$L^{p}-L^{q}$ ESTIMATES FOR SOME CONVOLUTION OPERATORS WIth Singular measures on the heisenberg group

BY

T. GODOY and P. ROCHA (Córdoba)

Abstract

We consider the Heisenberg group $\mathbb{H}^{n}=\mathbb{C}^{n} \times \mathbb{R}$. Let ν be the Borel measure on \mathbb{H}^{n} defined by $\nu(E)=\int_{\mathbb{C}^{n}} \chi_{E}(w, \varphi(w)) \eta(w) d w$, where $\varphi(w)=\sum_{j=1}^{n} a_{j}\left|w_{j}\right|^{2}$, $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}, a_{j} \in \mathbb{R}$, and $\eta(w)=\eta_{0}\left(|w|^{2}\right)$ with $\eta_{0} \in C_{c}^{\infty}(\mathbb{R})$. We characterize the set of pairs (p, q) such that the convolution operator with ν is $L^{p}\left(\mathbb{H}^{n}\right)-L^{q}\left(\mathbb{H}^{n}\right)$ bounded. We also obtain L^{p}-improving properties of measures supported on the graph of the function $\varphi(w)=|w|^{2 m}$.

1. Introduction. Let $\mathbb{H}^{n}=\mathbb{C}^{n} \times \mathbb{R}$ be the Heisenberg group with group law $(z, t) \cdot(w, s)=(z+w, t+s+\langle z, w\rangle)$ where $\langle z, w\rangle=\frac{1}{2} \operatorname{Im}\left(\sum_{j=1}^{n} z_{j} \cdot \overline{w_{j}}\right)$. For $x=\left(x_{1}, \ldots, x_{2 n}\right) \in \mathbb{R}^{2 n}$, we write $x=\left(x^{\prime}, x^{\prime \prime}\right)$ with $x^{\prime} \in \mathbb{R}^{n}, x^{\prime \prime} \in \mathbb{R}^{n}$. So, $\mathbb{R}^{2 n}$ can be identified with \mathbb{C}^{n} via the map $\Psi\left(x^{\prime}, x^{\prime \prime}\right)=x^{\prime}+i x^{\prime \prime}$. In this setting the form $\langle z, w\rangle$ agrees with the standard symplectic form on $\mathbb{R}^{2 n}$. Thus \mathbb{H}^{n} can be viewed as $\mathbb{R}^{2 n} \times \mathbb{R}$ endowed with the group law

$$
(x, t) \cdot(y, s)=\left(x+y, t+s+\frac{1}{2} W(x, y)\right)
$$

where the symplectic form W is given by $W(x, y)=\sum_{j=1}^{n}\left(y_{n+j} x_{j}-y_{j} x_{n+j}\right)$, with $x=\left(x_{1}, \ldots, x_{2 n}\right)$ and $y=\left(y_{1}, \ldots, y_{2 n}\right)$, with neutral element $(0,0)$, and with inverse $(x, t)^{-1}=(-x,-t)$.

Let $\varphi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a measurable function and let ν be the Borel measure on \mathbb{H}^{n} supported on the graph of φ, given by

$$
\begin{equation*}
\nu(E)=\int_{\mathbb{R}^{2 n}} \chi_{E}(w, \varphi(w)) \eta(w) d w \tag{1}
\end{equation*}
$$

with $\eta(w)=\prod_{j=1}^{n} \eta_{j}\left(\left|w_{j}\right|^{2}\right)$, where for $j=1, \ldots, n, \eta_{j}$ is a function in $C_{c}^{\infty}(\mathbb{R})$ such that $0 \leq \eta_{j} \leq 1, \eta_{j}(t) \equiv 1$ if $t \in[-1,1]$ and $\operatorname{supp}\left(\eta_{j}\right) \subset(-2,2)$. Let T_{ν} be the right convolution operator by ν, defined by

$$
\begin{equation*}
T_{\nu} f(x, t)=(f * \nu)(x, t)=\int_{\mathbb{R}^{2 n}} f\left((x, t) \cdot(w, \varphi(w))^{-1}\right) \eta(w) d w \tag{2}
\end{equation*}
$$

2010 Mathematics Subject Classification: 43A80, 42A38.

Key words and phrases: singular measures, group Fourier transform, Heisenberg group, convolution operators, spherical transform.

We are interested in the type set

$$
E_{\nu}=\left\{(1 / p, 1 / q) \in[0,1] \times[0,1]:\left\|T_{\nu}\right\|_{p q}<\infty\right\}
$$

where the L^{p}-spaces are taken with respect to the Lebesgue measure on $\mathbb{R}^{2 n+1}$. We say that the measure ν defined in (1) is L^{p}-improving if E_{ν} does not reduce to the diagonal $1 / p=1 / q$.

This problem is well known if in (2) we replace the Heisenberg group convolution with the ordinary convolution in $\mathbb{R}^{2 n+1}$. If the graph of φ has non-zero Gaussian curvature at each point, a theorem of Littman (see [3]) implies that E_{ν} is the closed triangle with vertices $(0,0),(1,1)$, and $\left(\frac{2 n+1}{2 n+2}, \frac{1}{2 n+2}\right)$ (see [4]). A very interesting survey of results concerning the type set for convolution operators with singular measures can be found in [5]. Returning to our setting of \mathbb{H}^{n}, in [7] S. Secco obtains L^{p}-improving properties of measures supported on curves in \mathbb{H}^{1}, under the assumption that

$$
\begin{aligned}
& \left|\begin{array}{ll}
\phi_{1}^{(2)} & \phi_{2}^{(2)} \\
\phi_{1}^{(3)} & \phi_{2}^{(3)}
\end{array}\right|(s) \neq-\frac{\left(\phi_{1}^{(2)}(s)\right)^{2}}{2}, \quad \forall s \in I, \\
& \left|\begin{array}{ll}
\phi_{1}^{(2)} & \phi_{2}^{(2)} \\
\phi_{1}^{(3)} & \phi_{2}^{(3)}
\end{array}\right|(s) \neq \frac{\left(\phi_{1}^{(2)}(s)\right)^{2}}{2}, \quad \forall s \in I,
\end{aligned}
$$

where $\Phi(s)=\left(s, \phi_{1}(s), \phi_{2}(s)\right)$ is the curve on which the measure is supported. In [6] F. Ricci and E. Stein showed that the type set of the measure given by (1), for the case $\varphi(w)=0$ and $n=1$, is the triangle with vertices $(0,0),(1,1)$, and $(3 / 4,1 / 4)$.

In this article we consider first $\varphi(w)=\sum_{j=1}^{n} a_{j}\left|w_{j}\right|^{2}$, with $w_{j} \in \mathbb{R}^{2}$ and $a_{j} \in \mathbb{R}$. The Riesz-Thorin theorem implies that the type set E_{ν} is a convex subset of $[0,1] \times[0,1]$. In Lemmas 3 and 4 we obtain the following necessary conditions for the pair $(1 / p, 1 / q)$ to be in E_{ν} :

$$
\frac{1}{q} \leq \frac{1}{p}, \quad \frac{1}{q} \geq \frac{2 n+1}{p}-2 n, \quad \frac{1}{q} \geq \frac{1}{(2 n+1) p}
$$

Thus E_{ν} is contained in the closed triangle with vertices $(0,0),(1,1)$, and $\left(\frac{2 n+1}{2 n+2}, \frac{1}{2 n+2}\right)$. In Section 3 we prove that E_{ν} is exactly that triangle:

Theorem 1. If ν is the Borel measure defined by (1), supported on the graph of the function $\varphi(w)=\sum_{j=1}^{n} a_{j}\left|w_{j}\right|^{2}$, for some $n \in \mathbb{N}$, with $w_{j} \in \mathbb{R}^{2}$ and $a_{j} \in \mathbb{R}$, then the type set E_{ν} is the closed triangle with vertices

$$
A=(0,0), \quad B=(1,1), \quad C=\left(\frac{2 n+1}{2 n+2}, \frac{1}{2 n+2}\right)
$$

In a similar way we also obtain L^{p}-improving properties of the measure supported on the graph of the function $\varphi(w)=|w|^{2 m}$. In fact we prove

Theorem 2. For $m, n \in \mathbb{N}_{\geq 2}$ let ν_{m} be the measure given by (11) with $\varphi(y)=|y|^{2 m}, y \in \mathbb{R}^{2 n}$. Then the type set $E_{\nu_{m}}$ contains the closed triangle with vertices

$$
(0,0), \quad(1,1), \quad\left(\frac{2(1+m n)-m}{2(1+m n)}, \frac{m}{2(1+m n)}\right)
$$

Throughout this work, c will denote a positive constant not necessarily the same at each occurrence.
2. Necessary conditions. We denote $B(r)$ the $2 n+1$-dimensional ball centered at the origin with radius r.

Lemma 3. Let ν be the Borel measure defined by (1), where φ is a bounded measurable function. If $(1 / p, 1 / q) \in E_{\nu}$ then $p \leq q$.

Proof. For $(y, s) \in \mathbb{H}^{n}$ we define the operator $\tau_{(y, s)}$ by $\left(\tau_{(y, s)} f\right)(x, t)=$ $f\left((y, s)^{-1} \cdot(x, t)\right)$. Since $\tau_{(y, s)} T_{\nu}=T_{\nu} \tau_{(y, s)}$, it is easy to see that the \mathbb{R}^{n} argument utilized in the proof of Theorem 1.1 in [2] works on \mathbb{H}^{n} as well.

Lemma 4. Let ν be the Borel measure defined by (11), where φ is a smooth function. Then E_{ν} is contained in the closed triangle with vertices

$$
(0,0), \quad(1,1), \quad\left(\frac{2 n+1}{2 n+2}, \frac{1}{2 n+2}\right)
$$

Proof. We will prove that if $(1 / p, 1 / q) \in E_{\nu}$ then

$$
\frac{1}{q} \geq \frac{2 n+1}{p}-2 n \quad \text { and } \quad \frac{1}{q} \geq \frac{1}{(2 n+1) p}
$$

Then the lemma will follow by the Riesz-Thorin theorem. Let $f_{\delta}=\chi_{Q_{\delta}}$, where $Q_{\delta}=B(2 \delta)$. Let $D=\left\{x \in \mathbb{R}^{2 n}:\|x\| \leq 1\right\}$ and

$$
A_{\delta}=\left\{(x, t) \in \mathbb{R}^{2 n} \times \mathbb{R}: x \in D,|t-\varphi(x)| \leq \delta / 4\right\}
$$

For each $(x, t) \in A_{\delta}$ fixed, we define $F_{\delta, x}$ by

$$
F_{\delta, x}=\left\{y \in D:\|x-y\|_{\mathbb{R}^{2 n}} \leq \frac{\delta}{4 n\left(1+\left\|\left.\nabla \varphi\right|_{\operatorname{supp}(\eta)}\right\|_{\infty}\right)}\right\}
$$

Now, for each $(x, t) \in A_{\delta}$ fixed, we have

$$
\begin{equation*}
(x, t) \cdot(y, \varphi(y))^{-1} \in Q_{\delta}, \quad \forall y \in F_{\delta, x} \tag{3}
\end{equation*}
$$

indeed,

$$
\begin{aligned}
\left\|(x, t) \cdot(y, \varphi(y))^{-1}\right\|_{\mathbb{R}^{2 n+1}} \leq & \|x-y\|_{\mathbb{R}^{n} \times \mathbb{R}^{n}}+|t-\varphi(x)| \\
& +|\varphi(x)-\varphi(y)|+\frac{1}{2}|W(x, y)|
\end{aligned}
$$

and since

$$
\frac{1}{2}|W(x, y)| \leq n\|x\|_{\mathbb{R}^{2 n}}\|x-y\|_{\mathbb{R}^{2 n}}
$$

(3) follows. Then for $(x, t) \in A_{\delta}$ we obtain

$$
T_{\nu} f_{\delta}(x, t) \geq \int_{F_{\delta, x}} \eta(y) d y \geq c \delta^{2 n}
$$

where c is independent of δ, x and t. If $(1 / p, 1 / q) \in E_{\nu}$ then

$$
\begin{aligned}
c \delta^{1 / q+2 n} & =c \delta^{2 n}\left|A_{\delta}\right|^{1 / q} \leq\left(\int_{A_{\delta}}\left|T_{\nu} f_{\delta}(x, t)\right|^{q} d x d t\right)^{1 / q} \\
& \leq\left\|T_{\nu} f_{\delta}\right\|_{q} \leq c_{p, q}\left\|f_{\delta}\right\|_{p}=c \delta^{(2 n+1) / p}
\end{aligned}
$$

thus $\delta^{2 n+1 / q} \leq C \delta^{(2 n+1) / p}$ for all $0<\delta<1$ small enough. This implies that

$$
\frac{1}{q} \geq \frac{2 n+1}{p}-2 n
$$

Now, the adjoint operator of T_{ν} is given by

$$
T_{\nu}^{*} g(x, t)=\int_{\mathbb{R}^{2 n}} g((x, t) \cdot(y, \varphi(y))) \eta(y) d y
$$

and let E_{ν}^{*} be the corresponding type set. Since $T_{\nu}=\left(T_{\nu}^{*}\right)^{*}$, by duality it follows that $\left(1 / p, 1 / p^{\prime}\right) \in E_{\nu}$ if and only if $\left(1 / p, 1 / p^{\prime}\right) \in E_{\nu}^{*}$, thus if $(1 / p, 1 / q) \in E_{\nu}^{*}$ then $\frac{1}{q} \geq \frac{2 n+1}{p}-2 n$. Finally, by duality it is also necessary that

$$
\frac{1}{q} \geq \frac{1}{(2 n+1) p}
$$

Therefore E_{ν} is contained in the region determined by these two conditions and by the condition $p \leq q$, i.e. the closed triangle with vertices $(0,0),(1,1)$, $\left(\frac{2 n+1}{2 n+2}, \frac{1}{2 n+2}\right)$.

REMARK. Lemma 4 holds if we replace the smoothness condition with a Lipschitz condition.
3. The main results. For each $N \in \mathbb{N}$ fixed, we consider an auxiliary operator T_{N} which will be embedded in an analytic family $\left\{T_{N, z}\right\}$ of operators on the strip $-n \leq \operatorname{Re}(z) \leq 1$ such that

$$
\begin{cases}\left\|T_{N, z}(f)\right\|_{L^{\infty}\left(\mathbb{H}^{n}\right)} \leq c_{z}\|f\|_{L^{1}\left(\mathbb{H}^{n}\right)}, & \operatorname{Re}(z)=1 \tag{4}\\ \left\|T_{N, z}(f)\right\|_{L^{2}\left(\mathbb{H}^{n}\right)} \leq c_{z}\|f\|_{L^{2}\left(\mathbb{H}^{n}\right)}, & \operatorname{Re}(z)=-n\end{cases}
$$

where c_{z} will depend admissibly on the variable z and it will not depend on N. We denote $T_{N}=T_{N, 0}$. By Stein's theorem on complex interpolation, it will follow that the operator T_{N} will be bounded from $L^{\frac{2 n+2}{2 n+1}}\left(\mathbb{H}^{n}\right)$ in $L^{2 n+2}\left(\mathbb{H}^{n}\right)$ uniformly in N, if we see that $T_{N} f(x, t) \rightarrow T_{\nu} f(x, t)$ as $N \rightarrow \infty$, a.e. $(x, t) \in \mathbb{R}^{2 n+1}$. Theorem 1 will then follow from Fatou's lemma and Lemmas 3 and 4.

To prove the second inequality in (4) we will see that such a family will admit the expression

$$
T_{N, z}(f)(x, t)=\left(f * K_{N, z}\right)(x, t)
$$

where $K_{N, z} \in L^{1}\left(\mathbb{H}^{n}\right)$, moreover it is a polyradial function (i.e. the values of $K_{N, z}$ depend on $\left|w_{1}\right|, \ldots,\left|w_{n}\right|$ and $\left.t\right)$. Now our operator $T_{N, z}$ can be realized as a pointwise product of operators via the group Fourier transform, i.e.

$$
\widehat{T_{N, z}(f)}(\lambda)=\widehat{f}(\lambda) \widehat{K_{N, z}}(\lambda)
$$

where, for each $\lambda \neq 0, \widehat{K_{N, z}}(\lambda)$ is an operator on the Hilbert space $L^{2}\left(\mathbb{R}^{n}\right)$ given by

$$
\widehat{K_{N, z}}(\lambda) g(\xi)=\int_{\mathbb{H}^{n}} K_{N, z}(\varsigma, t) \pi_{\lambda}(\varsigma, t) g(\xi) d \varsigma d t
$$

It then follows from Plancherel's theorem for the group Fourier transform that

$$
\left\|T_{N, z} f\right\|_{L^{2}\left(\mathbb{H}^{n}\right)} \leq A_{z}\|f\|_{L^{2}\left(\mathbb{H}^{n}\right)}
$$

if and only if

$$
\begin{equation*}
\left\|\widehat{K_{N, z}}(\lambda)\right\|_{\mathrm{op}} \leq A_{z} \tag{5}
\end{equation*}
$$

uniformly over N and $\lambda \neq 0$. Since $K_{N, z}$ is a polyradial integrable function, by a well known result of Geller (see [1, Lemma 1.3, p. 213]) the operators $\widehat{K_{N, z}}(\lambda): L^{2}\left(\mathbb{H}^{n}\right) \rightarrow L^{2}\left(\mathbb{H}^{n}\right)$ are, for each $\lambda \neq 0$, diagonal with respect to a Hermite basis for $L^{2}\left(\mathbb{R}^{n}\right)$, namely

$$
\widehat{K_{N, z}}(\lambda)=C_{n}\left(\delta_{\gamma, \alpha} \mu_{N, z}(\alpha, \lambda)\right)_{\gamma, \alpha \in \mathbb{N}_{0}^{n}}
$$

where $C_{n}=(2 \pi)^{n}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \delta_{\gamma, \alpha}=1$ if $\gamma=\alpha$ and $\delta_{\gamma, \alpha}=0$ if $\gamma \neq \alpha$, and the diagonal entries $\mu_{N, z}\left(\alpha_{1}, \ldots, \alpha_{n}, \lambda\right)$ can be expressed explicitly in terms of the Laguerre transform. We have in fact

$$
\begin{aligned}
& \mu_{N, z}\left(\alpha_{1}, \ldots, \alpha_{n}, \lambda\right) \\
& \quad=\int_{0}^{\infty} \ldots \int_{0}^{\infty} K_{N, z}^{\lambda}\left(r_{1}, \ldots, r_{n}\right) \prod_{j=1}^{n}\left(r_{j} L_{\alpha_{j}}^{0}\left(\frac{1}{2}|\lambda| r_{j}^{2}\right) e^{-\frac{1}{4}|\lambda| r_{j}^{2}}\right) d r_{1} \ldots d r_{n}
\end{aligned}
$$

where $L_{k}^{0}(s)$ are the Laguerre polynomials, i.e. $L_{k}^{0}(s)=\sum_{i=0}^{k} \frac{k!}{(k-i)!i!} \frac{(-s)^{i}}{i!}$ and $K_{N, z}^{\lambda}(\varsigma)=\int_{\mathbb{R}} K_{N, z}(\varsigma, t) e^{i \lambda t} d t$. Now (5) is equivalent to

$$
\left\|T_{N, z} f\right\|_{L^{2}\left(\mathbb{H}^{n}\right)} \leq A_{z}\|f\|_{L^{2}\left(\mathbb{H}^{n}\right)}
$$

if and only if

$$
\begin{equation*}
\left|\mu_{N, z}\left(\alpha_{1}, \ldots, \alpha_{n}, \lambda\right)\right| \leq A_{z} \tag{6}
\end{equation*}
$$

uniformly over N, α_{j} and $\lambda \neq 0$. If $\operatorname{Re}(z)=-n$, in the proof of Theorem 1 we find that (6) holds with A_{z} independent of $N, \lambda \neq 0$ and α_{j}, and then we obtain the boundedness on $L^{2}\left(\mathbb{H}^{n}\right)$ that is stated in (4).

We consider the family $\left\{I_{z}\right\}_{z \in \mathbb{C}}$ of distributions on \mathbb{R} that arises by analytic continuation of the family $\left\{I_{z}\right\}$ of functions, initially given when $\operatorname{Re}(z)>0$ and $s \in \mathbb{R} \backslash\{0\}$ by

$$
\begin{equation*}
I_{z}(s)=\frac{2^{-z / 2}}{\Gamma(z / 2)}|s|^{z-1} \tag{7}
\end{equation*}
$$

In particular, we have $\widehat{I_{z}}=I_{1-z}$, also $I_{0}=c \delta$ where $\widehat{\cdot}$ denotes the Fourier transform on \mathbb{R} and δ is the Dirac distribution at the origin on \mathbb{R}.

Let $H \in \mathcal{S}(\mathbb{R})$ be such that $\operatorname{supp}(\widehat{H}) \subseteq(-1,1)$ and $\int \widehat{H}(t) d t=1$. Now we put $\phi_{N}(t)=H(t / N)$, thus $\widehat{\phi_{N}}(\xi)=N \widehat{H}(N \xi)$ and $\widehat{\phi_{N}} \rightarrow \delta$ in the sense of distributions as $N \rightarrow \infty$.

For $z \in \mathbb{C}$ and $N \in \mathbb{N}$, we also define $J_{N, z}$ as the distribution on \mathbb{H}^{n} given by the tensor product

$$
\begin{equation*}
J_{N, z}=\delta \otimes \cdots \otimes \delta \otimes\left(I_{z} *_{\mathbb{R}} \widehat{\phi_{N}}\right) \tag{8}
\end{equation*}
$$

where $*_{\mathbb{R}}$ denotes the usual convolution on \mathbb{R} and I_{z} is the fractional integration kernel given by (7). Finally, for $z \in \mathbb{C}$ and $N \in \mathbb{N}$ fixed, we define the operator $T_{N, z}$ by

$$
\begin{equation*}
T_{N, z} f(x, t)=\left(f * \nu * J_{N, z}\right)(x, t) \tag{9}
\end{equation*}
$$

We observe that $T_{N, 0} f(x, t) \rightarrow c T_{\nu} f(x, t)$ as $N \rightarrow \infty$ a.e. $(x, t) \in \mathbb{R}^{2 n+1}$, since $J_{N, 0}=\delta \otimes \cdots \otimes \delta \otimes c \widehat{\phi_{N}} \rightarrow \delta \otimes \cdots \otimes \delta \otimes c \delta$ in the sense of distributions as $N \rightarrow \infty$.

Before proving Theorem 1 we need the following lemmas:
Lemma 5. If $\operatorname{Re}(z) \leq-1$ then $\nu * J_{N, z} \in L^{p}\left(\mathbb{H}^{n}\right)$ for all $p \geq 1$.
Proof. For $\operatorname{Re}(z) \leq-1$ and $N \in \mathbb{N}$ fixed, a simple calculation gives

$$
\left(\nu * J_{N, z}\right)(x, \sigma)=\eta(x)\left(I_{z} *_{\mathbb{R}} \widehat{\phi_{N}}\right)(\sigma-\varphi(x)) .
$$

We see that it is enough to prove that $\left(I_{z} * \widehat{\phi_{N}}\right)(\cdot) \in L^{p}(\mathbb{R})$ whenever $\operatorname{Re}(z)$ ≤-1. We observe that if $g \in \mathcal{S}(\mathbb{R})$ with $\operatorname{supp}(g) \cap[-\epsilon, \epsilon]=\emptyset$ for some $\epsilon>0$, then for $\operatorname{Re}(z) \leq-1$,

$$
I_{z}(g)= \begin{cases}\frac{2^{-z / 2}}{\Gamma(z / 2)} \int_{|t| \geq \epsilon}|t|^{z-1} g(t) d t & \text { if } z \notin-2 \mathbb{N} \\ 0 & \text { if } z \in-2 \mathbb{N}\end{cases}
$$

From this observation and the fact that

$$
\begin{aligned}
& \operatorname{supp}\left(\tau_{s}\left(\widehat{\phi_{N}}\right)\right) \subset[s-1 / N, s+1 / N] \subset[-\infty,-1] \cup[1, \infty] \\
& \qquad \text { for }|s| \geq \frac{N+1}{N}
\end{aligned}
$$

(where $\phi^{\vee}(x)=\phi(-x)$ and $\left(\tau_{s} \phi\right)(x)=\phi(x-s)$), we obtain

$$
\left|\left(I_{z} * \widehat{\phi_{N}}\right)(s)\right|=\left|I_{z}\left(\tau_{s}\left({\widehat{\phi_{N}}}^{\vee}\right)\right)\right| \leq c\left|s-\frac{\operatorname{sgn}(s)}{N}\right|^{-2} \quad \text { if }|s| \geq \frac{N+1}{N}
$$

Finally, since $\left|\left(I_{z} * \widehat{\phi_{N}}\right)(s)\right| \leq c$ for all $s \in[-2,2]$, the lemma follows.
Lemma 6. For $n \in \mathbb{N}$ and $k \in \mathbb{N}_{0}$ set

$$
F_{n, k}(\sigma):=\chi_{(0, \infty)}(\sigma) L_{k}^{n-1}(\sigma) e^{-\sigma / 2} \sigma^{n-1}
$$

Then

$$
\widehat{F_{n, k}}(\xi)=\frac{(k+n-1)!}{k!} \frac{(-1 / 2+i \xi)^{k}}{(1 / 2+i \xi)^{k+n}}
$$

Proof. On \mathbb{R} we define the Fourier transform by $\widehat{g}(\xi)=\int_{\mathbb{R}} g(\sigma) e^{-i \sigma \xi} d \sigma$, so

$$
\widehat{F_{n, k}}(\xi)=\int_{0}^{\infty} L_{k}^{n-1}(\sigma) \sigma^{n-1} e^{-\sigma(1 / 2+i \xi)} d \sigma
$$

and since

$$
L_{k}^{n-1}(\sigma) \sigma^{n-1}=\frac{e^{\sigma}}{k!}\left(\frac{d}{d \sigma}\right)^{k}\left(e^{-\sigma} \sigma^{k+n-1}\right)
$$

for each $n \in \mathbb{N}$ and each $k \in \mathbb{N}_{0}$, we obtain

$$
\begin{aligned}
\widehat{F_{n, k}}(\xi) & =\frac{1}{k!} \int_{0}^{\infty}\left(\frac{d}{d \sigma}\right)^{k}\left(e^{-\sigma} \sigma^{k+n-1}\right) e^{-\sigma(-1 / 2+i \xi)} d \sigma \\
& =\frac{(-1 / 2+i \xi)^{k}}{k!} \int_{0}^{\infty} \sigma^{k+n-1} e^{-\sigma(1 / 2+i \xi)} d \sigma \\
& =\frac{(-1 / 2+i \xi)^{k}}{k!} \int_{0}^{\infty} \frac{s^{k+n-1}}{(1 / 2+i \xi)^{k+n-1}} e^{-s} \frac{d s}{1 / 2+i \xi} \\
& =\frac{(k+n-1)!}{k!} \frac{(-1 / 2+i \xi)^{k}}{(1 / 2+i \xi)^{k+n}}
\end{aligned}
$$

where the third equality follows from the rapid decay of the function e^{-z} in $\{z: \operatorname{Re}(z)>0\}$. Then we apply the Cauchy's theorem.

Proof of Theorem 1. For $\operatorname{Re}(z)=1$ we have

$$
\left\|T_{N, z} f\right\|_{\infty}=\left\|f * \nu * J_{N, z}\right\|_{\infty} \leq\|f\|_{1}\left\|\nu * J_{N, z}\right\|_{\infty}
$$

Since

$$
\left(\nu * J_{N, z}\right)(x, \sigma)=\eta(x)\left(I_{z} *_{\mathbb{R}} \widehat{\phi_{N}}\right)(\sigma-\varphi(x))
$$

it follows that $\left\|\nu * J_{N, z}\right\|_{\infty} \leq c|\Gamma(z / 2)|^{-1}$. Then, for $\operatorname{Re}(z)=1$, we obtain

$$
\left\|T_{N, z}\right\|_{1, \infty} \leq c|\Gamma(z / 2)|^{-1}
$$

From Lemma 5, in particular, we have $\nu * J_{N, z} \in L^{1}\left(\mathbb{H}^{n}\right) \cap L^{2}\left(\mathbb{H}^{n}\right)$. In addition $\nu * J_{N, z}$ is a polyradial function. Thus the operator $\left(\nu * J_{N, z}\right)^{\wedge}(\lambda)$ is diagonal with respect to a Hermite base for $L^{2}\left(\mathbb{R}^{n}\right)$, and its diagonal entries $\mu_{N, z}(\alpha, \lambda)$, with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$, are given by

$$
\begin{aligned}
\mu_{N, z}(\alpha, \lambda)= & \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(\nu * J_{N, z}\right)\left(r_{1}, \ldots, r_{n}, \widehat{-\lambda}\right) \\
& \quad \times \prod_{j=1}^{n}\left(r_{j} L_{k_{j}}^{0}\left(\frac{1}{2}|\lambda| r_{j}^{2}\right) e^{-|\lambda| r_{j}^{2} / 4}\right) d r_{1} \ldots d r_{n} \\
= & \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(I_{z} * \mathbb{R} \widehat{\phi_{N}}\right)^{\wedge}(-\lambda) \\
& \times \prod_{j=1}^{n}\left(\eta_{j}\left(r_{j}^{2}\right) e^{i \lambda a_{j} r_{j}^{2}} r_{j} L_{k_{j}}^{0}\left(\frac{1}{2}|\lambda| r_{j}^{2}\right) e^{-|\lambda| r_{j}^{2} / 4}\right) d r_{1} \ldots d r_{n} \\
= & I_{1-z}(-\lambda) \phi_{N}(\lambda) \prod_{j=1}^{n} \int_{0}^{\infty}\left(\eta_{j}\left(r_{j}^{2}\right) e^{i \lambda a_{j} r_{j}^{2}} r_{j} L_{\alpha_{j}}^{0}\left(\frac{1}{2}|\lambda| r_{j}^{2}\right) e^{-|\lambda| r_{j}^{2} / 4}\right) d r_{j} .
\end{aligned}
$$

Thus, it is enough to study the integral

$$
\int_{0}^{\infty} \eta_{1}\left(r^{2}\right) L_{\alpha_{1}}^{0}\left(|\lambda| r^{2} / 2\right) e^{-|\lambda| r^{2} / 4} e^{i \lambda a_{1} r^{2}} r d r,
$$

where $a_{1} \in \mathbb{R}$ and $\eta_{1} \in C_{c}^{\infty}(\mathbb{R})$. We make the change of variable $\sigma=|\lambda| r^{2} / 2$ in such an integral to obtain

$$
\begin{aligned}
& \int_{0}^{\infty} \eta_{1}\left(r^{2}\right) L_{\alpha_{1}}^{0}\left(|\lambda| r^{2} / 2\right) e^{-|\lambda| r^{2} / 4} e^{i \lambda a_{1} r^{2}} r d r \\
& \quad=|\lambda|^{-1} \int_{0}^{\infty} \eta_{1}\left(\frac{2 \sigma}{|\lambda|}\right) L_{\alpha_{1}}^{0}(\sigma) e^{-\sigma / 2} e^{i 2 \operatorname{sgn}(\lambda) a_{1} \sigma} d \sigma \\
&=|\lambda|^{-1}\left(F_{\alpha_{1}} G_{\lambda}\right)^{\wedge}\left(-2 \operatorname{sgn}(\lambda) a_{1}\right)=|\lambda|^{-1}\left(\widehat{F_{\alpha_{1}}} * \widehat{G_{\lambda}}\right)\left(-2 \operatorname{sgn}(\lambda) a_{1}\right)
\end{aligned}
$$

where

$$
\begin{align*}
F_{\alpha_{1}}(\sigma) & :=\chi_{(0, \infty)}(\sigma) L_{\alpha_{1}}^{0}(\sigma) e^{-\sigma / 2}, \tag{10}\\
G_{\lambda}(\sigma) & :=\eta_{1}(2 \sigma /|\lambda|) . \tag{11}
\end{align*}
$$

Now
$\left|\left(\widehat{F_{\alpha_{1}}} * \widehat{G_{\lambda}}\right)\left(-2 \operatorname{sgn}(\lambda) a_{1}\right)\right| \leq\left\|\widehat{F_{\alpha_{1}}} * \widehat{G_{\lambda}}\right\|_{\infty} \leq\left\|\widehat{F_{\alpha_{1}}}\right\|_{\infty}\left\|\widehat{G_{\lambda}}\right\|_{1}=\left\|\widehat{F_{\alpha_{1}}}\right\|_{\infty}\left\|\widehat{\eta_{1}}\right\|_{1}$.
So it is enough to estimate $\left\|\widehat{F_{\alpha_{1}}}\right\|_{\infty}$. From Lemma 6 , with $n=1$ and $k=\alpha_{1}$, we obtain

$$
\begin{equation*}
\left|\widehat{F_{\alpha_{1}}}(\xi)\right|=\frac{1}{|1 / 2+i \xi|} \tag{12}
\end{equation*}
$$

Finally, for $\operatorname{Re}(z)=-n$, we obtain

$$
\begin{aligned}
\left|\mu_{N, z}\left(\alpha_{1}, \ldots, \alpha_{n}, \lambda\right)\right| & \leq 2^{n}\left|I_{1-z}(-\lambda) \phi_{N}(\lambda)\right||\lambda|^{-n} \prod_{j=1}^{n}\left\|\widehat{\eta}_{j}\right\|_{1} \\
& \leq 2^{n}\left|\Gamma\left(\frac{1-z}{2}\right)\right|^{-1}|H(\lambda / N)| \prod_{j=1}^{n}\left\|\widehat{\eta}_{j}\right\|_{1} \\
& \leq 2^{n}\left|\Gamma\left(\frac{1-z}{2}\right)\right|^{-1}\|H\|_{\infty} \prod_{j=1}^{n}\left\|\widehat{\eta}_{j}\right\|_{1}
\end{aligned}
$$

and by (6) it follows, for $\operatorname{Re}(z)=-n$, that

$$
\left\|T_{N, z} f\right\|_{L^{2}\left(\mathbb{H}^{n}\right)} \leq c \frac{(2 \pi)^{n} 2^{n}}{\left|\Gamma\left(\frac{1-z}{2}\right)\right|}\|f\|_{L^{2}\left(\mathbb{H}^{n}\right)} .
$$

It is easy to see, with the aid of the Stirling formula (see [9, p. 326]), that the family $\left\{T_{N, z}\right\}$ satisfies, on the strip $-n \leq \operatorname{Re}(z) \leq 1$, the hypothesis of the complex interpolation theorem (see [10, p. 205]) and so $T_{N, 0}$ is bounded from $L^{\frac{2 n+2}{2 n+1}}\left(\mathbb{H}^{n}\right)$ into $L^{2 n+2}\left(\mathbb{H}^{n}\right)$ uniformly in N; then letting N tend to infinity, we conclude that the operator T_{ν} is bounded from $L^{\frac{2 n+2}{2 n+1}}\left(\mathbb{H}^{n}\right)$ into $L^{2 n+2}\left(\mathbb{H}^{n}\right)$ for all $n \in \mathbb{N}$.

Proof of Theorem 2. We consider, for each $N \in \mathbb{N}$ fixed, the analytic family $\left\{U_{N, z}\right\}$ of operators on the strip $-\left(n+\frac{1-m}{m}\right) \leq \operatorname{Re}(z) \leq 1$, defined by $U_{N, z} f=f * \nu_{m} * J_{N, z}$, where $J_{N, z}$ is given by (8) and $U_{N, 0} f \rightarrow U_{\nu_{m}} f=f * \nu_{m}$ as $N \rightarrow \infty$. Proceeding as in the proof of Theorem 1 it follows, for $\operatorname{Re}(z)=1$, that $\left\|U_{N, z}\right\|_{1, \infty} \leq c|\Gamma(z / 2)|^{-1}$. Also it is clear that, for $\operatorname{Re}(z)=-\left(n+\frac{1-m}{m}\right)$, the kernel $\nu_{m} * J_{N, z}$ is in $L^{1}\left(\mathbb{H}^{n}\right) \cap L^{2}\left(\mathbb{H}^{n}\right)$ and it is also a radial function. Now, our operator $\left(\nu_{m} * J_{N, z}\right)^{\wedge}(\lambda)$ is diagonal, with diagonal entries $v_{N, z}(k, \lambda)$ given by

$$
\begin{aligned}
& v_{N, z}(k, \lambda)=\frac{k!}{(k+n-1)!} \int_{0}^{\infty}\left(\nu_{m} * J_{N, z}\right)(s, \widehat{-\lambda}) L_{k}^{n-1}\left(|\lambda| s^{2} / 2\right) e^{-|\lambda| s^{2} / 4} s^{2 n-1} d s \\
& =\frac{k!}{(k+n-1)!} I_{1-z}(-\lambda) \phi_{N}(\lambda) \int_{0}^{\infty} \eta_{0}\left(s^{2}\right) L_{k}^{n-1}\left(|\lambda| s^{2} / 2\right) e^{-|\lambda| s^{2} / 4} e^{i \lambda s^{2 m}} s^{2 n-1} d s .
\end{aligned}
$$

Now we study the integral

$$
\int_{0}^{\infty} \eta_{0}\left(s^{2}\right) L_{k}^{n-1}\left(|\lambda| s^{2} / 2\right) e^{-|\lambda| s^{2} / 4} e^{i \lambda s^{2 m}} s^{2 n-1} d s
$$

We make the change of variable $\sigma=|\lambda| s^{2} / 2$ to obtain

$$
\begin{aligned}
\int_{0}^{\infty} \eta_{0}\left(s^{2}\right) L_{k}^{n-1} & \left(|\lambda| s^{2} / 2\right) e^{-|\lambda| s^{2} / 4} e^{i \lambda s^{2 m}} s^{2 n-1} d s \\
& =2^{n-1}|\lambda|^{-n} \int_{0}^{\infty} \eta_{0}(2 \sigma /|\lambda|) L_{k}^{n-1}(\sigma) e^{-\sigma / 2} e^{i 2^{m} \operatorname{sgn}(\lambda)|\lambda|^{1-m} \sigma^{m}} \sigma^{n-1} d \sigma \\
& =2^{n-1}|\lambda|^{-n}\left(F_{n, k} G_{\lambda} R_{\lambda}\right) \widehat{ }(0)=2^{n-1}|\lambda|^{-n}\left(\widehat{F_{n, k}} * \widehat{G_{\lambda} R_{\lambda}}\right)(0) \\
& =2^{n-1}|\lambda|^{-n}\left(\widehat{F_{n, k}} *\left(\widehat{G_{\lambda}} * \widehat{R_{\lambda}}\right)\right)(0)
\end{aligned}
$$

where $F_{n, k}$ is the function defined in Lemma $6, G_{\lambda}(\sigma)=\eta_{0}(2 \sigma /|\lambda|)$ and $R_{\lambda}(\sigma)=\chi_{(0,|\lambda|)}(\sigma) e^{i 2^{m} \operatorname{sgn}(\lambda)|\lambda|^{1-m} \sigma^{m}}$. If $n \geq 2$, from Lemma 6 we get

$$
\begin{aligned}
\left\|\widehat{F_{n, k}} *\left(\widehat{G_{\lambda}} * \widehat{R_{\lambda}}\right)\right\|_{\infty} & \leq\left\|\widehat{F_{n, k}}\right\|_{1}\left\|\widehat{G_{\lambda}}\right\|_{1}\left\|\widehat{R_{\lambda}}\right\|_{\infty} \\
& =\frac{(k+n-1)!}{k!}\left(\int_{\mathbb{R}} \frac{d \xi}{\left(1 / 4+\xi^{2}\right)^{n / 2}}\right)\left\|\widehat{\eta_{0}}\right\|_{1}\left\|\widehat{R_{\lambda}}\right\|_{\infty}
\end{aligned}
$$

Now, we estimate $\left\|\widehat{R_{\lambda}}\right\|_{\infty}$. Taking account of [8, Proposition 2, p. 332], we note that

$$
\left|\widehat{R_{\lambda}}(\xi)\right|=\left|\int_{0}^{|\lambda|} e^{i\left(2^{m} \operatorname{sgn}(\lambda)|\lambda|^{1-m} \sigma^{m}-\xi \sigma\right)} d \sigma\right| \leq \frac{C_{m}}{|\lambda|^{(1-m) / m}}
$$

where the constant C_{m} does not depend on λ. Then for $\operatorname{Re}(z)=-\left(n+\frac{1-m}{m}\right)$, we have

$$
\begin{aligned}
\left|v_{N, z}(k, \lambda)\right| & \leq \frac{k!}{(k+n-1)!}\left|I_{1-z}(-\lambda) \phi_{N}(\lambda)\right| 2^{n-1}|\lambda|^{-n}\left\|\widehat{F_{n, k}} *\left(\widehat{G_{\lambda}} * \widehat{R_{\lambda}}\right)\right\|_{\infty} \\
& \leq\left|I_{1-z}(-\lambda)\left\|\left.\phi_{N}(\lambda)\left|2^{n-1}\right| \lambda\right|^{-n}\left(\int_{\mathbb{R}} \frac{d \xi}{\left(1 / 4+\xi^{2}\right)^{n / 2}}\right)\right\| \widehat{\eta_{0}} \|_{1} \frac{C_{m}}{|\lambda|^{(1-m) / m}}\right. \\
& \leq C_{m} 2^{n-1}\left|\Gamma\left(\frac{1-z}{2}\right)\right|^{-1}\|H\|_{\infty}\left(\int_{\mathbb{R}} \frac{d \xi}{\left(1 / 4+\xi^{2}\right)^{n / 2}}\right)\left\|\widehat{\eta_{0}}\right\|_{1} .
\end{aligned}
$$

Finally, by (6) it follows that, for $\operatorname{Re}(z)=-\left(n+\frac{1-m}{m}\right)$,

$$
\left\|U_{N, z} f\right\|_{L^{2}\left(\mathbb{H}^{n}\right)} \leq \frac{C_{n, m}}{\left|\Gamma\left(\frac{1-z}{2}\right)\right|}\|f\|_{L^{2}\left(\mathbb{H}^{n}\right)} .
$$

It is clear that the family $\left\{U_{N, z}\right\}$ satisfies, on the strip $-\left(n+\frac{1-m}{m}\right) \leq$ $\operatorname{Re}(z) \leq 1$, the hypothesis of the complex interpolation theorem. Thus $U_{N, 0}$ is bounded from $L^{\frac{2(1+n m)}{2(1+m n)-m}}\left(\mathbb{H}^{n}\right)$ into $L^{\frac{2(1+n m)}{m}}\left(\mathbb{H}^{n}\right)$ uniformly in N, and letting N tend to infinity we conclude that the operator $U_{\nu_{m}}$ is bounded from $L^{\frac{2(1+n m)}{2(1+m n)-m}}\left(\mathbb{H}^{n}\right)$ into $L^{\frac{2(1+n m)}{m}}\left(\mathbb{H}^{n}\right)$ for $m, n \in \mathbb{N}_{\geq 2}$.

Acknowledgements. We express our thanks to the referee for his or her useful suggestions.

This research was partially supported by Agencia Córdoba Ciencia, Secyt-UNC, Conicet and ANPCYT.

REFERENCES

[1] D. Geller, Fourier Analysis on the Heisenberg group. I. Schwartz space, J. Funct. Anal. 36 (1980), 205-254.
[2] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-140.
[3] W. Littman, $L^{p}-L^{q}$-estimates for singular integral operators arising from hyperbolic equations, in: Proc. Sympos. Pure Math. 23, Amer. Math. Soc., 1973, 479-481.
[4] D. Oberlin, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56-60.
[5] F. Ricci, Limitatezza $L^{p}-L^{q}$ per operatori di convoluzione definiti da misure singolari in \mathbb{R}^{n}, Boll. Un. Mat. Ital. A (7) 11 (1997), 237-252.
[6] F. Ricci and E. Stein, Harmonic analysis on nilpotent groups and singular integrals. III, Fractional integration along manifolds, J. Funct. Anal. 86 (1989), 360-389.
[7] S. Secco, L^{p}-improving properties of measures supported on curves on the Heisenberg group, Studia Math. 132 (1999), 179-201.
[8] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
[9] E. M. Stein and R. Shakarchi, Complex Analysis, Princeton Univ. Press, Princeton, NJ, 2003.
[10] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971.
T. Godoy, P. Rocha

Facultad de Matemática, Astronomía y Física - Ciem
Universidad Nacional de Córdoba - Conicet
Ciudad Universitaria, 5000 Córdoba, Argentina
E-mail: godoy@famaf.unc.edu.ar
rp@famaf.unc.edu.ar

Received 7 September 2012;
revised 26 June 2013

