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CHARACTERIZING METRIC SPACES WHOSE HYPERSPACES
ARE HOMEOMORPHIC TO `2

BY

T. BANAKH (Lviv and Kielce) and R. VOYTSITSKYY (Lviv)

Abstract. It is shown that the hyperspace CldH(X) (resp. BddH(X)) of non-empty
closed (resp. closed and bounded) subsets of a metric space (X, d) is homeomorphic to `2
if and only if the completion X of X is connected and locally connected, X is topologically
complete and nowhere locally compact, and each subset (resp. each bounded subset) of
X is totally bounded.

1. Introduction. In this paper we characterize metric spaces X whose
hyperspaces CldH(X) and BddH(X) of closed and closed bounded subsets are
homeomorphic to the separable Hilbert space `2. For a metric space (X, d),
we denote by CldH(X) the space of non-empty closed subsets of X endowed
with the topology generated by the Hausdorff “metric”

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

For an unbounded metric space (X, d) the “metric” dH can take the infinite
value but it still generates a topology on CldH(X) called the Hausdorff topol-
ogy. More precisely, this topology is generated by the metric min{1, dH}. By
BddH(X) we denote the subspace of CldH(X) consisting of the non-empty
closed bounded subsets of the metric space (X, d). The hyperspace CldH(X)
is a classical object in topology and has applications in set-valued analy-
sis (see e.g., [1]). For a compact metric space X the Hausdorff topology
on CldH(X) coincides with the Vietoris topology, another classical topology
on Cld(X) (see [9, 2.7.20]; cf. [3]). More generally, the Vietoris topology co-
incides with the Hausdorff topology on the subspace Comp(X) of Cld(X)
consisting of the non-empty compact subsets of X (see [9, 8.5.16(c)]).

One of the finest results concerning the topology of hyperspaces is the
famous Curtis–Shori theorem [8] characterizing non-degenerate Peano con-
tinua as metric spaces X whose hyperspace CldH(X) is homeomorphic to
the Hilbert cube Q = [0, 1]ω. The next step in this direction was made by
D. Curtis who proved in [5] that the hyperspace Comp(X) is homeomor-
phic to Q × [0, 1) if and only if X is non-compact, locally compact, con-
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nected, and locally connected. Another result of D. Curtis [4] states that
Comp(X) is homeomorphic to `2 if and only if X is connected, locally con-
nected, topologically complete and nowhere locally compact. We recall that a
space X is topologically complete if X is homeomorphic to a complete metric
space.

In this paper we characterize the metric spaces X whose hyperspaces
CldH(X) and BddH(X) are homeomorphic to `2. We call a metric space X
proper if each closed bounded subset of X is compact.

Theorem 1. The hyperspace BddH(X) (resp. CldH(X)) of a metric
space (X, d) is homeomorphic to `2 if and only if X is a topologically com-
plete nowhere locally compact space and its completion X is proper (resp.
compact), connected , and locally connected.

Applying this theorem to the metric spaces R \Q and I \Q of irrational
numbers on the real line and the interval I = [0, 1], we obtain the following

Corollary 1. The hyperspaces CldH(I \Q) and BddH(R\Q) are hom-
eomorphic to `2.

Let us remark that in contrast the hyperspace CldH(R \Q) is not hom-
eomorphic to `2 since it is neither connected nor separable.

Applying Theorem 1 to a dense Gδ-subset X ⊂ Rn we obtain the follow-
ing corollary partly improving Theorem 5.1 of W. Kubiś and K. Sakai [10].

Corollary 2. For any dense nowhere locally compact Gδ-subset X ⊂
Rm the hyperspace BddH(X) is homeomorphic to `2.

As a by-product of the proof of Theorem 1 we obtain the following char-
acterizations of metric spaces whose hyperspaces are separable absolute re-
tracts.

Theorem 2. The hyperspace BddH(X) (resp. CldH(X)) of a metric
space X is a separable AR if and only if the completion X of X is proper
(resp. compact), connected and locally connected.

2. Homotopy dense subsets in the Hilbert cube. A subset Y of a
topological space X is homotopy dense in X if there is a homotopy (ht)t∈I :
X → X such that h0 = id and ht(X) ⊂ Y for every t > 0. The following
lemma detecting topological copies of `2 in the Hilbert cube Q is due to D.
Curtis [6] and is our main tool in the proof of Theorem 1.

Lemma 1. A homotopy dense Gδ-subset X ⊂ Q with homotopy dense
complement in the Hilbert cube Q is homeomorphic to `2.
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3. Topology of Lawson semilattices. Theorem 2 will be derived from
a more general result concerning Lawson semilattices. By a topological semi-
lattice we understand a pair (L,∨) consisting of a topological space L and
a continuous associative commutative idempotent operation ∨ : L×L→ L.
A topological semilattice (L,∨) is a Lawson semilattice if the open subsemi-
lattices form a base of the topology of L. A typical example of a Lawson
semilattice is the hyperspace CldH(X) endowed with the union operation
(see [11, 5.4]).

Each semilattice (L,∨) carries a natural partial order: x ≤ y iff x∨y = y.
A semilattice (L,∨) is called complete if each subset A ⊂ L has the smallest
upper bound supA ∈ L. It is well-known (and can be easily proved) that
each compact topological semilattice is complete.

Lemma 2. If L is a locally compact Lawson semilattice, then each com-
pact subset K ⊂ L has the smallest upper bound supK ∈ L. Moreover , the
map sup : Comp(L) → L, K 7→ supK, is a continuous semilattice homo-
morphism. Also for every subset A ⊂ L with compact closure A we have
supA = supA.

This lemma easily follows from its compact version proved by J. Lawson
in [13].

In Lawson semilattices many geometric questions reduce to one dimen-
sion. The following fact illustrating this phenomenon is proved in [11].

Lemma 3. Let X be a dense subsemilattice of a metrizable Lawson semi-
lattice L. If X is relatively LC0 in L (resp. X is relatively LC0 in L and
path-connected), then X and L are ANRs (resp. ARs) and X is homotopy
dense in L.

A subset Y ⊂ X is defined to be relatively LC0 in X if for every x ∈ X,
each neighborhood U of x in X contains a smaller neighborhood V of x such
that any two points of V ∩ Y can be joined by a path in U ∩ Y .

Under a suitable completeness condition, the density of a subsemilattice
is equivalent to its homotopical density.

A subsemilattice X of semilattice L is defined to be relatively complete
in L if for any subset A ⊂ X having the smallest upper bound supA in L
this bound belongs to X.

Proposition 1. Let L be a metrizable locally compact locally connected
Lawson semilattice. Each dense relatively complete subsemilattice X ⊂ L is
homotopy dense in L.

Proof. According to Lemma 3 it suffices to check that X is relatively
LC0 in L. Given a point x0 ∈ L and a neighborhood U ⊂ L of x0, consider
the canonical retraction sup : Comp(L) → L. The space L, being locally
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compact and locally connected, is locally path-connected (see [12, §50.II]).
By Lemma 3, the Lawson semilattice L is an ANR. Using the continu-
ity of sup, find a path-connected neighborhood V ⊂ L of x0 such that
sup(Comp(V )) ⊂ U . We claim that any two points x, y ∈ X ∩ V can be
connected by a path in X ∩U . First we construct a path γ : [0, 1]→ V such
that γ(0) = x, γ(1) = y and γ−1(X) is dense in [0, 1]. Let {qn : n ∈ ω}
be a countable dense subset in [0, 1] with q0 = 0 and q1 = 1. The space L,
being locally compact, admits a complete metric %. The path-connectedness
of V implies the existence of a continuous map γ0 : [0, 1] → V such that
γ0(0) = x and γ0(1) = y. Using the local path-connectedness of L we can
construct inductively a sequence of functions γn : [0, 1]→ V such that
• γn(qk) = γn−1(qk) for all k ≤ n;
• γn(qn+1) ∈ X;
• supt∈[0,1] %(γn(t), γn−1(t)) < 2−n.

Then the map γ = limn→∞ γn : [0, 1]→ V is continuous and has the desired
properties: γ(0) = x, γ(1) = y and γ(qn) ∈ X for all n ∈ ω.

For every t ∈ [0, 1] set Γ (t) = {γ(s) : |t− s| ≤ dist(t, {0, 1})}. It is clear
that the map Γ : [0, 1]→ Comp(L) is continuous and so is the composition
sup ◦ Γ : [0, 1] → L. Observe that sup ◦ Γ (0) = sup{γ(0)} = γ(0) = x,
sup ◦ Γ (1) = y, and sup ◦ Γ ([0, 1]) ⊂ sup(Comp(V )) ⊂ U . Since for every
t ∈ (0, 1) the set Γ (t) equals Γ (t) ∩X, we get supΓ (t) = sup(Γ (t) ∩ X)
∈ X by the relative completeness of X in L. Thus sup ◦ Γ : [0, 1] → U ∩X
is a path connecting x and y in U .

4. Some topological properties of hyperspaces. In this section we
collect some easy (and known) lemmas that will be used in the subsequent
proofs.

Lemma 4. For a metric space X the following conditions are equivalent :
(1) X is topologically complete;
(2) CldH(X) is topologically complete;
(3) BddH(X) is topologically complete.

Lemma 5. For a metric space X the following conditions are equivalent :
(1) X is nowhere locally compact ;
(2) CldH(X) is nowhere locally compact ;
(3) BddH(X) is nowhere locally compact.

Lemma 6. Let X be a metric space. The hyperspace CldH(X) (resp.
BddH(X)) is separable if and only if each subset (resp. each bounded subset)
of X is totally bounded.

The following lemma is not trivial and can be found in [2, 3.7].
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Lemma 7. Let X be a dense subspace of a metric space M . The hyper-
space CldH(X) (resp. BddH(X)) is an absolute retract if and only if so is
CldH(M) (resp. BddH(M)).

For a metric space X we denote by Fin(X) the subspace of Comp(X)
consisting of non-empty finite subspaces of X.

Lemma 8. If Y is a subset of a locally path-connected space X, then the
subset L = Fin(X) \ Fin(Y ) is relatively LC0 in Comp(X).

Proof. By the argument of [7] we can show that Fin(X) is relatively LC0

in Comp(X). Consequently, for every K ∈ Comp(X) and a neighborhood
U ⊂ Comp(X) of K there is a neighborhood V ⊂ Comp(X) of K such that
any two points A,B ∈ Fin(X) ∩ V can be joined by a path in Fin(X) ∩ U .
Since Comp(X) is a Lawson semilattice, we may assume that U and V are
subsemilattices of Comp(X). We claim that any two points A,B ∈ L ∩ V
can be connected by a path in L ∩ U . Since L ⊂ Fin(X), there is a path
γ : [0, 1]→ U ∩Fin(X) such that γ(0) = A and γ(1) = B. Define a new path
γ′ : [0, 1]→ U ∩Fin(X) by letting γ′(t) = γ(max{0, 2t−1})∪γ(min{2t, 1}).
Observe that A ⊂ γ′(t) if t ≤ 1/2 and B ⊂ γ′(t) if t ≥ 1/2. Since A,B /∈
Fin(Y ), we conclude that γ′([0, 1]) ⊂ L ∩ U .

5. Proof of Theorem 2. Let X be a metric space and X be its com-
pletion. First we prove that BddH(X) is a separable AR if and only if X is
proper, connected and locally connected.

To prove the “only if” part, assume that BddH(X) is a separable abso-
lute retract. By Lemma 7, so is BddH(X). By Lemma 6, the separability of
BddH(X) implies that each bounded subset of X is totally bounded, which
is equivalent to the properness of X. In this case Comp(X) = BddH(X) is
an absolute retract and we can apply the Curtis theorem [5] to conclude that
the locally compact space X is connected and locally connected.

Next, we prove the “if” part. Assume that X is proper, connected, and
locally connected. Then BddH(X) = Comp(X) is a separable locally com-
pact absolute retract by [5]. The subsemilattice BddH(X), being relatively
complete in BddH(X), is homotopy dense in BddH(X) by Proposition 1.

Now we prove that CldH(X) is a separable AR if and only ifX is compact,
connected and locally connected.

If X is compact, connected, and locally connected, then CldH(X) =
BddH(X) is a separable AR by the preceding case. Conversely, if CldH(X)
is a separable AR, then Lemma 6 guarantees that X is totally bounded,
and hence CldH(X) = BddH(X) and we can apply the preceding case to
conclude that X is connected and locally connected. It is also compact,
being the completion of a totally bounded metric space X.
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6. Proof of Theorem 1. Let X be a metric space. If BddH(X) (resp.
CldH(X)) is homeomorphic to `2, then X is topologically complete and
nowhere locally compact by Lemmas 4 and 5. Since `2 is a separable AR, we
may apply Theorem 2 to conclude that the completion X of X is connected,
locally connected, and proper (resp. compact). This proves the “only if” part
of Theorem 1.

To prove the “if” part, assume that X is topologically complete and
nowhere locally compact, and X is proper, connected and locally connected.
First we consider the case of X compact. By the Curtis–Shori theorem [8],
the hyperspace CldH(X) = Comp(X) is homeomorphic to Q. Now consider
the map e : CldH(X)→ CldH(X) assigning to each closed subset F ⊂ X its
closure F in X. As this is an isometric embedding, we can identify CldH(X)
with the subspace {F ∈ CldH(X) : F = cl(F ∩ X)} of CldH(X). It is
easy to check that this subspace is dense and relatively complete in the
Lawson semilattice CldH(X). Hence it is homotopically dense in CldH(X)
by Proposition 1 and Lemma 3. By Lemma 4, the subset CldH(X), being
topologically complete, is a Gδ-set in CldH(X). Since X is nowhere locally
compact, X \X is dense in X. By Lemmas 4 and 8, the dense subsemilattice
L = Fin(X)\Fin(X) is homotopy dense in CldH(X). Since L ∩ CldH(X) = ∅,
we find that CldH(X) is a homotopy dense Gδ-subset in CldH(X) with ho-
motopy dense complement. Applying Lemma 1 we conclude that CldH(X)
is homeomorphic to `2.

Next, we consider the case of X non-compact. It follows from the proper-
ness of X that BddH(X) = CompH(X) and hence BddH(X) is homeo-
morphic to Q \ {pt} by the Curtis theorem [5]. Repeating the preceding
argument, we can prove that BddH(X) can be identified with a homo-
topy dense Gδ-set with homotopy negligible complement in BddH(X). Since
the one-point compactification of BddH(X) is homeomorphic to the Hilbert
cube, we can apply Lemma 1 to conclude that BddH(X) is homeomorphic
to `2.
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