COLLOQUIUM MATHEMATICUM

VOL. 132 2013 NO. 1

THE DIOPHANTINE EQUATION (bn)® + (2n)Y = ((b+ 2)n)*

BY

MIN TANG (Wuhu) and QUAN-HUI YANG (Nanjing)

Abstract. Recently, Miyazaki and Togbé proved that for any fixed odd integer b > 5
with b # 89, the Diophantine equation b* 4+ 2Y = (b+ 2)* has only the solution (z,y, z) =
(1,1,1). We give an extension of this result.

1. Introduction. Let N be the set of positive integers. Let a,b,c be
relatively prime positive integers such that a? + b = ¢ with 2|b. In 1956,
Jesmanowicz [J] conjectured that for any positive integer n, the Diophantine
equation

(1.1) (na)® 4+ (nb)Y = (nc)®

has only the solution (x,y,z) = (2,2,2). This conjecture is a famous un-
solved problem in the field of exponential Diophantine equations. For related
problems, see ([DC], [Le], [Miy], [TY]).

It is another interesting problem to find all triples (X, Y, Z) such that
the Diophantine equation X* + YY = Z% x,y,z € N has only the solution
(z,y,z) = (1,1,1). Recently, Miyazaki and Toghé [MT] proved that for any
fixed odd integer b > 5 with b # 89, the Diophantine equation b* 4 2¥ =
(b + 2)* has only the solution (x,y,z) = (1,1,1). Clearly, the Diophantine
equation

(1.2) (bn)* + (2n)Y = ((b+2)n)?
has the solution (z,y,2) = (1,1,1).

In this paper, we obtain the following results.

THEOREM 1.1. Let b be an odd integer with b > 5. If (x,y, ) is a solution
of (1.2) with (x,y,z) # (1,1,1), theny < z <z orz < z <y.

COROLLARY 1.2. Let b > 5 be an odd prime power. If ged(b,n) > 1,
then (1.2]) has only the solution (x,y,z) = (1,1,1).

COROLLARY 1.3. Let b > 5 be a prime power such that the order of 2
modulo b is even. If (x,y,z) is a solution of (1.2)) with (z,y,z) # (1,1,1),
then z < z < y.

2010 Mathematics Subject Classification: Primary 11D61.
Key words and phrases: Diophantine equation.

DOI: 10.4064/cm132-1-7 [95] © Instytut Matematyczny PAN, 2013



96 M. TANG AND Q. H. YANG

REMARK. Let n = 5, b = 9. Clearly, 45 + 10 = 552. This example
shows that ((1.2) has a solution such that 1 < z =z < y.

Throughout this paper, let n € N and p be a prime. If n is not zero,
there is a nonnegative integer e such that p® divides n but p®t! does not.
We then denote e = vp(n).

2. Lemmas

LEMMA 2.1 (see [MT, Theorem 1.2]). Let b be an odd positive integer
with b > 5. Then the equation b* 4+ 2Y = (b + 2)* has only the solution
(x,y,2) = (1,1,1) if b # 89, and the solutions (z,y,z) = (1,1,1), (1,13,2)
if b= 89.

LEMMA 2.2. Let b be a positive integer. If z > max{x,y}, then for any
positive integer n, (1.2|) has no solution other than (x,y,z) = (1,1,1).

Proof. If z =1, thenx =y =1 and (bn)*+ (2n)¥ = ((b+2)n)*. If z > 2,
then

(bn)® + (2n)? < (bn)* + (2)° < (b+ 2)n)". =

3. Proof of Theorem Let (z,y,z) be a solution of with
(x,y,2) # (1,1,1). By Lemmas and we may assume that n > 2 and
z < max{z,y}. f y < z < z or z < z < y, then we are done. Now we
distinguish the following three remaining cases.

CASE 1: z <y < zx. Then
(3.1) ny#(b*n* 7Y +2Y) = (b + 2)°.

If ged(n,b+2) =1, then y = z and b*n* Y = (b+ 2)¥ — 2Y. Thus y > 2
and

y—1
1 - Yy ioy—i—1 -1

3.2 b InTY = byt 2V~ 1y.

e =3 (e

Let p be a prime factor of b. Since ged(b,2) = 1, we see from (3.2) that p|y.
Further let v,(b) = o, vp(y) = B. For i =1,...,y — 1, let v,(1 + 1) = .
Then '

< [log(z +1)

}gi—l, i=1,...,y —1.
logp

Thus

Y ioy—i—1\ _ y—1 b’ y—i—1) >
(A By K e

i=1,...,y—1.
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This means that

y—1
(3.3) vy (Z (l j{ 1) poy—i-1 2y1y> _5

=1

By (3.2) and (3.3) we have a(xz — 1) < . Let p run through all distinct
prime factors of b; we know that b*~1 |y, thus b*~! < y, which is impossible.

Now suppose that gcd(n,b+2) = d > 1. For any odd prime factor p of d,
by ged(p, b*n*Y +2Y) = 1, we have v,(n¥Y=%) = v,((b+2)%). Let vp(n) = 61
and vy (b + 2) = 2. By (3.1), we find that

n\Y"* . . b+2)°
) o= (52)

However, we also have

b+2 : z T n vz X,  Tr—
(]TOQ) <b <b < <p91> (b n y+2y),

a contradiction.

CASE 2: z <z <y. Then
(3.4) n* 20" 4+ 2YnY7Y) = (b4 2)7.
If ged(n,b+ 2) = 1, then by (3.4) and n > 2, we have = = z, a contra-

diction.
Now suppose that ged(n,b+ 2) = d > 1. For any odd prime factor p of

d, by ged(p,b” 4 2Yn¥=*) = 1, we have vp(n® *) = v,((b+ 2)*). As in the
proof of Case 1, we deduce that (3.4)) cannot hold.

CASE 3: z <x =y. Then
(3.5) n* 7 F(b" 4+ 2%) = (b+ 2)°.

Let b+2 = Hle ¢;" be the standard prime factorization of b+ 2, where
a; > 1. Since n*~* | (b + 2)*, we have

t t
z .
(3.6) (ITa —2) +2 =TT,
=1 i=1

where 3; > 0. We know that if all 8; = 0, then (3.6 cannot hold. Thus there
exists an i such that 8; > 1, hence x is odd. By (3.6) we have

x

(37 > 2 () qu - Hq

m=1
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Since z < x =y, we have z > 2. For any 1 < j <t and m > 2, we see that

¢ .
T H ; x—1)\qg~™
i=1

> vg; (T) + aym — vy (m) > vy, (7) + ay,

Vg (i (—2)=™ (:1) f[ q?””) = vg; (2) + aj.

m=1 i=1

By (3.7), we have 8; = vy, (z) + a; for all 1 < j < ¢. Thus

t
([ o= Tl
i=1

and so

Noting that

H q’qu CC

we deduce

¢ t

(s =)+ 2> ([ - 2) [ 2L = T
= i=1 i=1

a; (z)

Equality holds only when Hi:l q: = x = 1, a contradiction.

This completes the proof of Theorem .

4. Proof of Corollary Noting that ged(b,n) > 1, by Theorem
we may assume that n > 2 and it is sufficient to eliminate the following two
cases.

CASE 1: y < z < z. Then
(4.1) b*n*Y 4+ 2Y = (b+ 2)*n*"Y.
Noting that n*~¥|2Y, we have n*~¥ = 2 for some integer ¢t with 1 <t <.
If t <y, then va(b™n" Y 4+ 2Y) > t = va((b+ 2)*n*Y), a contradiction.
If t = y, then by (4.1)), we know that there exists a positive integer r
such that b*2" +1 = (b+2)?. Since b+ 1| (b+2)* — 1 and ged(b,b+1) =1,
we have b+ 1|2". Thus, b+ 1 is a power of 2. Since b > 5 is an odd prime

power, by Mihailescu’s famous theorem on the Catalan equation [Mih], we
know that this is impossible.

CASE 2: z <z <y. Then
(4.2) b* =n*"F((b+2)° —2YnY7%).
If z = z, then by ged(b,n) > 1, we have ged(b, b+2) > 1, a contradiction.
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If x < z, then by (4.2 ., we have n | b*. Since b is an odd prime power, we
deduce gcd(b (b+2)* —2¥n¥~%) = 1. Thus by (4.2), we find that b = n*~2

" W= = (b+2)" — 1 = Z (j) (b+1)L.

i=1
By the proof of Case 1, we find that b+ 1 is not a power of 2. Hence there
exists an odd prime factor g of b+ 1, thus

q!Z()IH—l

However, noting that ged(n,b+1) = 1, we get ged(q, 2YnY~%) = 1, a contra-
diction.

This completes the proof of Corollary [I.2] =

5. Proof of Corollary By Theorem it is sufficient to prove
that (1.2]) has no solution (x,y, z) satisfying y < z < z. By Lemma we
may suppose that n > 2 and (|1.2)) has a solution (x,y,z) with y < z < x.
Then

(5.1) WY + 2Y = (b+ 2)"n* Y.

Noting that n*¥|2¥, we have n*~¥ = 2! for some integer ¢t with 1 <t < y.
If t <y, then va(b*n™ Y +2Y) >t = va((b+ 2)*n*Y), a contradiction.
If t = y, then by (5.1)), we know that there exists a positive integer r

such that 6*2" +1 = (b+ 2)*. Since the order of 2 modulo b is even, we have
z =0 (mod 2). Write z = 2z;. Then

b*2" = ((b+2)** +1)((b+2)* —1).
Noting that ged((b+2)** + 1, (b+2)** — 1) = 2 and b is a prime power, we
have
b (b+2)*+1 or b°|(b+2)**—1;
but
bY > 0% > (b+2) + 1% > (b+2)% +1,
a contradiction.

This completes the proof of Corollary .
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