
COLLOQU IUM MATHEMAT ICUM
VOL. 132 2013 NO. 1

THE DIOPHANTINE EQUATION (bn)x + (2n)y = ((b+ 2)n)z

BY

MIN TANG (Wuhu) and QUAN-HUI YANG (Nanjing)

Abstract. Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5
with b 6= 89, the Diophantine equation bx + 2y = (b+ 2)z has only the solution (x, y, z) =
(1, 1, 1). We give an extension of this result.

1. Introduction. Let N be the set of positive integers. Let a, b, c be
relatively prime positive integers such that a2 + b2 = c2 with 2 | b. In 1956,
Jeśmanowicz [J] conjectured that for any positive integer n, the Diophantine
equation

(1.1) (na)x + (nb)y = (nc)z

has only the solution (x, y, z) = (2, 2, 2). This conjecture is a famous un-
solved problem in the field of exponential Diophantine equations. For related
problems, see ([DC], [Le], [Miy], [TY]).

It is another interesting problem to find all triples (X,Y, Z) such that
the Diophantine equation Xx + Y y = Zz, x, y, z ∈ N has only the solution
(x, y, z) = (1, 1, 1). Recently, Miyazaki and Togbé [MT] proved that for any
fixed odd integer b ≥ 5 with b 6= 89, the Diophantine equation bx + 2y =
(b + 2)z has only the solution (x, y, z) = (1, 1, 1). Clearly, the Diophantine
equation

(1.2) (bn)x + (2n)y = ((b+ 2)n)z

has the solution (x, y, z) = (1, 1, 1).
In this paper, we obtain the following results.

Theorem 1.1. Let b be an odd integer with b ≥ 5. If (x, y, z) is a solution
of (1.2) with (x, y, z) 6= (1, 1, 1), then y < z < x or x ≤ z < y.

Corollary 1.2. Let b ≥ 5 be an odd prime power. If gcd(b, n) > 1,
then (1.2) has only the solution (x, y, z) = (1, 1, 1).

Corollary 1.3. Let b ≥ 5 be a prime power such that the order of 2
modulo b is even. If (x, y, z) is a solution of (1.2) with (x, y, z) 6= (1, 1, 1),
then x ≤ z < y.
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Remark. Let n = 5, b = 9. Clearly, 452 + 103 = 552. This example
shows that (1.2) has a solution such that 1 < x = z < y.

Throughout this paper, let n ∈ N and p be a prime. If n is not zero,
there is a nonnegative integer e such that pe divides n but pe+1 does not.
We then denote e = υp(n).

2. Lemmas

Lemma 2.1 (see [MT, Theorem 1.2]). Let b be an odd positive integer
with b ≥ 5. Then the equation bx + 2y = (b + 2)z has only the solution
(x, y, z) = (1, 1, 1) if b 6= 89, and the solutions (x, y, z) = (1, 1, 1), (1, 13, 2)
if b = 89.

Lemma 2.2. Let b be a positive integer. If z ≥ max{x, y}, then for any
positive integer n, (1.2) has no solution other than (x, y, z) = (1, 1, 1).

Proof. If z = 1, then x = y = 1 and (bn)x+(2n)y = ((b+2)n)z. If z ≥ 2,
then

(bn)x + (2n)y ≤ (bn)z + (2n)z < ((b+ 2)n)z.

3. Proof of Theorem 1.1. Let (x, y, z) be a solution of (1.2) with
(x, y, z) 6= (1, 1, 1). By Lemmas 2.1 and 2.2, we may assume that n ≥ 2 and
z < max{x, y}. If y < z < x or x ≤ z < y, then we are done. Now we
distinguish the following three remaining cases.

Case 1: z ≤ y < x. Then

(3.1) ny−z(bxnx−y + 2y) = (b+ 2)z.

If gcd(n, b+ 2) = 1, then y = z and bxnx−y = (b+ 2)y − 2y. Thus y ≥ 2
and

(3.2) bx−1nx−y =

y−1∑
i=1

(
y

i+ 1

)
bi2y−i−1 + 2y−1y.

Let p be a prime factor of b. Since gcd(b, 2) = 1, we see from (3.2) that p | y.
Further let υp(b) = α, υp(y) = β. For i = 1, . . . , y − 1, let υp(i + 1) = γi.
Then

γi ≤
[

log(i+ 1)

log p

]
≤ i− 1, i = 1, . . . , y − 1.

Thus

υp

((
y

i+ 1

)
bi2y−i−1

)
= υp

(
y

(
y − 1

i

)
bi

i+ 1
2y−i−1

)
≥ β + 1,

i = 1, . . . , y − 1.
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This means that

(3.3) υp

(y−1∑
i=1

(
y

i+ 1

)
bi2y−i−1 + 2y−1y

)
= β.

By (3.2) and (3.3) we have α(x − 1) ≤ β. Let p run through all distinct
prime factors of b; we know that bx−1 | y, thus bx−1 ≤ y, which is impossible.

Now suppose that gcd(n, b+2) = d > 1. For any odd prime factor p of d,
by gcd(p, bxnx−y + 2y) = 1, we have υp(n

y−z) = υp((b+ 2)z). Let υp(n) = θ1
and υp(b+ 2) = θ2. By (3.1), we find that(

n

pθ1

)y−z
(bxnx−y + 2y) =

(
b+ 2

pθ2

)z
.

However, we also have(
b+ 2

pθ2

)z
< bz < bx <

(
n

pθ1

)y−z
(bxnx−y + 2y),

a contradiction.

Case 2: z < x < y. Then

(3.4) nx−z(bx + 2yny−x) = (b+ 2)z.

If gcd(n, b + 2) = 1, then by (3.4) and n ≥ 2, we have x = z, a contra-
diction.

Now suppose that gcd(n, b + 2) = d > 1. For any odd prime factor p of
d, by gcd(p, bx + 2yny−x) = 1, we have υp(n

x−z) = υp
(
(b + 2)z

)
. As in the

proof of Case 1, we deduce that (3.4) cannot hold.

Case 3: z < x = y. Then

(3.5) nx−z(bx + 2x) = (b+ 2)z.

Let b+ 2 =
∏t
i=1 q

αi
i be the standard prime factorization of b+ 2, where

αi ≥ 1. Since nx−z | (b+ 2)z, we have

(3.6)
( t∏
i=1

qαi
i − 2

)x
+ 2x =

t∏
i=1

qβii ,

where βi ≥ 0. We know that if all βi = 0, then (3.6) cannot hold. Thus there
exists an i such that βi ≥ 1, hence x is odd. By (3.6) we have

(3.7)

x∑
m=1

(−2)x−m
(
x

m

) t∏
i=1

qαim
i =

t∏
i=1

qβii .
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Since z < x = y, we have x ≥ 2. For any 1 ≤ j ≤ t and m ≥ 2, we see that

υqj

((
x

m

) t∏
i=1

qαim
i

)
= υqj

(
x

(
x− 1

m− 1

)
qj
αjm

m

)
≥ υqj (x) + αjm− υqj (m) > υqj (x) + αj ,

and so

υqj

( x∑
m=1

(−2)x−m
(
x

m

) t∏
i=1

qαim
i

)
= υqj (x) + αj .

By (3.7), we have βj = υqj (x) + αj for all 1 ≤ j ≤ t. Thus( t∏
i=1

qαi
i − 2

)x
+ 2x =

t∏
i=1

q
υqi (x)+αi

i .

Noting that
t∏
i=1

q
υqi (x)
i ≤ x,

we deduce( t∏
i=1

qαi
i − 2

)x
+ 2x ≥

( t∏
i=1

qαi
i − 2

) t∏
i=1

q
υqi (x)
i + 2

t∏
i=1

q
υqi (x)
i =

t∏
i=1

q
υqi (x)+αi

i .

Equality holds only when
∏t
i=1 q

υqi (x)
i = x = 1, a contradiction.

This completes the proof of Theorem 1.1.

4. Proof of Corollary 1.2. Noting that gcd(b, n) > 1, by Theorem 1.1
we may assume that n ≥ 2 and it is sufficient to eliminate the following two
cases.

Case 1: y < z < x. Then

(4.1) bxnx−y + 2y = (b+ 2)znz−y.

Noting that nz−y | 2y, we have nz−y = 2t for some integer t with 1 ≤ t ≤ y.
If t < y, then υ2(b

xnx−y + 2y) > t = υ2((b+ 2)znz−y), a contradiction.
If t = y, then by (4.1), we know that there exists a positive integer r

such that bx2r + 1 = (b+ 2)z. Since b+ 1 | (b+ 2)z − 1 and gcd(b, b+ 1) = 1,
we have b + 1|2r. Thus, b + 1 is a power of 2. Since b ≥ 5 is an odd prime
power, by Mihăilescu’s famous theorem on the Catalan equation [Mih], we
know that this is impossible.

Case 2: x ≤ z < y. Then

(4.2) bx = nz−x((b+ 2)z − 2yny−z).

If x = z, then by gcd(b, n) > 1, we have gcd(b, b+2) > 1, a contradiction.
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If x < z, then by (4.2), we have n | bx. Since b is an odd prime power, we
deduce gcd(b, (b+ 2)z − 2yny−z) = 1. Thus by (4.2), we find that bx = nz−x

and

2yny−z = (b+ 2)z − 1 =
z∑
i=1

(
z

i

)
(b+ 1)i.

By the proof of Case 1, we find that b+ 1 is not a power of 2. Hence there
exists an odd prime factor q of b+ 1, thus

q |
z∑
i=1

(
z

i

)
(b+ 1)i.

However, noting that gcd(n, b+ 1) = 1, we get gcd(q, 2yny−z) = 1, a contra-
diction.

This completes the proof of Corollary 1.2.

5. Proof of Corollary 1.3. By Theorem 1.1, it is sufficient to prove
that (1.2) has no solution (x, y, z) satisfying y < z < x. By Lemma 2.1, we
may suppose that n ≥ 2 and (1.2) has a solution (x, y, z) with y < z < x.
Then

(5.1) bxnx−y + 2y = (b+ 2)znz−y.

Noting that nz−y | 2y, we have nz−y = 2t for some integer t with 1 ≤ t ≤ y.

If t < y, then υ2(b
xnx−y + 2y) > t = υ2((b+ 2)znz−y), a contradiction.

If t = y, then by (5.1), we know that there exists a positive integer r
such that bx2r + 1 = (b+ 2)z. Since the order of 2 modulo b is even, we have
z ≡ 0 (mod 2). Write z = 2z1. Then

bx2r = ((b+ 2)z1 + 1)((b+ 2)z1 − 1).

Noting that gcd((b+ 2)z1 + 1, (b+ 2)z1 − 1) = 2 and b is a prime power, we
have

bx | (b+ 2)z1 + 1 or bx | (b+ 2)z1 − 1;

but

bx > b2z1 > ((b+ 2) + 1)z1 ≥ (b+ 2)z1 + 1,

a contradiction.

This completes the proof of Corollary 1.3.
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[MT] T. Miyazaki and A. Togbé, The Diophantine equation (2am − 1)x + (2m)y =
(2am + 1)z, Int. J. Number Theory 8 (2012), 2035–2044.

[TY] M. Tang and Z. J. Yang, Jeśmanowicz’ conjecture revisited, Bull. Austral. Math.
Soc., doi:10.1017/S0004972713000038.

Min Tang
Department of Mathematics
Anhui Normal University
Wuhu 241003, China
E-mail: tmzzz2000@163.com

Quan-Hui Yang
School of Mathematical Sciences

Nanjing Normal University
Nanjing 210023, China

E-mail: yangquanhui01@163.com

Received 3 February 2013;
revised 19 June 2013 (5865)

http://dx.doi.org/10.1017/S0004972700031920
http://dx.doi.org/10.1017/S0004972700033177
http://dx.doi.org/10.1016/j.jnt.2012.08.018
http://dx.doi.org/10.1142/S1793042112501151
http://dx.doi.org/10.1017/S0004972713000038

	1 Introduction
	2 Lemmas
	3 Proof of Theorem 1.1
	4 Proof of Corollary 1.2
	5 Proof of Corollary 1.3
	REFERENCES

