VOL. 113

2008

NO. 2

CHARACTERIZING METRIC SPACES WHOSE HYPERSPACES ARE HOMEOMORPHIC TO ℓ_2

ΒY

T. BANAKH (Lviv and Kielce) and R. VOYTSITSKYY (Lviv)

Abstract. It is shown that the hyperspace $\operatorname{Cld}_{H}(X)$ (resp. $\operatorname{Bdd}_{H}(X)$) of non-empty closed (resp. closed and bounded) subsets of a metric space (X, d) is homeomorphic to ℓ_{2} if and only if the completion \overline{X} of X is connected and locally connected, X is topologically complete and nowhere locally compact, and each subset (resp. each bounded subset) of X is totally bounded.

1. Introduction. In this paper we characterize metric spaces X whose hyperspaces $\operatorname{Cld}_{\mathrm{H}}(X)$ and $\operatorname{Bdd}_{\mathrm{H}}(X)$ of closed and closed bounded subsets are homeomorphic to the separable Hilbert space ℓ_2 . For a metric space (X, d), we denote by $\operatorname{Cld}_{\mathrm{H}}(X)$ the space of non-empty closed subsets of X endowed with the topology generated by the Hausdorff "metric"

$$d_{\mathrm{H}}(A,B) = \max\{\sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A)\}.$$

For an unbounded metric space (X, d) the "metric" $d_{\rm H}$ can take the infinite value but it still generates a topology on ${\rm Cld}_{\rm H}(X)$ called the Hausdorff topology. More precisely, this topology is generated by the metric min $\{1, d_{\rm H}\}$. By Bdd_H(X) we denote the subspace of ${\rm Cld}_{\rm H}(X)$ consisting of the non-empty closed bounded subsets of the metric space (X, d). The hyperspace ${\rm Cld}_{\rm H}(X)$ is a classical object in topology and has applications in set-valued analysis (see e.g., [1]). For a compact metric space X the Hausdorff topology on ${\rm Cld}_{\rm H}(X)$ coincides with the Vietoris topology, another classical topology on ${\rm Cld}(X)$ (see [9, 2.7.20]; cf. [3]). More generally, the Vietoris topology coincides with the Hausdorff topology on the subspace ${\rm Comp}(X)$ of ${\rm Cld}(X)$ consisting of the non-empty compact subsets of X (see [9, 8.5.16(c)]).

One of the finest results concerning the topology of hyperspaces is the famous Curtis–Shori theorem [8] characterizing non-degenerate Peano continua as metric spaces X whose hyperspace $\operatorname{Cld}_{\mathrm{H}}(X)$ is homeomorphic to the Hilbert cube $Q = [0, 1]^{\omega}$. The next step in this direction was made by D. Curtis who proved in [5] that the hyperspace $\operatorname{Comp}(X)$ is homeomorphic to $Q \times [0, 1)$ if and only if X is non-compact, locally compact, con-

²⁰⁰⁰ Mathematics Subject Classification: 54B20, 57N20.

Key words and phrases: hyperspace, Hausdorff metric, Hilbert space.

nected, and locally connected. Another result of D. Curtis [4] states that $\operatorname{Comp}(X)$ is homeomorphic to ℓ_2 if and only if X is connected, locally connected, topologically complete and nowhere locally compact. We recall that a space X is *topologically complete* if X is homeomorphic to a complete metric space.

In this paper we characterize the metric spaces X whose hyperspaces $\operatorname{Cld}_{\mathrm{H}}(X)$ and $\operatorname{Bdd}_{\mathrm{H}}(X)$ are homeomorphic to ℓ_2 . We call a metric space X proper if each closed bounded subset of X is compact.

THEOREM 1. The hyperspace $\operatorname{Bdd}_{\operatorname{H}}(X)$ (resp. $\operatorname{Cld}_{\operatorname{H}}(X)$) of a metric space (X,d) is homeomorphic to ℓ_2 if and only if X is a topologically complete nowhere locally compact space and its completion \overline{X} is proper (resp. compact), connected, and locally connected.

Applying this theorem to the metric spaces $\mathbb{R} \setminus \mathbb{Q}$ and $I \setminus \mathbb{Q}$ of irrational numbers on the real line and the interval I = [0, 1], we obtain the following

COROLLARY 1. The hyperspaces $\operatorname{Cld}_{\operatorname{H}}(I \setminus \mathbb{Q})$ and $\operatorname{Bdd}_{\operatorname{H}}(\mathbb{R} \setminus \mathbb{Q})$ are homeomorphic to ℓ_2 .

Let us remark that in contrast the hyperspace $\operatorname{Cld}_{H}(\mathbb{R} \setminus \mathbb{Q})$ is not homeomorphic to ℓ_{2} since it is neither connected nor separable.

Applying Theorem 1 to a dense G_{δ} -subset $X \subset \mathbb{R}^n$ we obtain the following corollary partly improving Theorem 5.1 of W. Kubiś and K. Sakai [10].

COROLLARY 2. For any dense nowhere locally compact G_{δ} -subset $X \subset \mathbb{R}^m$ the hyperspace $\operatorname{Bdd}_{H}(X)$ is homeomorphic to ℓ_2 .

As a by-product of the proof of Theorem 1 we obtain the following characterizations of metric spaces whose hyperspaces are separable absolute retracts.

THEOREM 2. The hyperspace $\operatorname{Bdd}_{\operatorname{H}}(X)$ (resp. $\operatorname{Cld}_{\operatorname{H}}(X)$) of a metric space X is a separable AR if and only if the completion \overline{X} of X is proper (resp. compact), connected and locally connected.

2. Homotopy dense subsets in the Hilbert cube. A subset Y of a topological space X is homotopy dense in X if there is a homotopy $(h_t)_{t \in I}$: $X \to X$ such that $h_0 = \text{id}$ and $h_t(X) \subset Y$ for every t > 0. The following lemma detecting topological copies of ℓ_2 in the Hilbert cube Q is due to D. Curtis [6] and is our main tool in the proof of Theorem 1.

LEMMA 1. A homotopy dense G_{δ} -subset $X \subset Q$ with homotopy dense complement in the Hilbert cube Q is homeomorphic to ℓ_2 . **3. Topology of Lawson semilattices.** Theorem 2 will be derived from a more general result concerning Lawson semilattices. By a *topological semilattice* we understand a pair (L, \vee) consisting of a topological space L and a continuous associative commutative idempotent operation $\vee : L \times L \to L$. A topological semilattice (L, \vee) is a *Lawson semilattice* if the open subsemilattices form a base of the topology of L. A typical example of a Lawson semilattice is the hyperspace $\text{Cld}_{\text{H}}(X)$ endowed with the union operation (see [11, 5.4]).

Each semilattice (L, \vee) carries a natural partial order: $x \leq y$ iff $x \vee y = y$. A semilattice (L, \vee) is called *complete* if each subset $A \subset L$ has the smallest upper bound $\sup A \in L$. It is well-known (and can be easily proved) that each compact topological semilattice is complete.

LEMMA 2. If L is a locally compact Lawson semilattice, then each compact subset $K \subset L$ has the smallest upper bound $\sup K \in L$. Moreover, the map \sup : $\operatorname{Comp}(L) \to L$, $K \mapsto \sup K$, is a continuous semilattice homomorphism. Also for every subset $A \subset L$ with compact closure \overline{A} we have $\sup A = \sup \overline{A}$.

This lemma easily follows from its compact version proved by J. Lawson in [13].

In Lawson semilattices many geometric questions reduce to one dimension. The following fact illustrating this phenomenon is proved in [11].

LEMMA 3. Let X be a dense subsemilattice of a metrizable Lawson semilattice L. If X is relatively LC^0 in L (resp. X is relatively LC^0 in L and path-connected), then X and L are ANRs (resp. ARs) and X is homotopy dense in L.

A subset $Y \subset X$ is defined to be *relatively* LC^0 in X if for every $x \in X$, each neighborhood U of x in X contains a smaller neighborhood V of x such that any two points of $V \cap Y$ can be joined by a path in $U \cap Y$.

Under a suitable completeness condition, the density of a subsemilattice is equivalent to its homotopical density.

A subsemilattice X of semilattice L is defined to be *relatively complete* in L if for any subset $A \subset X$ having the smallest upper bound $\sup A$ in L this bound belongs to X.

PROPOSITION 1. Let L be a metrizable locally compact locally connected Lawson semilattice. Each dense relatively complete subsemilattice $X \subset L$ is homotopy dense in L.

Proof. According to Lemma 3 it suffices to check that X is relatively LC^0 in L. Given a point $x_0 \in L$ and a neighborhood $U \subset L$ of x_0 , consider the canonical retraction sup : Comp $(L) \to L$. The space L, being locally

compact and locally connected, is locally path-connected (see [12, §50.II]). By Lemma 3, the Lawson semilattice L is an ANR. Using the continuity of sup, find a path-connected neighborhood $V \subset L$ of x_0 such that $\sup(\operatorname{Comp}(\overline{V})) \subset U$. We claim that any two points $x, y \in X \cap V$ can be connected by a path in $X \cap U$. First we construct a path $\gamma : [0,1] \to \overline{V}$ such that $\gamma(0) = x, \gamma(1) = y$ and $\gamma^{-1}(X)$ is dense in [0,1]. Let $\{q_n : n \in \omega\}$ be a countable dense subset in [0,1] with $q_0 = 0$ and $q_1 = 1$. The space L, being locally compact, admits a complete metric ρ . The path-connectedness of V implies the existence of a continuous map $\gamma_0 : [0,1] \to V$ such that $\gamma_0(0) = x$ and $\gamma_0(1) = y$. Using the local path-connectedness of L we can construct inductively a sequence of functions $\gamma_n : [0,1] \to V$ such that

- $\gamma_n(q_k) = \gamma_{n-1}(q_k)$ for all $k \le n$;
- $\gamma_n(q_{n+1}) \in X;$
- $\sup_{t \in [0,1]} \varrho(\gamma_n(t), \gamma_{n-1}(t)) < 2^{-n}.$

Then the map $\gamma = \lim_{n \to \infty} \gamma_n : [0, 1] \to \overline{V}$ is continuous and has the desired properties: $\gamma(0) = x, \gamma(1) = y$ and $\gamma(q_n) \in X$ for all $n \in \omega$.

For every $t \in [0, 1]$ set $\Gamma(t) = \{\gamma(s) : |t - s| \leq \text{dist}(t, \{0, 1\})\}$. It is clear that the map $\Gamma : [0, 1] \to \text{Comp}(L)$ is continuous and so is the composition $\sup \circ \Gamma : [0, 1] \to L$. Observe that $\sup \circ \Gamma(0) = \sup\{\gamma(0)\} = \gamma(0) = x$, $\sup \circ \Gamma(1) = y$, and $\sup \circ \Gamma([0, 1]) \subset \sup(\text{Comp}(\overline{V})) \subset U$. Since for every $t \in (0, 1)$ the set $\Gamma(t)$ equals $\overline{\Gamma(t) \cap X}$, we get $\sup \Gamma(t) = \sup(\Gamma(t) \cap X)$ $\in X$ by the relative completeness of X in L. Thus $\sup \circ \Gamma : [0, 1] \to U \cap X$ is a path connecting x and y in U. \blacksquare

4. Some topological properties of hyperspaces. In this section we collect some easy (and known) lemmas that will be used in the subsequent proofs.

LEMMA 4. For a metric space X the following conditions are equivalent:

- (1) X is topologically complete;
- (2) $\operatorname{Cld}_{\operatorname{H}}(X)$ is topologically complete;
- (3) $\operatorname{Bdd}_{\operatorname{H}}(X)$ is topologically complete.

LEMMA 5. For a metric space X the following conditions are equivalent:

- (1) X is nowhere locally compact;
- (2) $\operatorname{Cld}_{H}(X)$ is nowhere locally compact;
- (3) $Bdd_H(X)$ is nowhere locally compact.

LEMMA 6. Let X be a metric space. The hyperspace $\operatorname{Cld}_{H}(X)$ (resp. $\operatorname{Bdd}_{H}(X)$) is separable if and only if each subset (resp. each bounded subset) of X is totally bounded.

The following lemma is not trivial and can be found in [2, 3.7].

LEMMA 7. Let X be a dense subspace of a metric space M. The hyperspace $\operatorname{Cld}_{\mathrm{H}}(X)$ (resp. $\operatorname{Bdd}_{\mathrm{H}}(X)$) is an absolute retract if and only if so is $\operatorname{Cld}_{\mathrm{H}}(M)$ (resp. $\operatorname{Bdd}_{\mathrm{H}}(M)$).

For a metric space X we denote by Fin(X) the subspace of Comp(X) consisting of non-empty finite subspaces of X.

LEMMA 8. If Y is a subset of a locally path-connected space X, then the subset $L = \operatorname{Fin}(X) \setminus \operatorname{Fin}(Y)$ is relatively LC^0 in $\operatorname{Comp}(X)$.

Proof. By the argument of [7] we can show that Fin(X) is relatively LC^0 in Comp(X). Consequently, for every $K \in \text{Comp}(X)$ and a neighborhood $U \subset \text{Comp}(X)$ of K there is a neighborhood $V \subset \text{Comp}(X)$ of K such that any two points $A, B \in \text{Fin}(X) \cap V$ can be joined by a path in Fin(X) ∩ U. Since Comp(X) is a Lawson semilattice, we may assume that U and V are subsemilattices of Comp(X). We claim that any two points $A, B \in L \cap V$ can be connected by a path in $L \cap U$. Since $L \subset \text{Fin}(X)$, there is a path $\gamma : [0,1] \to U \cap \text{Fin}(X)$ such that $\gamma(0) = A$ and $\gamma(1) = B$. Define a new path $\gamma' : [0,1] \to U \cap \text{Fin}(X)$ by letting $\gamma'(t) = \gamma(\max\{0, 2t-1\}) \cup \gamma(\min\{2t,1\})$. Observe that $A \subset \gamma'(t)$ if $t \leq 1/2$ and $B \subset \gamma'(t)$ if $t \geq 1/2$. Since $A, B \notin$ Fin(Y), we conclude that $\gamma'([0,1]) \subset L \cap U$. ■

5. Proof of Theorem 2. Let X be a metric space and \overline{X} be its completion. First we prove that $\operatorname{Bdd}_{\operatorname{H}}(X)$ is a separable AR if and only if \overline{X} is proper, connected and locally connected.

To prove the "only if" part, assume that $\operatorname{Bdd}_{\operatorname{H}}(X)$ is a separable absolute retract. By Lemma 7, so is $\operatorname{Bdd}_{\operatorname{H}}(\overline{X})$. By Lemma 6, the separability of $\operatorname{Bdd}_{\operatorname{H}}(X)$ implies that each bounded subset of X is totally bounded, which is equivalent to the properness of \overline{X} . In this case $\operatorname{Comp}(\overline{X}) = \operatorname{Bdd}_{\operatorname{H}}(\overline{X})$ is an absolute retract and we can apply the Curtis theorem [5] to conclude that the locally compact space \overline{X} is connected and locally connected.

Next, we prove the "if" part. Assume that \overline{X} is proper, connected, and locally connected. Then $\operatorname{Bdd}_{\operatorname{H}}(\overline{X}) = \operatorname{Comp}(\overline{X})$ is a separable locally compact absolute retract by [5]. The subsemilattice $\operatorname{Bdd}_{\operatorname{H}}(X)$, being relatively complete in $\operatorname{Bdd}_{\operatorname{H}}(\overline{X})$, is homotopy dense in $\operatorname{Bdd}_{\operatorname{H}}(\overline{X})$ by Proposition 1.

Now we prove that $\operatorname{Cld}_{\operatorname{H}}(X)$ is a separable AR if and only if \overline{X} is compact, connected and locally connected.

If \overline{X} is compact, connected, and locally connected, then $\operatorname{Cld}_{\mathrm{H}}(X) = \operatorname{Bdd}_{\mathrm{H}}(X)$ is a separable AR by the preceding case. Conversely, if $\operatorname{Cld}_{\mathrm{H}}(X)$ is a separable AR, then Lemma 6 guarantees that X is totally bounded, and hence $\operatorname{Cld}_{\mathrm{H}}(X) = \operatorname{Bdd}_{\mathrm{H}}(X)$ and we can apply the preceding case to conclude that \overline{X} is connected and locally connected. It is also compact, being the completion of a totally bounded metric space X.

6. Proof of Theorem 1. Let X be a metric space. If $\operatorname{Bdd}_{H}(X)$ (resp. $\operatorname{Cld}_{H}(X)$) is homeomorphic to ℓ_2 , then X is topologically complete and nowhere locally compact by Lemmas 4 and 5. Since ℓ_2 is a separable AR, we may apply Theorem 2 to conclude that the completion \overline{X} of X is connected, locally connected, and proper (resp. compact). This proves the "only if" part of Theorem 1.

To prove the "if" part, assume that X is topologically complete and nowhere locally compact, and \overline{X} is proper, connected and locally connected. First we consider the case of \overline{X} compact. By the Curtis–Shori theorem [8], the hyperspace $\operatorname{Cld}_{H}(\overline{X}) = \operatorname{Comp}(\overline{X})$ is homeomorphic to Q. Now consider the map $e: \operatorname{Cld}_{H}(X) \to \operatorname{Cld}_{H}(\overline{X})$ assigning to each closed subset $F \subset X$ its closure \overline{F} in \overline{X} . As this is an isometric embedding, we can identify $\operatorname{Cld}_{\mathrm{H}}(X)$ with the subspace $\{F \in \operatorname{Cld}_{\operatorname{H}}(X) : F = \operatorname{cl}(F \cap X)\}$ of $\operatorname{Cld}_{\operatorname{H}}(X)$. It is easy to check that this subspace is dense and relatively complete in the Lawson semilattice $\operatorname{Cld}_{\mathrm{H}}(X)$. Hence it is homotopically dense in $\operatorname{Cld}_{\mathrm{H}}(X)$ by Proposition 1 and Lemma 3. By Lemma 4, the subset $\operatorname{Cld}_{H}(X)$, being topologically complete, is a G_{δ} -set in $\operatorname{Cld}_{\operatorname{H}}(\overline{X})$. Since X is nowhere locally compact, $\overline{X} \setminus X$ is dense in \overline{X} . By Lemmas 4 and 8, the dense subsemilattice $L = \operatorname{Fin}(\overline{X}) \setminus \operatorname{Fin}(X)$ is homotopy dense in $\operatorname{Cld}_{\mathrm{H}}(\overline{X})$. Since $L \cap \operatorname{Cld}_{\mathrm{H}}(X) = \emptyset$, we find that $\operatorname{Cld}_{\mathrm{H}}(X)$ is a homotopy dense G_{δ} -subset in $\operatorname{Cld}_{\mathrm{H}}(\overline{X})$ with homotopy dense complement. Applying Lemma 1 we conclude that $\operatorname{Cld}_{H}(X)$ is homeomorphic to ℓ_2 .

Next, we consider the case of \overline{X} non-compact. It follows from the properness of \overline{X} that $\operatorname{Bdd}_{\operatorname{H}}(\overline{X}) = \operatorname{Comp}_{\operatorname{H}}(\overline{X})$ and hence $\operatorname{Bdd}_{\operatorname{H}}(\overline{X})$ is homeomorphic to $Q \setminus \{ \text{pt} \}$ by the Curtis theorem [5]. Repeating the preceding argument, we can prove that $\operatorname{Bdd}_{\operatorname{H}}(X)$ can be identified with a homotopy dense G_{δ} -set with homotopy negligible complement in $\operatorname{Bdd}_{\operatorname{H}}(\overline{X})$. Since the one-point compactification of $\operatorname{Bdd}_{\operatorname{H}}(\overline{X})$ is homeomorphic to the Hilbert cube, we can apply Lemma 1 to conclude that $\operatorname{Bdd}_{\operatorname{H}}(X)$ is homeomorphic to ℓ_2 .

REFERENCES

- H. A. Antosiewicz and A. Cellina, Continuous extensions of multifunctions, Ann. Polon. Math. 34 (1977), 107–111.
- [2] T. Banakh and R. Voytsitskyy, Characterizing metric spaces whose hyperspaces are absolute neighborhood retracts, Topology Appl. 154 (2007), 2009–2025.
- [3] G. Beer, Topologies on Closed and Closed Convex Sets, Math. Appl. 268, Kluwer, Dordrecht, 1993.
- [4] D. W. Curtis, Hyperspaces homeomorphic to Hilbert space, Proc. Amer. Math. Soc. 75 (1979), 139–152.
- [5] —, Hyperspaces of noncompact metric spaces, Compos. Math. 40 (1980), 126–130.
- [6] —, Boundary sets in the Hilbert cube, Topology Appl. 20 (1985), 201–221.

- [7] D. Curtis and N. T.-Nhu, Hyperspaces of finite subsets which are homeomorphic to ℵ₀-dimensional linear metric spaces, Topology Appl. 19 (1985), 251–260.
- [8] D. W. Curtis and R. M. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math. 101 (1978), 19–38.
- [9] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [10] W. Kubiś and K. Sakai, Hausdorff hyperpsaces of \mathbb{R}^m and their dense subspaces, J. Math. Soc. Japan. 60 (2008), 193–217.
- [11] W. Kubiś, K. Sakai and M. Yaguchi, Hyperspaces of separable Banach space with the Wijsman topology, Topology Appl. 148 (2005), 7–32.
- [12] K. Kuratowski, *Topology*, *II*, Academic Press and PWN, 1968.
- J. D. Lawson, Topological semilattices with small semilattices, J. London Math. Soc. (2) 1 (1969), 719–724.

Instytut Matematyki	Department of Mathematics
Akademia Świętokrzyska	Ivan Franko Lviv National University
Kielce, Poland	Lviv, Ukraine
E-mail: tbanakh@yahoo.com	E-mail: voytsitski@mail.lviv.ua

Received 18 April 2007; revised 25 January 2008

(4902)