have shown that
ψ([u, v]) ⊂ N(ε/2, B0). Similarly, B0 ⊂ N(ε/2, ψ([u, v])). Hence, ψ([v, w]) is
a subcontinuum of An such that H(ψ([v, w]), B0) < ε/2. Therefore,
H(ψ([v, w]), B) < ε. This implies that H(Bn, B) < ε.

Case 2: For each m ∈ N, [m − 1,m] is not contained in [tn, un]. In this
case, there exists m ∈ N such that [tn, un] ⊂ [m − 1,m + 1]. We suppose
that m ∈ [tn, un]; the reasoning for [tn, un] ⊂ [m−1,m] is similar but easier.
Note that An = ψ([tn, un]) = ψ([tn,m]) ∪ ψ([m,un]). Let
D1 =

(
π(ψ([tn,m])× {0})

)
∩B0, D2 =

(
π(ψ([m,un]))× {0}

)
∩B0.

Since B0 ⊂ π(An)× {0}, we have B0 = D1 ∪D2. Since

D1 ⊂ π(ψ([m− 1,m])) = ψm([m− 1,m]) =
1

m+ 1
ξm([m− 1,m]),

we have (m + 1)D1 ⊂ ξm([tn,m]). Similarly, (m + 2)D1 ⊂ ξm+1([m,un]).
Thus,

(m+ 1)B0 = (m+ 1)(D1 ∪D2) ⊂ ξm([tn,m]) ∪ ξm+1([m,un]) = ξ([tn, un]).

As in Case 1, we deduce

5 < min{(m+ 1)λ1(B0), (m+ 1)λ2(B0), (m+ 1)λ3(B0)}.
By Claim 1, there exist v, w ∈ [tn, un] such that v ≤ w and for each i ∈
{1, 2, 3}, |λi(ξ([v, w])) − λi((m + 1)B0)| ≤ 3. Given t ∈ [v, w] ∩ [m − 1,m],
there exists i ∈ {1, 2, 3} such that

(
π(ψ(t)), 0

)
∈ θei. Since(

π(ψ(t)), 0
)
= ψm(t) =

1

m+ 1
ξm(t) =

1

m+ 1
ξ(t), ξ(t) ∈ ξ([v, w]) ∩ θei,

there exists q ∈ B0 such that |ξ(t)− (m+ 1)q| < 3. Thus,
∣∣(π(ψ(t)), 0)− q∣∣

< 3/(m+ 1) < ε/3. Hence,
(
π(ψ(t)), 0

)
∈ N(ε/3, B0). Similarly, for each

t ∈ [v, w] ∩ [m,m+ 1], we have
(
π(ψ(t)), 0

)
∈ N(ε/3, B0). This implies that

ψ(t) ∈ N(ε/2, B0). We have proved that ψ([v, w]) ⊂ N(ε/2, B0). Similarly,
B0 ⊂ N(ε/2, ψ([v, w])). Hence, ψ([v, w]) is a subcontinuum of An such that
H(ψ([v, w]), B0) < ε/2. Therefore, H(ψ([v, w]), B) < ε. This implies that
H(Bn, B) < ε.

This completes the proof that limBn = B.
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Now, we consider the case that B is an arc and θ ∈ B. Since A is a triod,
there exists a sequence {B′m}∞m=1 of triods in A such that limB′m = B.
By the first case we considered, for each m ∈ N, there exists a sequence
{B(m)

n }∞n=1 such that for each n ∈ N, B(m)
n ∈ C(An) and limB

(m)
n = B′m.

Now, it is easy to see B ∈ limC(An).
Finally, we consider the case that B is an arc and θ /∈ B. We assume

that B is nondegenerate. Since B is the limit of its proper subarcs, as in
the paragraph above, it is enough to show that, if B0 is a proper subarc
of B and B0 does not contain the end points of B, then B0 ∈ limC(An).
Notice that there exists N ∈ N such that B0 ⊂ π(An)×{0} for each n ≥ N .
Since maps onto arcs are weakly confluent, for each n ≥ N there exists
a subarc ψ([vn, wn]) of An such that B0 = π(ψ([vn, wn])) × {0}. Clearly,
limψ([vn, wn]) = B0.

This completes the proof that if A is a subtriod of T and {An}∞n=1 is a
sequence of arcs in R such that limAn = A, then C(A) ⊂ limC(An).

From this, it is easy to conclude that X is C∗-smooth, as asserted in
Claim 2.

By Theorem 2.2, for each continuum Z the induced map C(πZX) :
C(X × Z)→ C(X) is not open.

This completes the proof of the properties of the example X.

4. Chainable continua. For every n ∈ N and i ∈ {1, . . . , n}, let
ρi : Rn → R be the projection on the ith coordinate. Given a map
g : [a, b] → [−1, 1], let Gr(g) = {(t, g(t)) ∈ R2 : t ∈ [a, b]}. Given a contin-
uum X, B ∈ C(X) and ε> 0, let BH(ε,B) be the ε-ball around B in C(X).

The classical Mountain Climbing Theorem [10, Theorem 1] claims that if
f, g : [0, 1]→ [0, 1] are piecewise monotone maps such that f(0) = 0 = g(0)
and f(1) = 1 = g(1), then there exist piecewise monotone maps α, β such
that α(0) = 0 = β(0) and α(1) = 1 = β(1). In this theorem the word
“monotone” can be changed to “linear” [7, Theorem 2]. The linear version
can be used to prove the following lemma.

Lemma 4.1. Let f, g : [a, b] → [r, s] be piecewise linear maps such that
f(a) = r and f(b) = s. Then there exist piecewise linear maps α, β :
[0, 1]→ [a, b] such that f ◦ α = g ◦ β, β(0) = a and β(1) = b.

Lemma 4.2. Let g : [a, b] → [r, s] ⊂ [−1, 1] be a piecewise linear map,
where 0 < a < b ≤ 1. Let [r, s] = Im g and let c, e ∈ [a, b] be such that
g(c) = r and g(e) = s. Let B be a subcontinuum of {0} × [−1, 1] × [0, 1]
such that ρ2(B) = [r, s]. Let t0, t1 ∈ [0, 1] be such that (0, r, t0), (0, s, t1) ∈ B.
Then there exists a subcontinuum E of Gr(g) × [0, 1] such that Gr(g) =
{(ρ1(w), ρ2(w)) : w ∈ E}, (c, r, t0), (e, s, t1) ∈ E and H(B,E) < 2b.
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Proof. Let σ : [a, b] → {0} × [r, s] × [0, 1] be a piecewice linear map
such that σ(a) = (0, r, t0), σ(b) = (0, s, t1), a is the unique value for which
ρ2(σ(a)) = r, and b is the unique value for which ρ2(σ(b)) = s andH(Imσ,B)
< b. Since ρ2(σ(a)) = r and ρ2(σ(b)) = s, we can apply Lemma 4.1, so there
exist piecewise linear maps α, β : [0, 1]→ [a, b] such that ρ2 ◦ σ ◦ α = g ◦ β,
β(0) = a and β(1) = b.

Let ϕ : [0, 1]→ R3 be given by

ϕ(t) = (β(t), g(β(t)), (ρ3 ◦ σ ◦ α)(t)).
Let E = Imϕ. Then E is a subcontinuum of Gr(g) × [0, 1]. Since ϕ(0) =
(a, g(a), (ρ3 ◦ σ ◦ α)(a)) and ϕ(1) = (b, g(b), (ρ3 ◦ σ ◦ α)(b)), we find that
Im(ρ1 ◦ ϕ, ρ2 ◦ ϕ) = Gr(g). Thus, Gr(g) = {(ρ1(e), ρ2(e)) : e ∈ E}. Given
t ∈ [0, 1], we deduce

∣∣(β(t), g(β(t)), (ρ3 ◦ σ ◦ α)(t)) − σ ◦ α(t)∣∣ = β(t) ≤ b.
Hence, H(E, Im(σ ◦ α)) ≤ b.

Since β is onto, there exist t2, t3 ∈ [0, 1] such that β(t2) = c and β(t3) = e.
Then ρ2

(
σ(α(t2))

)
= g(β(t2)) = g(c) = r and ρ2

(
σ(α(t3))

)
= g(β(t3)) =

g(e) = s. By the choice of σ, α(t2) = a and α(t3) = b. Thus, Imα = [a, b]
and Imσ = Im(σ ◦ α). Therefore, H(B,E) < 2b. Finally, ϕ(t2) =(
β(t2), g(β(t2)), (ρ3 ◦ σ ◦ α)(t2)

)
= (c, r, t0) and ϕ(t3) =

(
β(t3), g(β(t3)),

(ρ3 ◦ σ ◦ α)(t3)
)
= (e, s, t1). Therefore, (c, r, t0), (e, s, t1) ∈ E.

In Example 37 of [2], it was shown that the sin(1/x)-continuum has the
open projection property. We do not know if this result can be extended
to every compactification of the ray [0, 1) with an arc as remainder (see
Problem 4.4 below). For this family of continua we have the following partial
result.

Theorem 4.3. Let X be a compactification of the ray [0,∞) such that
the remainder of X is an arc. Then C(π

[0,1]
X ) : C(X × [0, 1]) → C(X) is

open.

Proof. By [9, Lemma 5.1, p. 20], we may assume that there exists a map
g : (0, 1]→ [−1, 1] such that

X = ({0} × [−1, 1]) ∪ {(t, g(t)) ∈ R2 : t ∈ (0, 1]}.
Let R = {0} × [−1, 1] and S = {(t, g(t)) ∈ R2 : t ∈ (0, 1]}. It is easy to
show that we may also assume that for each n ∈ N − {1}, g(1/n) = (−1)n.
Let Jn = [1/n, 1/(n− 1)]. Notice that there exists a piecewise linear map
g0n : Jn → [−1, 1] such that for each t ∈ Jn, |g(t) − g0n(t)| < 1/n, g(1/n)
= g0n(1/n) and g(1/(n− 1)) = g0n(1/(n− 1)). Clearly, X is homeomorphic
to ({0} × [−1, 1]) ∪ {(t, g0n(t)) ∈ R2 : n ∈ N and t ∈ Jn}. Therefore, we may
assume that, for every 0 < a < b ≤ 1, g|[a,b] is piecewise linear.

In order to see that C(π[0,1]X ) is open, let B ∈ C(X × [0, 1]) and let U be
an open subset of C(X × [0, 1]) such that B ∈ U . Let ε > 0 be such that
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BH(ε,B) ⊂ U . We need to show that A = π
[0,1]
X (B) ∈ intC(X)(π

[0,1]
X (U)). In

the case that A is degenerate, this claim follows from Proposition 13 of [2].
Thus, we assume that A is nondegenerate. We consider three cases.

Case 1: A ⊂ S. This case follows from Proposition 14 of [2].

Case 2: A ⊂ R. Let δ > 0 be such that 4δ < ε and, in the case that
A 6= R, we also ask that, for each E ∈ BH(δ, A), R ( E. Let E ∈ C(X) be
such that H(A,E) < δ. If E is degenerate, let E = {p}. Let q ∈ A be such
that |p− q| < δ. Let F = E×ρ3(B). Then F is a subcontinuum of X× [0, 1]

such that π[0,1]X (F ) = E, H(F,B) < ε and F ∈ U . Hence, we suppose that
E is nondegenerate.

In the case that E ⊂ R, there exists an onto map h : A → E such that
|h(z) − z| < δ for each z ∈ A. Let F = (h × Id[0,1])(B). Clearly, F is a
subcontinuum of X× [0, 1] such that π[0,1]X (F ) = E, H(F,B) < ε and F ∈ U .
Therefore, E ∈ π[0,1]X (U).

Now, we suppose that E ∩ R = ∅. Then there exist a, b ∈ [0, 1] such
that 0 < a < b ≤ 1 and E = Gr(g|[a,b]). Since H(A,E) < δ, b < δ.
Let E1 = {0} × ρ2(E). Then H(E1, E) < δ. Since H(A,E1) < 2δ, there
exists an onto map h : A → E1 such that |h(z) − z| < 2δ for each z ∈ A.
Let F1 = (h × Id[0,1])(B). Clearly, F1 is a subcontinuum of X such that
F1 ⊂ {0} × [−1, 1] × [0, 1], π[0,1]X (F1) = E1 and H(F1, B) < 2δ. Let [r, s] =
g([a, b]) = ρ2(E) = ρ2(E1) = ρ2(F1). By Lemma 4.2, applied to the map
g|[a,b] and the subcontinuum F1 of {0} × [−1, 1] × [0, 1], we deduce that
there exists a subcontinuum F of Gr(g|[a,b]) × [0, 1] = E × [0, 1] such that
E = Gr(g|[a,b]) = {(ρ1(w), ρ2(w)) : w ∈ F} and H(F1, F ) < 2b. Thus,
π
[0,1]
X (F ) = E, H(F,B) < 4δ < ε and F ∈ U . Therefore, E ∈ π[0,1]X (U).
Finally, suppose that R ( E. In this case, E is of the form E = R ∪

{(t, g(t)) ∈ R2 : t ∈ (0, b0]} for some b0 > 0. Since H(E,A) < δ, b0 < δ.
By the choice of δ, A = R. Let N = min{n ∈ N : 1/2n ∈ [0, b0]}.
Let gN = g|[1/(2N+1),b0], EN = Gr(gN ) and for each n > N , let gn =
g|[1/(N+n+1),1/(N+n)] and En = Gr(gn). Notice that E = R∪

⋃
{En : n ≥ N}

and Im gn = ρ2(En) = [−1, 1] for each n ≥ N . Since A = R, there exist
t−1, t1 ∈ [0, 1] such that (0,−1, t−1), (0, 1, t1) ∈ B. For each n ≥ N , let un
(resp., vn) be the even (resp., odd) number of the set {N + n,N + n+ 1}),
cn = 1/vn and en = 1/un. Then gn(cn) = −1 and gn(en) = 1. Thus, we
can apply Lemma 4.2 to B and gn and infer that there exists a subcontin-
uum Fn of Gr(gn) × [0, 1] such that Gr(gn) = {(ρ1(w), ρ2(w)) : w ∈ Fn},
(cn,−1, t−1), (en, 1, t1) ∈ Fn, and if n > N , then H(B,Fn) < 2/(N + n) <
1/N ≤ 2b0 and H(B,FN ) < 2b0. Let F = B ∪

⋃
{Fn : n ≥ N}. Since

limFn=B, F is compact. Given n≥N , since
(

1
N+n+1 , (−1)

N+n+1, t(−1)N+n+1

)
∈ Fn ∩ Fn+1, we see that F is connected. Hence, F is a subcontinuum
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of X × [0, 1]. Notice that H(B,F ) < 2b0 < 2δ. Hence, F ∈ U . Finally,
π
[0,1]
X (F ) = π

[0,1]
X (B) ∪

⋃
{π[0,1]X (Fn) : n ≥ N} = A ∪

⋃
{En : n ≥ N} = E.

Hence, E ∈ π[0,1]X (U).
We have shown that, in this case, A ∈ intC(X)(π

[0,1]
X (U)).

Case 3: R ( A. In this case, A is of the form A = R ∪ {(t, g(t)) ∈ R2 :
t ∈ (0, a0]} for some a0 > 0. Let δ > 0 be such that 12δ < min{ε, a0} and,
if E ∈ C(X), R ⊂ E and H(A,E) < δ, then there exists a homeomorphism
h : A→ E such that |a− h(a)| < ε/2 for each a ∈ A. We can also ask that
if E ∈ C(X) and H(A,E) < δ, then ρ1(E) is nondegenerate and E ∩A 6= ∅.
Let N ∈ N be such that N is even and 1/N < δ < a0 − δ. Take E ∈
C(X) such that H(A,E) < 1/(N + 1) < a0 − δ. Since R ⊂ A, there exists
x0 ∈ (0, 1] such that (x0, g(x0)) ∈ E and x0 < 1/(N + 1). Moreover, there
exists x1 ∈ (0, 1] such that (x1, g(x1)) ∈ E and |a0 − x1| < a0 − δ. Then
1/N < δ < x1. Thus, {(x, g(x)) ∈ X : 1/(N + 1) ≤ x ≤ 1/N} ⊂ E.

In the case that R ⊂ E, by the choice of δ, there exists a homeomorphism
h : A→ E such that |a−h(a)| < ε/2 for each a ∈ A. Let F = (h×Id[0,1])(B).
Then F is a subcontinuum of X × [0, 1] such that π[0,1]X (F ) = E, H(F,B)

< ε/2 and F ∈ U . Therefore, E ∈ π[0,1]X (U).
Now, suppose that E ∩ R = ∅. In this case, there exist u, v ∈ [0, 1] such

that 0 < u < v ≤ 1 and E = Gr(g|[u,v]). Then u ≤ 1/(N + 1) < 1/N < v

(since 1/N < x1 ≤ v). Let A0 = R ∪ {(x, g(x)) ∈ X : x ∈ (0, v]}. Since
H(A,E) < δ, we have H(A,A0) < δ. By the paragraph above, there exists a
subcontinuum F0 of X× [0, 1] such that π[0,1]X (F0) = A0 and H(F0, B) < ε/2.
Since Gr(g|[1/(N+1),1/N ]) ⊂ E, the set M0 = ({1/N} × {1} × [0, 1]) ∩ F0 is
nonempty.

Let

M =
⋃
{{1/N} × {1} × ([r − δ/2, r + δ/2] ∩ [0, 1] : (1/N, 1, r) ∈ F0}

and F1 = F0 ∪M . Notice that F1 is a continuum, H(F1, F0) < δ < ε/4,
H(F1, B) < 3ε/4, π[0,1]X (F1) = A0, M = ({1/N} × {1} × [0, 1]) ∩ F1 and M
has a finite number of components D1, . . . , Dk. Let

M− = ([0, 1/N ]×[−1, 1]×[0, 1])∩F1, M+ = ([1/N, 1]×[−1, 1]×[0, 1])∩F1.

Notice that M−, M+ are closed subsets of F1 such that F1 = M− ∪M+,
M =M− ∩M+, FrF1(M

−) ⊂M and, since 1/N < v, M− 6= F1.
Given a component C of M−, by [8, Theorem 20.3], C ∩M 6= ∅. Since

M ⊂ M− and M has a finite number of components, we deduce that M−
has a finite number of components. Similarly, M+ has a finite number of
components. Since R ⊂ π

[0,1]
X (F1), we can take the components C1, . . . , Cm

ofM− such that ρ1(Ci)∩[0, 1/(N + 1)] 6= ∅. For each i ∈ {1, . . . ,m}, let Ji =
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{j ∈ {1, . . . , k} : Ci ∩ Dj 6= ∅}. Since ∅ 6= Ci ∩M , we have Ji 6= ∅. Given
j ∈ Ji, choose a point (1/N, 1, tji ) ∈ Ci ∩Dj ⊂M . Let

Bi = {(0, ρ2(p), ρ3(p)) ∈ {0} × [−1, 1]× [0, 1] : p ∈ Ci}.

Then Bi is a continuum. Since ρ1(Ci) ∩ [0, 1/(N + 1)] 6= ∅, we can choose a
point (1/(N+1),−1, si)∈Ci. Then ρ2(Bi) = ρ2(Ci) = [−1, 1]. For each j ∈Ji,
we apply Lemma 4.2 to g|[u,1/N ], ci = 1/(N + 1), eji = 1/N , r = −1, s = 1, si
and tji and Bi to obtain a subcontinuum Gji of Gr(g|[u,1/N ])× [0, 1] such that
Gr(g|[u,1/N ]) = {(ρ1(w), ρ2(w)) : w ∈ Gji}, (1/(N + 1),−1, si), (1/N, 1, tji )
∈ Gji and H(Bi, G

j
i ) < 2/N . Define Gi =

⋃
{Gji : j ∈ Ji}. Since each Gji

contains the point (1/(N + 1),−1, si), Gi is a subcontinuum of X. Notice
that Gr(g|[u,1/N ]) = {(ρ1(w), ρ2(w)) : w ∈ Gi}, Gi ∩Dj 6= ∅ for each j ∈ Ji
and H(Bi, Gi) < 2/N .

Let F =M+ ∪ (M− − (C1 ∪ · · · ∪ Cm)) ∪ (G1 ∪ · · · ∪Gm). Clearly, F is
a compact subset of X × [0, 1].

Let i ∈ {1, . . . ,m} and letD be a component ofM+ such that Ci∩D 6= ∅.
Let z ∈ Ci ∩ D ⊂ M . Then there exists j ∈ {1, . . . , k} such that z ∈ Dj .
Note that Dj ⊂ D and j ∈ Ji, so Gi ∩D 6= ∅.

We are ready to show that F is connected. Let A = {K : K is a compo-
nent ofM+ or K is a component ofM−} and B = {K : K is a component of
M+ or K is a component of M−− (C1 ∪ · · · ∪Cm)} ∪ {G1, . . . , Gm}. Notice
that A (resp., B) is finite, its elements are compact and the union of the
elements of A (resp., B) is F1 (resp., F ). Given two elements R,S ∈ B,
let R1 = R if R1 /∈ {G1, . . . , Gm} and R1 = Ci if R = Gi for some
i ∈ {1, . . . ,m}. Define S1 similarly. Then R1, S1 ∈ A. Since F1 is con-
nected there exists a finite sequence R1 = T1, T2, . . . , Tl−1, Tl = S1 such
that Th ∩ Th+1 6= ∅ for each h < l. Define a sequence Q1, . . . , Ql by mak-
ing Qh = Th if Qh /∈ {C1, . . . , Cm} and Qh = Gi if Th = Ci for some
i ∈ {1, . . . ,m}. By the paragraph above, Qh ∩ Qh+1 6= ∅ for each h < l. It
follows that F is connected.

Since π[0,1]X (F1) = A0 and M+ = ([1/N, 1] × [−1, 1] × [0, 1]) ∩ F1, we
have π[0,1]X (M+) = Gr(g|[1/N,v]). Notice that π[0,1]X (M− − (C1 ∪ · · · ∪Cm)) ⊂
Gr(g|[1/(N+1),1/N ]) and π

[0,1]
X (G1∪· · ·∪Gm) = Gr(g|[u,1/N ]). Thus, π

[0,1]
X (F ) =

Gr(g|[u,v]) = E.

Given p ∈ G1 ∪ · · · ∪Gm, there exists q ∈ B1 ∪ · · · ∪Bm such that |p− q|
< 2/N . Then there exists r ∈ C1∪· · ·∪Cm ⊂ ([0, 1/N ]× [−1, 1]× [0, 1])∩F1

such that |q− r| ≤ 1/N . Thus, |p− r| < 3/N < 3δ < ε/4. Similarly, for each
r ∈ C1 ∪ · · · ∪ Cm, there exists p ∈ G1 ∪ · · · ∪ Gm such that |p − r| < ε/4.
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This implies that H(F1, F ) < ε/4. Therefore, H(B,F ) < ε and F ∈ U . This
proves E ∈ π[0,1]X (U).

We have shown that also in this case A ∈ intC(X)(π
[0,1]
X (U)).

Problem 4.4. Let X be a compactification of the ray [0,∞) such that
the remainder of X is an arc. Does X have the open projection property?

Problem 4.5. Let X be a chainable continuum. Does X have the open
projection property? Is the map C(π[0,1]X ) : C(X × [0, 1])→ C(X) open?
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