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A NOTE ON OPTIMAL PROBABILITY LOWER BOUNDS
FOR CENTERED RANDOM VARIABLES

BY

MARK VERAAR (Karlsruhe)

Abstract. We obtain lower bounds for P(ξ ≥ 0) and P(ξ > 0) under assumptions
on the moments of a centered random variable ξ. The estimates obtained are shown
to be optimal and improve results from the literature. They are then applied to obtain
probability lower bounds for second order Rademacher chaos.

1. Introduction. In this note we obtain lower bounds for P(ξ ≥ 0)
and P(ξ > 0) under assumptions on the moments of ξ. Here ξ is a centered
real-valued random variable. For instance, we consider the case where the
first and pth moments are fixed, and the case where the second and pth
moments are fixed. Such lower bounds are used in [2, 4, 6, 9] to estimate
tail probabilities. They can be used to estimate P(ξ ≤ Eξ) for certain ran-
dom variables ξ. Let cp = (E|ξ|p)1/p and cp,q = cp/cq. Examples of known
estimates that are often used for p = 2 and p = 4 are respectively

P(ξ ≥ 0) ≥
(
c1,p

2

)p/(p−1)

and P(ξ ≥ 0) ≥ 1

4c2p/(p−2)
p,2

.

A proof of the first estimate can be found in [9]. The second estimate is
obtained in [3]. In this note we will improve both estimates and in several
cases we will show that the results obtained are sharp.

In the last part we give some applications of our results. We improve
an estimate for second order Rademacher chaos from [3]. This result has
applications to certain quadratic optimization problems (cf. [1, 3]). Finally,
we give applications to Hilbert-space-valued random variables. In particular,
this improves a result from [2].
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2. Probability lower bounds. The following result is an improvement
of [9, Proposition 3.3.7].

Proposition 2.1. Let ξ be a centered non-zero random variable and let
p ∈ (1,∞). Then

(2.1) P(ξ ≥ 0) ≥ P(ξ > 0) ≥
(
c1,p

2

)p/(p−1)

(ψ−1(c1,p))−1/(p−1).

Here ψ : [1/2, 1)→ (0, 1] is the strictly decreasing function defined by

ψ(x) = 2(x−1/(p−1) + (1− x)−1/(p−1))−(p−1)/p.

The same lower bound holds for P(ξ < 0) and P(ξ ≤ 0). Moreover , the
estimate (2.1) for P(ξ ≥ 0) and P(ξ ≤ 0) is sharp.

For all p ∈ (1,∞) the following bound holds:

(2.2) P(ξ ≥ 0) ≥ P(ξ > 0)

≥
(
c1,p

2

)p/(p−1)(
1−

((
c1,p

2

)−p/(p−1)

− 1
)−(p−1))−1/(p−1)

.

The estimate (2.1) improves the well-known estimate

P(ξ ≥ 0) ≥ (c1,p/2)p/(p−1)

(cf. [9, Proposition 3.3.7]) by a factor (ψ−1(c1,p))−(p−1). The lower bound
(2.2) is not optimal, but in general it is more explicit than (2.1).

In the cases p = 2 and p = 3 one can calculate ψ−1 explicitly. For p = 2,
the inverse is given by ψ−1(x) = 1

2 + 1
2

√
1− x2. Therefore, a straightforward

calculation gives the following explicit lower bound, which is sharp as well.

Corollary 2.2. Let ξ be a centered non-zero random variable. Then

P(ξ ≥ 0) ≥ P(ξ > 0) ≥ 1
2
− 1

2

√
1− c21,2.

This result can be used to slightly improve certain probability lower
bounds from [4], where the bound c21,2/4 is used.

Proof of Proposition 2.1. By symmetry it suffices to consider P(ξ > 0).
By normalization we may assume that cp = 1, and therefore c = c1 = c1,p.
Let p1 = P(ξ > 0) and p2 = P(ξ < 0). Let ξ+ = max{ξ, 0} and ξ− =
max{−ξ, 0}. Then 0 = Eξ = Eξ+ − Eξ− and c = E|ξ| = Eξ+ + Eξ−. It
follows that Eξ+ = Eξ− = c/2. Let u = Eξp

+. Then 1 − u = Eξp
−. By the

Cauchy–Schwarz inequality we have

cp/2p = (Eξ+)p = (Eξ+ sign(ξ+))p ≤ Eξp
+(E sign(ξ+))p−1 = upp−1

1 .

Therefore, p1 ≥ (cp/2pu)1/(p−1). Similarly, p2 ≥ (cp/2p(1− u))1/(p−1). It
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follows that

p1 = 1− P(ξ ≤ 0) ≤ 1− p2 ≤ 1−
(

cp

2p(1− u)

)1/(p−1)

.

Hence, to estimate p1 from below, we only need to consider the u ∈ (0, 1)
which satisfy (

cp

2pu

)1/(p−1)

≤ 1−
(

cp

2p(1− u)

)1/(p−1)

.

This is equivalent to

2p

cp
≥ f(u) :=

(
1

u1/(p−1)
+

1
(1− u)1/(p−1)

)p−1

,

c ≤ φ(u) = 2(u−1/(p−1) + (1− u)−1/(p−1))−(p−1)/p.

Notice that φ is strictly increasing on (0, 1/2] and strictly decreasing on
[1/2, 1). One easily checks that there exists a unique u0 ∈ (0, 1/2] and a
unique u1 ∈ [1/2, 1) such that φ(u0) = φ(u1) = c. Moreover, c ≤ φ(u) if and
only if u ∈ [u0, u1]. It follows that (cp/2pu)1/(p−1) attains its minimum at
u1, and therefore

p1 ≥ (c/2)p/(p−1)u
−1/(p−1)
1 .

This completes the first part of the proof.
To prove (2.2), note that it suffices to estimate ψ−1 from above, or equiv-

alently ψ from above. Clearly for all x ∈ [1/2, 1),

ψ(x) ≤ 2(1 + (1− x)−1/(p−1))−(p−1)/p =: α(x).

Now α−1(x) = 1− ((x/2)−p/(p−1)− 1)−(p−1). This clearly implies the result.
To prove the sharpness of (2.1) let c ∈ (0, 1] be arbitrary and let µ =

(c/2)p/(p−1)u
−1/(p−1)
1 , where u1 = ψ−1(c). It suffices to construct a centered

random variable ξ with E|ξ|p = 1, E|ξ| = c and P(ξ ≤ 0) = µ. Let x1 = c/2µ
and x2 = c/2(1− µ), and let ξ = x1 with probability µ and ξ = x2 with
probability 1− µ. Then E|ξ| = c and

E|ξ|p =
cp

2p
(µ1−p + (1− µ)1−p)

=
cp

2p

(
2p

cp
u1 +

(
1−

(
c

2

)p/(p−1)

u
−1/(p−1)
1

)1−p)
=
cp

2p

(
2p

cp
u1 +

((
c

2

)p/(p−1)

(1− u1)−1/(p−1)

)1−p)
=
cp

2p

(
2p

cp
u1 +

2p

cp
(1− u1)

)
= 1.
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In [3] it is shown that if ξ satisfies Eξ = 0, Eξ2 = 1, Eξ4 ≤ τ , then
P(ξ ≥ 0) and P(ξ ≤ 0) are both greater than or equal to (2

√
3−3)/τ . Below

we will improve that result. More precisely, we obtain sharp lower bounds
for P(ξ ≤ 0), P(ξ ≥ 0), P(ξ < 0) and P(ξ > 0).

Proposition 2.3. Let ξ be a centered non-zero random variable. Then
P(ξ ≥ 0) ≥ P(ξ > 0) ≥ f(c44,2), where

(2.3) f(x) :=


1
2
− 1

2

√
x− 1
x+ 3

if x ∈
[
1,

3
√

3
2
− 3

2

)
,

2
√

3− 3
x

if x ≥ 3
√

3
2
− 3

2
.

The same lower bound holds for P(ξ < 0) and P(ξ ≤ 0). Moreover , the
estimates are already sharp for P(ξ ≥ 0) and P(ξ ≤ 0).

Proof. By symmetry we only need to consider P(ξ > 0). By normal-
ization we may assume that c2 = 1 and therefore c := c44 = c44,2. The
proof of the first part is a slight modification of the argument in [3]. Let
p1 = P(ξ > 0) and p2 = P(ξ < 0). Let ξ+ = max{ξ, 0} and ξ− = max{−ξ, 0}.
Then 0 = Eξ = Eξ+ − Eξ−. Let s = Eξ+ = Eξ−. By Hölder’s inequal-
ity we have Eξ2+ ≤ (Eξ4+)1/3s2/3 and Eξ2− ≤ (Eξ4−)1/3s2/3. From this and
1 = Eξ2 = Eξ2+ + Eξ2− we deduce that

c ≥ Eξ4+ + Eξ4− ≥ (Eξ2+)3s−2 + (Eξ2−)3s−2 = (u3 + (1− u)3)s−2,

where u = Eξ2+. On the other hand, by the Cauchy–Schwarz inequality we
have

s2 = (Eξ+)2 = (Eξ+ sign(ξ+))2 ≤ Eξ2+(E sign(ξ+)) = up1.

Therefore, p1 ≥ (u3 + (1− u)3)/uc. Minimization over u ∈ (0, 1) gives u =
1/
√

3 and p1 ≥ (2
√

3− 3)/c.
Next we improve the estimate for c ∈ [1, 3

√
3/2− 3/2). In the same way

as for p1, one can show that p2 ≥ (u3 + (1− u)3)/(1− u)c. Therefore,

p1 = 1− P(ξ < 0) ≤ 1− p2 ≤
u3 + (1− u)3

(1− u)c
.

If we combine this with the lower estimate for p1, the only u ∈ (0, 1) which
have to be considered are those for which

u3 + (1− u)3

uc
≤ 1− u3 + (1− u)3

(1− u)c
.

One easily checks that this happens if and only if

u0 =
1
2
− 1

2

√
c− 1
c+ 3

≤ u ≤ 1
2

+
1
2

√
c− 1
c+ 3

= u1.
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For the c’s we consider one may check that 1/
√

3 /∈ (u0, u1). Therefore, the
minimum is attained at the boundary. Since g(u0) = u1 and g(u1) = u0,
u0 is the minimum of g on [u0, u1]. This shows that p1 ≥ u0.

To show this estimate is sharp for x ≥ 3
√

3/2− 3/2 we will construct a
certain family (ξε)ε≥0 of random variables. Let ε ≥ 0 be not too large. Let
ξε be equal to xi(ε) with probability λi, for i = 1, 2, 3. Let

λ1 =
(

3
2
−
√

3
2

)/
c, λ2 = 1−

(
3
√

3
2
− 3

2

)/
c, λ3 = (2

√
3− 3)/c.

Let x2(ε) = −ε, and let x1(ε) < 0 and x3(ε) > 0 be the solution of

Eξ = λ1x1 + λ2ε+ λ3x3 = 0, Eξ2 = λ1x
2
1 + λ2ε

2 + λ3x
2
3 = 1.

Notice that

x1(0) = −
1− 1

3

√
3√

2−
√

3

√
c, x2 = 0, x3(0) =

1
3

√
3√

2−
√

3

√
c.

For ε > 0 small enough one may check that x1(ε) < x2(ε) < 0 < x3(ε) and
P (ξε ≥ 0) = λ3. Moreover,

lim
ε↓0

Eξ4ε = lim
ε↓0

λ1x
4
1(ε)+λ2x

4
2(ε)+λ3x

4
3(ε) = λ1x

4
1(0)+λ2x

4
2(0)+λ3x

4
3(0) = c.

This part of the proof is complete.
The sharpness of the result for x ∈ [1, 3

√
3/2 − 3/2) follows if we take

for ξ a random variable with two values. Indeed, let

x2 =
1
2

√
2 + 2c+ 2

√
(c− 1)(c+ 3), x1 = −1/x2,

λ1 = x2/(x2 − x1) and λ2 = −x1/(x2 − x1). One easily checks that Eξ = 0,
Eξ2 = 1, Eξ4 = c and

λ1 =
1
2
− 1

2

√
c− 1
c+ 3

.

In [3] also a lower bound is obtained if one uses the pth moment instead
of the fourth moment. It is shown that P(ξ ≥ 0) ≥ 1

4c
−2p/(p−2)
p,2 . In the next

remark we improve the factor 1
4 .

Remark 2.4. Let ξ be a centered non-zero random variable and let
p ∈ (2,∞). Then

P(ξ ≥ 0) ≥ P(ξ > 0) ≥ 1
4
c
−2p/(p−2)
p,2 ((3− 4/p)−1/(p−2) + 1)

≥ e−1 + 1
4

c
−2p/(p−2)
p,2 .

Proof. It follows from the proof in [3] that

P(ξ > 0) ≥ min
u∈(0,1)

c
−2p/(p−2)
p,2 f(u), f(u) =

1
u

(up−1 + (1− u)p−1)2/(p−2).
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The function f has a minimum at u = u0 in [1/2, 1). Moreover, it satisfies
f ′(u0) = 0.

Indeed, if u0 ∈ (0, 1/2) were a minimum point of f , then f(1 − u0)
< f(u0), which is impossible. That a minimum u exists on [1/2, 1) and that
it satisfies f ′(u) = 0 is clear. A calculation shows that f ′(u) = α(u)g(u),
where α(u) > 0 and

g(u) = pup−1 − p(1− u)p−2u− p(1− u)p−2 + 2(1− u)p−2.

Therefore, f ′(u) = 0 if and only if g(u) = 0. Let us estimate u0 from above.
Since g(u0) = 0, we have

(1− u0)p−2

(
1− 2

p

)
= u0(up−2

0 − (1− u0)p−2).

As u0 ≥ 1/2, we obtain

(1− u0)p−2

(
1− 2

p

)
≥ 1

2
(up−2

0 − (1− u0)p−2),

and therefore
1
u0
≥ (3− 4/p)−1/(p−2) + 1.

We conclude that
f(u) ≥ ((3− 4/p)−1/(p−2) + 1)(up−1 + (1− u)p−1)2/(p−2)

≥ ((3− 4/p)−1/(p−2) + 1) · 1
4
.

The final estimate follows from (3− 4/p)1/(p−2) ↓ e as p ↓ 2.

3. Applications. We will need the following estimate for second order
chaoses. It is well-known to experts. For a random variable ξ and p ∈ [1,∞),
let ‖ξ‖p = (E|ξ|p)1/p.

Lemma 3.1. Let (ξi)i≥1 be an i.i.d. sequence of symmetric random vari-
ables with E|ξi|2 =1 and E|ξi|4≤3. Then for any real numbers (ai,j)1≤i<j≤n,

(3.1)
∥∥∥ ∑

1≤i<j≤n

ξiξjaij

∥∥∥
4
≤ 4
√

15
∥∥∥ ∑

1≤i<j≤n

ξiξjaij

∥∥∥
2
.

Moreover , in the case (ξi)i≥1 is a Rademacher sequence or a Gaussian se-
quence the inequality (3.1) is sharp.

Proof. For j > i let aij = aji and let aii = 0. By homogeneity we may
assume that

(3.2)
∥∥∥ ∑

1≤i<j≤n

ξiξjaij

∥∥∥2

2
=

∑
1≤i<j≤n

a2
ij =

1
2
.

Let (γi)i≥1 be a sequence of independent standard Gaussian random vari-
ables. Since E|ξi|2 ≤ E|γi|2 and E|ξi|4 ≤ E|γi|4, we have
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(3.3)
∥∥∥ ∑

1≤i<j≤n

ξiξjaij

∥∥∥
4
≤
∥∥∥ ∑

1≤i<j≤n

γiγjaij

∥∥∥
4
.

Denote by A the matrix (aij)1≤i,j≤n. By diagonalization we may write A =
PDP T , where D = (λi) is a diagonal matrix and P is an orthogonal matrix.
Clearly, 〈Aγ, γ〉 = 〈Dγ′, γ′〉, where γ = (γ1, . . . , γn) and γ′ = P Tγ. Since P
is orthogonal, γ′ has the same distribution as γ. Therefore,

0 = E〈Aγ, γ〉 = E〈Dγ′, γ′〉 =
n∑

i=1

λi.

Similarly one may check that
∑n

i=1 λ
2
i = 1. It follows that

E〈Aγ, γ〉4 = E|〈Dγ′, γ′〉|4 = E
∣∣∣ n∑

i=1

λi(γ2
i − 1)

∣∣∣4 = 36
n∑

i=1

λ4
i + 24

n∑
i=1

λ2
i

≤ 36
( n∑

i=1

λ2
i

)2
+ 24

n∑
i=1

λ2
i = 60.

Therefore,

E
∣∣∣ ∑
1≤i<j≤n

γiγjaij

∣∣∣4 =
1
16

E〈Aγ, γ〉4 ≤ 15
4
.

By (3.2) and (3.3) this implies the result.
To show that the inequality (3.1) is sharp it suffices to consider the case

where the (ξi)i≥1 are standard Gaussian random variables. Indeed, if (3.1)
holds for a Rademacher sequence (ξi)i≥1, then the central limit theorem
implies (3.1) for the Gaussian case. Now assume (ξi)i≥1 are standard Gaus-
sian random variables. Let aij = 1 for all i 6= j and aii = 0. Notice that∑

1≤i<j≤n ξiξjaij = 1
2〈Aξ, ξ〉, where ξ = (ξi)n

i=1. For the right-hand side of
(3.1) we have ∥∥∥ ∑

1≤i<j≤n

ξiξjaij

∥∥∥2

2
=

∑
1≤i<j≤n

a2
ij =

n(n− 1)
2

.

As before, we may write A = PDP T , where D is the diagonal matrix with
eigenvalues (λi)n

i=1 of A and P is orthogonal. It is easy to see that the
eigenvalues of A are n− 1 and −1, where the latter has multiplicity n− 1.
By the same calculation as before it follows that

E〈Aξ, ξ〉4 = 60
n∑

i=1

λ4
i + 24

n∑
i 6=j

λ2
iλ

2
j = 36((n− 1)4 + n) + 24((n− 1)2 + n)2.

Letting C denote the best constant in (3.1) gives

36
16

((n− 1)4 + n) +
24
16

((n− 1)2 + n)2 ≤ C4 n
2(n− 1)2

4
.
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Dividing by n4/4 and letting n tend to infinity yields 9 + 6 ≤ C4, as re-
quired.

By standard arguments (cf. [9, Chapter 3]) using Hölder’s inequality one
also deduces from Lemma 3.1 that∥∥∥ ∑

1≤i<j≤n

ξiξjaij

∥∥∥
p
≤ 15(p−2)/2p

∥∥∥ ∑
1≤i<j≤n

ξiξjaij

∥∥∥
2

for p ∈ (2, 4),(3.4) ∥∥∥ ∑
1≤i<j≤n

ξiξjaij

∥∥∥
2
≤ 15(2−p)/2p

∥∥∥ ∑
1≤i<j≤n

ξiξjaij

∥∥∥
p

for p ∈ (0, 2).(3.5)

As an immediate consequence of Proposition 2.3 and Lemma 3.1 we
obtain the following result. We state it for Rademacher random variables,
but the same result holds for random variables (ξn)n≥1 as in Lemma 3.1.

Proposition 3.2. Let (ri)i≥1 be a Rademacher sequence. For any real
numbers (aij)n

i,j=1,

P
( ∑

1≤i<j≤n

rirjaij ≥ 0
)
≥ 2
√

3− 3
15

>
3

100
.

If not all aij are identically zero then

P
( ∑

1≤i<j≤n

rirjaij > 0
)
≥ 2
√

3− 3
15

>
3

100
.

This result has applications to certain quadratic optimization problems
(cf. [1] and [3, Theorem 4.2]). It improves the known result with 1/87 from
[3, Lemma 4.1].

A conjecture (see [1]) is that the estimate in Proposition 3.2 holds
with 1/4. The methods we have described will probably never give such
a bound, and a more sophisticated argument will be needed. However, an-
other conjecture is that for a Rademacher sequence (ri)i≥1 and p = 1, (3.5)
holds with constant 2, i.e.∥∥∥ ∑

1≤i<j≤n

rirjaij

∥∥∥
2
≤ 2
∥∥∥ ∑

1≤i<j≤n

rirjaij

∥∥∥
1
.

If this were true, then Corollary 2.2 implies that

P
( ∑

1≤i<j≤n

rirjaij ≥ 0
)
≥ 1

2
− 1

4

√
3 >

1
15
,

which is better than 3
100 .

Remark 3.3. Let (ηi)i≥1 be independent exponentially distributed ran-
dom variables with Eηi = 1 and let ξ =

∑n
i=1 ai(ηi − 1) for real numbers

(ai)i≥1. In [3] the estimate P(ξ ≥ 0) > 1/20 has been obtained. It follows
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from Proposition 2.3 and (see [3])

(3.6) (E|ξ|4)1/4 ≤ 9(E|ξ|2)1/2.

The inequality (3.6) is optimal. As in (3.5) we see that (3.6) implies

(E|ξ|2)1/2 ≤ CE|ξ|)
for a certain constant C ≤ 3. One the other hand, taking n = 2 and a1 = 1,
a2 = −1 gives C ≥

√
2. It is interesting to find the optimal value of C. If

this value is small enough, then Proposition 2.1 will give a better result than
1/20.

A similar situation can be considered if one replaces ηi by γ2
i .

Next we prove another probability bound. A uniform bound can already
be found in [2].

Corollary 3.4. Let (ri)i≥1 be a Rademacher sequence. Let (H, 〈·, ·〉)
be a Hilbert space. For any vectors (ai)n

i=1 from H,

P
(∥∥∥ n∑

i=1

riai

∥∥∥ ≤ ( n∑
i=1

‖ai‖2
)1/2)

≥ 2
√

3− 3
15

>
3

100
,(3.7)

P
(∥∥∥ n∑

i=1

riai

∥∥∥ ≥ ( n∑
i=1

‖ai‖2
)1/2)

≥ 2
√

3− 3
15

>
3

100
.(3.8)

For real numbers (ai)n
i=1, (3.7) holds with constant 3/8 (see [5]). A well-

known conjecture is that it holds with 1/2. Again, for real numbers (ai)n
i=1,

(3.8) holds with constant 1/10 (see [8]). A conjecture (see [4]) is that it holds
with constant 7/64.

Poof of Corollary 3.4. As in [2] one can show that

P
(∥∥∥ n∑

i=1

riai

∥∥∥ ≥ ( n∑
i=1

‖ai‖2
)1/2)

= P
( ∑

1≤i<j≤n

rirjaij ≥ 0
)
,

where aij = 2Re(〈ai, aj〉). Therefore, (3.8) follows from Proposition 3.2. The
proof of (3.7) is the same.

In the next result we obtain a probability bound for Gaussian random
variables with values in a Hilbert space.

Proposition 3.5. Let H be a real separable Hilbert space and let G :
Ω → H be a non-zero centered Gaussian random variable. Then

(3.9)
2
√

3− 3
15

≤ P(‖G‖ > (E‖G‖2)1/2) ≤ 1
2
.

By [7] the upper bound 1
2 is actually valid for Gaussian random variables

with values in a real separable Banach space. We also refer to [10] for related
results on Gaussian quadratic forms.
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Proof of Proposition 3.5. It is well-known that we can find independent
standard Gaussian random variables (γn)n≥1, orthonormal vectors (an)n≥1

in H and positive numbers (λn)n≥1 such that G =
∑

n≥1

√
λn γnan, where

the series converges almost surely in H. The convergence also holds in
L2(Ω;H). Notice that

ξ := ‖G‖2 − E‖G‖2 =
∑
n≥1

λk(γ2
k − 1),

so that as in Lemma 3.1, Eξ2 = 2
∑

n≥1 λ
2
k and Eξ4 ≤ 60

∑
n≥1 λ

2
k. Therefore

the lower estimate follows from Proposition 2.3.

Acknowledgments. The author thanks Professor S. Kwapień for help-
ful discussions.
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