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ON THE LONG-TIME BEHAVIOUR OF SOLUTIONS OF
THE p-LAPLACIAN PARABOLIC SYSTEM

BY

PAWEŁ GOLDSTEIN (Warszawa)

Abstract. Convergence of global solutions to stationary solutions for a class of de-
generate parabolic systems related to the p-Laplacian operator is proved. A similar result
is obtained for a variable exponent p. In the case of p constant, the convergence is proved
to be C1

loc, and in the variable exponent case, L2 and W 1,p(x)-weak.

1. Notation and the main result. We study global solutions of the
system

(1) ut −∆pu+ ∂2f(x, u) = 0, u : [0,∞)×Ω → Rm,

in the following setting:

(A1) in the space C0,α([0,∞), w +W 1,p
0 (Ω,Rm)),

(A2) for p ≥ 2,
(A3) with Ω a domain in RN (i.e. Ω open, bounded and connected).

We assume additionally that

(A4) for all t we have ut(t, ·) ∈ Lq(Ω,Rm), q = (p∗)′ = Np/(Np−N+p),

and that the following assumptions on f , Ω, w hold:

(A5) f is a Carathéodory function such that ∂2f(x, y) (the derivative
with respect to the second variable) exists a.e. in Ω. Moreover,
• (weak convexity) ∀x∈Ω〈∂2f(x, y1)− ∂2f(x, y2), y1 − y2〉 ≥ 0,
• (growth conditions)

|f(x, y)| ≤ C|y|q, |∂2f(x, y)| ≤ C|y|q−1,

(A6) ∂Ω ∈ C1,
(A7) w ∈W 1,p(Ω,Rm).

In the following, the corresponding spacewise weak formulation of (1) is
considered: for any fixed t,
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(2) 〈ut, φ〉L2 +M(u)(φ) +
�

Ω

〈∂2f(x, u), φ〉 = 0 ∀
φ∈W 1,p

0 (Ω,Rm)
,

with
M(u)(φ) =

�

Ω

|∇u|p−2〈∇u,∇φ〉.

We use the L2-scalar product notation for simplicity. Note that 〈ut, φ〉 is
finite and well-defined even though we do not assume ut ∈ L2. However, the
L2-estimates for ut have been proved by Alt and Luckhaus ([2]).

We shall use the functionals

EA(u) =
�

A

|∇u|p, E(u) = EΩ(u),

and the variational functional related to (1),

(3) E(u) =
1
p
E(u) +

�

Ω

f(x, u).

In order to ensure the existence of minima of E , we suppose that

(A8) the functional E(u) is coercive, that is,

lim
‖u‖W1,p(Ω,Rm)→∞

E(u) =∞

(see e.g. [7, Theorem 4.6]). By convexity of E(·), the minimum in w +W 1,p
0

is unique and we shall denote it by u0(x). We shall write

Ω0 = {x ∈ Ω : |∇u0(x)| = 0}, Ωε = {x ∈ Ω : |∇u0(x)| < ε}.
Long-time behaviour of degenerate parabolic equations has been widely

studied, the p-Laplacian equation being a model example. One should men-
tion in particular the results of Lieberman [13], who proved that, for zero
boundary data and in the scalar case (m = 1), the solutions of (1) are
bounded in L∞. The paper of S. Kamin and J. L. Vázquez [9] gives a de-
tailed description of the asymptotics of positive solutions of the p-Laplacian
equation; Del Pino and Dolbeault [4] establish, for non-negative initial data
and under some assumptions on p, not only the convergence to stationary
solutions, but also an estimate on the convergence rate. Other results on the
asymptotics of solutions in unbounded domains or in the whole space are
due to Lee, Petrosyan and Vázquez [12], and Iagar and Vázquez [8].

These results, however, are essentially of single-equation type, as they
deal with non-negative solutions, or with non-negative initial data.

The aim of this paper is to show that, in the system (m ≥ 1) case, very
simple and elementary arguments allow us to establish C1-convergence of
solutions global (in time) to stationary solutions, at the expense, however,
of rather strong conditions on the associated variational functional. The
existence of solutions under our assumptions has been proved by Alt and
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Luckhaus [2]; similar questions have also been addressed by DiBenedetto
and Herrero [6], Kuusi and Parviainen [11] and others.

The main result of the paper is the following theorem:

Theorem 1. Let u be a global solution of (2), satisfying the assumptions
(A1)–(A8) given above. Then the solution u and its gradient ∇u converge
almost uniformly in Ω to u0 and ∇u0, respectively , i.e.

(4) ∀Ω′bΩ ‖u(t, ·)− u0(·)‖C1(Ω′,Rm)
t→∞−−−→ 0,

where u0 is the (unique) minimum of the energy functional E(·) given by (3).

Remark. From time to time we shall refer to somewhat stronger hy-
potheses: ∂Ω ∈ C1,α̃ and w ∈ C1,α̃(Ω,Rm) for some α̃ ∈ (0, 1) (strong hy-
potheses).

Theorem 2. If the strong hypotheses hold true, the convergence of u is
uniform in Ω.

The proofs of Theorems 1 and 2 are virtually the same, the difference
lying in the known regularity results for the solution, which are stated below.
Therefore we shall prove both theorems simultaneously, stating explicitly
where the strong hypotheses are assumed.

We shall use the following known facts on regularity of u and u0:

• Regularity of u0 ([14]):

∀Ω′bΩ ∃α∈(0,1) u0 ∈ C1,α(Ω′,Rm)

If the strong hypotheses hold, we have u0 ∈ C1,α(Ω,Rm).
• Interior regularity of u ([5]):

∀Ω′bΩ ∃α∈(0,1) u(t, ·) ∈ C1,α(Ω′,Rm)

and the Hölder constant of ∇u is bounded independently of t for all
t ≥ t0 > 0.

In the case of the strong hypotheses we obtain full regularity of
u(t, ·) ([5]):

∃α∈(0,1) u(t, ·) ∈ C0,α(Ω,Rm)

with the Hölder constant of u bounded independently of t for all t ≥ 0.

Remark. The system (2) defines a gradient flow of E in L2(Ω,Rm). In
particular,

(5)
dE(u)
dt

= M(u)(ut) +
�

Ω

〈∂2f(x, u), ut〉 = −‖ut‖2L2 ≤ 0,

so the energy E(u) does not increase with t.
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2. Case of f ≡ 0. Let us start with a simpler “toy” case of

(6) ut −∆pu = 0.

In this case, we can easily trace the main ideas of the general proof.
By Young’s inequality, we have

d

dt

1
2
‖u− u0‖2L2 = 〈ut, u− u0〉L2 = −M(u)(u− u0)(7)

= −M(u)(u) +M(u)(u0)

= −E(u) +
�

Ω

|∇u|p−2〈∇u,∇u0〉

≤ −E(u) +
p− 1
p

E(u) +
1
p
E(u0)

= −1
p

(E(u)− E(u0)) ≤ 0.

Thus ‖u−u0‖2L2 is decreasing with t→∞, as u0 is a minimizer for E. On the
other hand, ‖u− u0‖2L2 is bounded from below, so there must be a sequence
ti such that

(8)
d

dt

∣∣∣∣
t=ti

1
2
‖u− u0‖2L2

i→∞−−−→ 0.

To simplify the notation we shall write ui(·) for u(ti, ·).
Next, notice that, by Bernoulli’s inequality,

(9) E(u)− E(u0) =
�

Ω

|∇u|p −
�

Ω

|∇u0|p

=
�

Ω0

|∇u|p+
�

Ω\Ω0

[(|∇u0|2+2〈∇u0,∇(u− u0)〉+|∇(u− u0)|2)p/2 − |∇u0|p]

= EΩ0(u− u0)

+
�

Ω\Ω0

|∇u0|p
[(

1 + 2
〈∇u0,∇(u− u0)〉

|∇u0|2
+
|∇(u− u0)|2

|∇u0|2

)p/2

− 1
]

≥ EΩ0(u− u0) + p
�

Ω\Ω0

|∇u0|p−2〈∇u0,∇(u− u0)〉

+
p

2

�

Ω\Ω0

|∇u0|p−2|∇(u− u0)|2

= EΩ0(u− u0) + pM(u0)(u− u0) +
p

2

�

Ω\Ω0

|∇u0|p−2|∇(u− u0)|2.
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On the other hand, u0 is a minimizer for E, so M(u0)(·) ≡ 0, and we get

(10) E(u)− E(u0) ≥ EΩ0(u− u0) +
p

2

�

Ω\Ω0

|∇u0|p−2|∇(u− u0)|2.

By (8) we know that E(ui) → E(u0) as i→∞. We have, however, proved
that E(u(t, ·)) is non-increasing, and therefore

(11) E(u(t, ·)) t→∞−−−→ E(u0(·)).

Let us denote the right hand side of (10) by V (u − u0). By (11), we have
V (u(t, ·)− u0(·))→ 0 as t→∞. In the next step we shall prove the following
lemma.

Lemma 1.

V (u(t, ·)− u0(·))
t→∞−−−→ 0 ⇒ ∀Ω′bΩ sup

Ω′
|∇(u− u0)|

t→∞−−−→ 0.

Proof. Suppose otherwise. After passing to a subsequence ti → ∞, we
have, for a fixed Ω′ and some b > 0,

sup
Ω′
|∇(ui − u0)| > b.

Suppose that, for every i, |∇(ui(ξi) − u0(ξi))| > b. Again, by passing to a
subsequence, we may suppose that ξi → ξ∞ ∈ Ω′ as i→∞.

The functions ui − u0 are all in C1,α, with the Hölder constant of the
gradient bounded by some G, independently of i. Thus, there exists % =
%(α,G, b,N) such that |∇(ui − u0)| > 1

2b on B%(ξi) ∩ Ω′ for all i. For i
sufficiently large we also have |∇(ui − u0)| > 1

2b on S := B%/2(ξ∞) ∩Ω′.
We may always suppose (possibly after enlarging Ω′) that Ω′ = intΩ′.

Moreover, we may take ε small enough to have µ(Ωε \ Ω0) < 1
2µ(S). Then

either S∩Ω0 or S∩Ω\Ωε is of non-zero Lebesgue measure. If µ(S∩Ω0) > 0,
then EΩ0(ui−u0) cannot tend to zero (the integrand is bounded from below,
independently of i), and if µ(S ∩Ω \Ωε) > 0, the second term in V (ui−u0)
cannot tend to zero.

Note that {u(t, ·)} is a bounded set in w+W 1,p
0 (Ω,Rm), and thus, by the

Alaoglu and Rellich–Kondrashov theorems, one can find a sequence {ui(·) =
u(ti, ·)} with ti →∞ such that

ui ⇀ u∞ weakly in w +W 1,p
0 (Ω,Rm),

ui → u∞ strongly in L2(Ω,Rm).

By the weak convergence in w +W 1,p
0 (Ω,Rm),

(12) M(u∞)(u∞ − ui)
i→∞−−−→ 0.
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But, using Young’s inequality as in (7) and (11), we obtain

M(u∞)(u∞ − ui) ≥ E(u∞)− E(ui)
i→∞−−−→ E(u∞)− E(u0) ≥ 0.

If u∞ 6≡ u0, then, by the uniqueness of minimum of E, E(u∞)−E(u0) > 0,
which contradicts the convergence in (12).

This shows that u(ti, ·)→ u0(·) in L2(Ω,Rm) as i→∞, and the mono-
tonicity of ‖u−u0‖L2 implies that this convergence holds, in fact, for t→∞:

‖u− u0‖L2
t→∞−−−→ 0.

Moreover, u(t, ·) also converges weakly to u0(·) in w+W 1,p
0 (Ω,Rm). Indeed,

suppose otherwise. Then there exist a (weak-topology) neighbourhood U of
u0 and a sequence ti →∞ such that {u(ti, ·)}i∈N∩U = ∅. On the other hand,
{u(ti, ·)} is bounded in w+W 1,p

0 (Ω,Rm), hence we may choose a subsequence
weakly convergent to some u∞. The above reasoning shows that u∞ = u0,
which is a contradiction.

Having established the L2-convergence of u to u0, we may now repeat
the argument from Lemma 1: for a fixed Ω′ b Ω, the functions u(t, ·)−u0(·)
are Lipschitz, with the Lipschitz constant bounded independently of t (as
∇(u−u0) converges uniformly to 0 in Ω′, it is bounded independently of t).
If u− u0 does not converge uniformly to 0 in Ω′, we may choose a sequence
ui − u0 such that

∀i sup
Ω′
|ui(·)− u0(·)| ≥ b > 0,

and thus a set A ⊂ Ω′ of positive measure on which

∀i>i0∀x∈A |ui(x)− u0(x)| > b/2,

which contradicts the already proved L2-convergence of u to u0.
If the strong hypotheses hold true, we may use the fact that the functions

u(t, ·) − u0(·) are in fact Hölder continuous in Ω, with the Hölder constant
independent of t, and apply the above argument for Ω′ = Ω. This yields the
uniform convergence of u to u0.

This concludes the proof of Theorems 1 and 2 for f ≡ 0.

3. Non-homogeneous case. In this section we shall prove Theorems
1 and 2.

Proof. In this case, u0(·) is a minimizer for E , therefore

(13) M(u0)(φ) +
�

Ω

〈∂2f(x, u0), φ〉 = 0 ∀
φ∈W 1,p

0 (Ω,Rm)
.
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Let us now calculate a counterpart of (7) in this case:

(14)
d

dt

1
2
‖u−u0‖2L2 = 〈ut,u−u0〉L2

= −M(u)(u−u0)−
�

Ω

〈∂2f(x,u),u−u0〉

= −M(u)(u−u0)−
�

Ω

〈∂2f(x,u),u−u0〉+M(u0)(u−u0)

+
�

Ω

〈∂2f(x,u0),u−u0〉

= −E(u)+M(u)(u0)+M(u0)(u−u0)−
�

Ω

〈∂2f(x,u)−∂2f(x,u0),u−u0〉

≤ −E(u)+M(u)(u0)+M(u0)(u−u0).

We shall continue this calculation in two ways. In the first one, we use
Hölder’s inequality, obtaining

(15)
d

dt

1
2
‖u− u0‖2L2 ≤ −E(u) +M(u)(u0) +M(u0)(u− u0)

= −E(u) +
�

Ω

|∇u|p−2〈∇u,∇u0〉+
�

Ω

|∇u0|p−2〈∇u0,∇u〉 − E(u0)

≤ −E(u) + E(u)(p−1)/pE(u0)1/p + E(u)1/pE(u0)(p−1)/p

= −(E(u)1/p − E(u0)1/p)(E(u)(p−1)/p − E(u0)(p−1)/p) ≤ 0.

Notice that in this case we do not necessarily have E(u) ≥ E(u0), because
u0 is a minimizer for E , not for E.

The second continuation of (14) uses Young’s inequality:

(16)
d

dt

1
2
‖u− u0‖2L2 ≤ −E(u) +M(u)(u0) +M(u0)(u− u0)

= −E(u) +
�

Ω

|∇u|p−2〈∇u,∇u0〉+M(u0)(u− u0)

≤ −E(u) +
�

Ω

|∇u|p−1|∇u0|+M(u0)(u− u0)

≤ −E(u) +
�

Ω

(
p− 1
p
|∇u|p +

1
p
|∇u0|p

)
+M(u0)(u− u0)

= −
(

1
p
E(u)− 1

p
E(u0)−M(u0)(u− u0)

)
.

One may show that the above quantity is still non-positive by decomposing
M(u0)(u− u0) and using Young’s inequality one more time.
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Just as for f ≡ 0, there exists a sequence ti such that d
dt

∣∣
t=ti
‖u−u0‖2L2→0

as i→∞. As before, we write ui(·) := u(ti, ·).
The inequality (15) implies that E(ui) → E(u0) as i→∞, and (16)

together with (9) gives V (ui−u0)→ 0 as i→∞. Lemma 1 then shows that
∇ui is almost uniformly convergent to ∇u0 in Ω.

Next, we need to pass from the convergence of the sequence ∇ui to the
convergence for all t. First, we need to establish the convergence of E(u) to
E(u0) as t → ∞. By monotonicity of E(u(t, ·)) it is enough to prove it for
the sequence ti.

Of the two terms in E(ui) we already know that E(ui)→ E(u0) as i→∞.
It remains to prove that�

Ω

[f(x, u(ti, x))− f(x, u0(x))]
i→∞−−−→ 0.

By convexity of f we have, for some θ ∈ (0, 1) and uθ = θui + (1− θ)u0,

(17)
�

Ω

[f(x, ui)− f(x, u0)] =
�

Ω

〈∂2f(x, uθ), ui − u0〉

=
1
θ

�

Ω

〈∂2f(x, uθ), uθ − u0〉 ≥
1
θ

�

Ω

〈∂2f(x, u0), uθ − u0〉

=
�

Ω

〈∂2f(x, u0), ui − u0〉 = −M(u0)(ui − u0) ≥ E(u0)− E(ui).

Similarly

(18)
�

Ω

[f(x, ui)− f(x, u0)] =
�

Ω

〈∂2f(x, uθ), ui − u0〉

=
1

1− θ

�

Ω

〈∂2f(x, uθ), ui − uθ〉 ≤
1

1− θ

�

Ω

〈∂2f(x, ui), ui − uθ〉

=
�

Ω

〈∂2f(x, ui), ui − u0〉 = −M(ui)(ui − u0)− 〈ut|t=ti , ui − u0〉L2

≤ E(u0)− E(ui)−
d

dt

∣∣∣∣
t=ti

1
2
‖u− u0‖2L2 .

We see that both the lower (17) and upper (18) estimate for the integral	
Ω[f(x, ui)) − f(x, u0)] tend, for this particular sequence ti, to 0. This con-
cludes the proof of the energy convergence.

Next, note that by (17) and (9),

E(u)− E(u0) =
1
p
E(u)− 1

p
E(u0) +

�

Ω

[f(x, u)− f(x, u0)]

≥ 1
p
E(u)− 1

p
E(u0)−M(u0)(u− u0)

≥ V (u− u0) ≥ 0,
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and, applying Lemma 1, we obtain the almost uniform convergence of ∇u
to ∇u0.

We proceed as in the previous section. By the coercivity and the conver-
gence of E (which implies the boundedness of {u(t, ·)}t>0 in W 1,p(Ω,Rm))
we can choose a sequence {ti}, ti →∞, such that

ui ⇀ u∞ weakly in w +W 1,p
0 (Ω,Rm),

ui → u∞ strongly in L2(Ω,Rm);

as before, ui(·) = u(ti, ·). By this weak convergence, the convexity of f (see
(18)), and Young’s inequality (as in (16)),

E(u∞)− E(ui) = E(u∞)− E(ui) +
�

Ω

[f(x, u∞)− f(x, ui)](19)

≤M(u∞)(u∞ − ui)

+
�

Ω

〈∂2f(x, u∞), u∞ − ui〉
i→∞−−−→ 0.

On the other hand, E(u∞)− E(ui)→ E(u∞)− E(u0) as i→∞.
If u∞ 6≡ u0, then, by the uniqueness of minimum for E , E(u∞)−E(u0) > 0,

which gives a contradiction. Therefore u∞ ≡ u0 in w +W 1,p
0 (Ω,Rm).

The fact that u(ti, ·) converges strongly in L2(Ω,Rm) to u0(·) together
with the monotonicity of ‖u− u0‖ yields

(20) u(t, ·) t→∞−−−→ u0(·) in L2(Ω,Rm).

This convergence, together with the fact that u(t, ·) are Lipschitz with time-
independent Lipschitz constant, gives us the almost uniform convergence of
u(t, ·) to u0(·) (see previous section). If the strong hypotheses hold true, we
may use the fact that u(t, ·)−u0(·) are Hölder continuous on the whole Ω to
prove that the convergence of u(t, ·) to u0(·) is, in fact, uniform. This ends
the proof of Theorems 1 and 2.

Remark. The same argument as in the previous section gives us also
the convergence

u(t, ·) t→∞−−−→ u0(·) weakly in w +W 1,p
0 (Ω,Rm).

4. Variable exponent case. In the last few years a counterpart of (1)
for a variable exponent p = p(x) has attracted more and more attention
(see e.g. [1], [3]). A question arises: how much of the results of the previous
sections can be proved in this case? If we assume that the exponent function
p(x) stays in the range of exponents dealt with in the previous section, most
of the arguments, with some care, can be repeated.

Let p(x) be a measurable, bounded function, p1 > p(x) ≥ 2 (note that
no regularity conditions on p(x) are imposed), and
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(21) 〈ut, φ〉L2 +M(u)(φ) +
�

Ω

〈∂2f(x, u), φ〉 = 0 ∀
φ∈W 1,p(x)

0 (Ω,Rm)
.

This time

E(u) =
�

Ω

|∇u|p(x), M(u)(φ) =
�

Ω

p(x)|∇u|p(x)−2〈∇u,∇φ〉,(22)

E(u) = E(u) +
�

Ω

f(x, u).(23)

The main difference between the variable exponent case and the preceding
ones is that no partial regularity result for time-dependent solutions of (21) is
known. Therefore the methods used for p = const cannot yield any pointwise
convergence. However, this regularity result (widely believed to be true, at
least under sufficient continuity assumptions on p(x)) is the only missing
detail, and were it proved, one could apply the same technique as for p
constant, obtaining the same convergence result.

From now on, we assume that for a.e. x,

|f(x, y)| ≤ C|y|q(x), |∂2f(x, y)| ≤ C|y|q(x)−1,

〈∂2f(x, y1)− ∂2f(x, y2), y1 − y2〉 ≥ 0

where q(x) = (p(x)∗)′ = p(x)N/(p(x)N − N + p(x)). Moreover, as before,
we suppose that E(·) is coercive.

Theorem 3. With the above assumptions on p(x) and f(x, y), a global
solution u(t, x) of (21) in w +W

1,p(x)
0 (Ω,Rm) converges to a stationary so-

lution u0(x) strongly in L2(Ω,Rm) and weakly in W 1,p(x)(Ω,Rm).

We repeat, with slight alterations, the calculation (14), using Young’s in-
equality (note that only pointwise inequalities, and not the Hölder inequality,
can be safely used in the p(x) case):

(24)
d

dt

1
2
‖u−u0‖2L2 = 〈ut, u−u0〉L2 = −M(u)(u−u0)−

�

Ω

〈∂2f(x, u), u−u0〉

= −M(u)(u− u0)−
�

Ω

〈∂2f(x, u), u− u0〉+M(u0)(u− u0)

+
�

Ω

〈∂2f(x, u0), u− u0〉

= −M(u)(u− u0) +M(u0)(u)−
�

Ω

p(x)|∇u0|p(x)

−
�

Ω

〈∂2f(x, u)− ∂2f(x, u0), u− u0〉

≤ −M(u)(u− u0) +
�

Ω

p(x)|∇u0|p(x)−1|∇u| −
�

Ω

p(x)|∇u0|p(x)
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≤ −M(u)(u− u0) +
�

Ω

(p(x)− 1)|∇u0|p(x) +
�

Ω

|∇u|p(x) −
�

Ω

p(x)|∇u0|p(x)

= E(u)− E(u0)−M(u)(u− u0).

Applying Young’s inequality once more, this time to the second term in
M(u)(u − u0) = M(u)(u) −M(u)(u0), proves that the right hand side of
(24) is still non-positive. We thus get a sequence ti →∞ such that

d

dt

∣∣∣∣
t=ti

‖u− u0‖L2
i→∞−−−→ 0,

in particular
E(ui)− E(u0)−M(ui)(ui − u0)

i→∞−−−→ 0,

where, as before, ui(·) = u(ti, ·).
This allows us to prove the energy convergence, by estimates similar to

those in (18):

E(u)− E(u0) = E(u)− E(u0) +
�

Ω

f(x, u)−
�

Ω

f(x, u0)(25)

≤ E(u)− E(u0) +
�

Ω

〈∂2f(x, u), u− u0〉

= E(u)− E(u0)−M(u)(u− u0)− 〈ut, u− u0〉L2

= E(u)− E(u0)−M(u)(u− u0)−
d

dt
‖u− u0‖L2 .

For the sequence t = ti the right hand side of (25) tends to 0 as i→∞,
and E(u)−E(u0) ≥ 0. However, as in the previous sections, the energy E(u)
is decreasing with t:

d

dt
E(u) = −M(u)(ut)−

�

Ω

〈∂2f(x, u), ut〉 = −‖ut‖2L2 .

Therefore, we have E(u)→ E(u0) as t→∞.
Now, we proceed as in the previous section. By coercivity of E and

the convergence of E proved above, the set {u(t)}t>0 is bounded in w +
W

1,p(x)
0 (Ω,Rm), and thus in W 1,2(Ω,Rm). By the Alaoglu and Rellich–

Kondrashov theorems (see [10] for appropriate properties of variable expo-
nent Sobolev spaces) we may choose a sequence ti → ∞ (ui(·) = u(ti, ·))
such that

ui ⇀ u∞ weakly in w +W
1,p(x)
0 (Ω,Rm),

ui → u∞ strongly in L2(Ω,Rm).
Using exactly the same calculation as in (19) we show that u∞ = u0.

Monotonicity of ‖u − u0‖L2(Ω) ensures that the L2-convergence holds for
all t, while the argument from Section 2 ({u(t, ·)}t>0 is precompact and every
W 1,p(x)-weakly convergent sequence with t→∞ converges to u0) yields the
w +W

1,p(x)
0 -weak convergence.
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