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ULTRASMOOTHNESS IN DENDROIDS

BY

ISABEL PUGA and MIRIAM TORRES (México)

Abstract. The class of ultrasmooth dendroids is contained in the class of smooth
dendroids and contains the class of locally connected dendroids. In this paper we study
relationships between ultrasmoothness and smoothness in dendroids and we characterize
ultrasmooth dendroids.

Introduction. In 1970, J. J. Charatonik and C. Eberhart [2] introduced
the definition of smoothness in dendroids. That paper also contains a wide
study of this concept. Later, in 1988, E. E. Grace and E. J. Vought [3]
characterized smooth dendroids.

With the purpose of characterizing dendrites, L. Lum [5] defined 1978
the concept of ultrasmoothness and he raised the problem of characterizing
ultrasmooth dendroids. The purpose of the present paper is to give some
such characterizations.

A continuum is a compact, connected metric space, and a subcontinuum
is a continuum contained in some topological space. The hyperspace 2X

(resp. C(X)) of a continuum X is the space of closed subsets (resp. subcon-
tinua of X) with the topology induced by the Hausdorff metric. These two
hyperspaces are again continua (see [4] for concepts and results relating to
hyperspaces). The term “mapping” will be used for a continuous function,
and Cl(A) denotes the closure of the set A.

Let {An}n∈N ⊆ 2X . We recall some facts about lim inf An and lim supAn

(see [6, Definition 4.8, p. 56] for the definitions):

1) lim inf An ⊆ lim supAn.
2) limAn with respect to the Hausdorff metric exists if and only if

lim inf An = lim supAn, and in this case the three limits coincide.
3) lim inf An = {limxn : xn ∈An} and lim supAn = {limxnj : xnj ∈Anj}

where limxn denotes the usual limit in the continuum X.

Let X be any continuum. A Whitney map µ : 2X → R is a mapping
such that µ({x}) = 0 for each x ∈ X and µ(A) < µ(B) whenever A  B.
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Whitney maps exist for every continuum X (see [8]). In this paper, we
consider Whitney maps restricted to C(X).

A continuum is called a dendroid if it is arcwise connected and if the
intersection of any two of its subcontinua is connected. It is not dificult
to see that subcontinua of dendroids are dendroids and that for any two
points p, q in a dendroid X there exists a unique arc pq ⊆ X joining p
and q. We define [pq) = pq − {q}, (pq] = pq − {p} and (pq) = pq − {p, q}.

A point p in a dendroid X is called a ramification point if X − {p}
has at least three arc-components. A fan is a dendroid with exactly one
ramification point, called the vertex. In particular, the harmonic fan is the
cone over the set {1/n : n ∈ N} ∪ {0}. The set of ramification points of X
will be denoted by R(X).

Let X be a dendroid and p ∈ X. For a, b ∈ X we define a ≤p b if a ∈ pb.
Clearly, the relation ≤p defines a partial order in X. X is called ultrasmooth
at p if for every x, y ∈ X, there exists a retraction r : X → px ∪ py which
preserves the partial order ≤p (a ≤p b ⇒ r(a) ≤p r(b)). We call such a
retraction a ≤p-retraction.

X is called smooth at p if lim pan = pa whenever {an}n∈N ⊆ X converges
to a ∈ X. If X is smooth at p, it follows easily that X is locally connected
at p.

We define

S(X) = {p ∈ X : X is smooth at p},
U(X) = {p ∈ X : X is ultrasmooth at p}.

X is called smooth (resp. ultrasmooth) if S(X) 6= ∅ (resp. U(X) 6= ∅).
The following facts are easy consequences of the definition of ultra-

smoothness:

(i) Each dendrite (locally connected dendroid) is ultrasmooth at every
point (see [7, Theorem 3.24, p. 49]).

(ii) Subdendroids of ultrasmooth dendroids are ultrasmooth.

Let X be a dendroid, p ∈ S(X) and x ∈ X. We define the mapping
ψp,x : X → px by

ψp,x(y) =
{

the point in px with µ(pψp,x(y)) = µ(py) if µ(py) ≤ µ(px),
x if µ(py) ≥ µ(px).

It follows from the properties of µ and the smoothness at p that ψp,x is well
defined and is actually a ≤p-retraction.

If p, x are points in a dendroid X, the arc-component of X − {p} con-
taining x will be denoted by Ap(x).

We will prove in Section 1 that U(X) ⊆ S(X) and therefore the class of
ultrasmooth dendroids is a subclass of the class of smooth dendroids. We also
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give examples to show that both inclusions are proper and we investigate
the existence of ≤p-retractions when p ∈ S(X). As a corollary, we prove
that every smooth fan is ultrasmooth. In Section 2 we study certain subsets
L(P ) of X which are our main tool for characterizing ultrasmoothness. In
Section 3 we prove that a dendroid X is ultrasmooth at p iff for every tree
T ⊆ X such that p ∈ T, there exists a ≤p-retraction r : X → T . Moreover,
we provide an example that shows that this result is no longer true if the
tree T is replaced by the more general case of a dendrite. Finally, in this
section, we prove a theorem which relates ultrasmoothness to the sets L(P )
and we characterize ultrasmooth dendroids by means of a list of forbidden
subdendroids. From now on X will denote a dendroid.

1. Smoothness and ultrasmoothness. In this section, it will be
proved that U(X) ⊆ S(X) and therefore the class of ultrasmooth dendroids
is a subclass of the class of smooth dendroids. We give examples that show
that the two inclusions are proper and we prove some results which will be
used to characterize ultrasmoothness.

Theorem 1. A point p ∈ X is in S(X) iff for every x ∈ X, there exists
a ≤p-retraction r : X → px.

Proof. Assume that p ∈ S(X) and let µ be a Whitney map for C(X).
Given x ∈ X, the mapping ψp,x : X → px as defined in the introduction is
a ≤p-retraction.

To prove the converse, let {an}n∈N ⊆ X converge to a ∈ X. Since
{p, a} ⊆ lim inf pan and by [7, Proposition 3.7, p. 35], lim inf pan is a den-
droid, we obtain

(1) pa ⊆ lim inf pan

Suppose that there is y ∈ (lim sup pan)−pa and consider a ≤p-retraction
r : X → py. Then y = lim ynj for some ynj ∈ panj , so that ynj ≤p anj

for each nj ∈ N and therefore r(ynj ) ≤p r(anj ) ≤p y. Since these points
are all contained in the arc py, the order ≤p is preserved under the limit
operation, so that y = r(y) = lim r(ynj ) ≤p lim r(anj ) = r(a) ≤p y. This
proves that r(a) = y and thus a /∈ py. Assume that pa ∩ py = pb. Since
r(a) = y and r(b) = b, there is a point z ∈ ba such that r(z) ∈ (by). Since
z ∈ ya ⊆ lim inf ynan, we have z = lim zn, where zn ∈ ynan, and it follows
that r(ynj ) ≤p r(znj ) ≤p y, which implies, by considering the limit, that
r(z) = y, a contradiction which proves that

(2) lim sup pan ⊆ pa.

It follows from (1) and (2) that lim pan exists and equals pa, so that
p ∈ S(X).
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Corollary 1. For every dendroid X, we have U(X) ⊆ S(X), and so
X ultrasmooth ⇒ X smooth.

The following examples, which are given in [5], exhibit dendroids P and
2P such that S(P) 6= U(P) 6= ∅, S(2P) 6= ∅ and U(2P) = ∅.

Example 1. Given a, b ∈ R2 we denote by ab the rectilinear segment
from a to b. A comb P is defined as follows: P = va ∪ vq1 ∪

⋃
n∈N qnan

where v = (0, 0), a = (0, 1), qn = (1/n, 0), an = (1/n, 1). It is clear that
v ∈ S(P) and we will prove that v /∈ U(P). Suppose that r : P → va ∪ va1

is a retraction. Since lim an = a, r(an) ∈ va for n large enough. We fix N
such that r(aN ) ∈ va. On the other hand, since qN ∈ va1, r(qN ) = qN .
Now we notice that qN ≤v aN but r(qN ) and r(aN ) are not ≤v-comparable.
Therefore U(P) = P− va and S(P) = U(P) ∪ {v}.

Example 2. Let 2P = P∪P∗ where P∗ is the reflection of P in the y-axis.
With the notation of Example 1, it is clear that S(2P) = 2P− (va]. We now
prove that U(2P) is empty. Let u = (u, v) ∈ 2P, u > 0. Choose x = (x1, x2)
and y = (0, y2) ∈ 2P so that x1 < 0 and y2 6= 0. With the same arguments
used in Example 1, it is not difficult to see that there is no ≤u-retraction
r : 2P → ux ∪ uy. The case u < 0 is analogous. If u = 0 and v 6= 0, then
(u, v) /∈ S(2P) implies (u, v) /∈ U(2P). Finally, the proof that v /∈ U(2P) is
identical to the proof in Example 1.

We recall that a comb is any dendroid homeomorphic to the P of Ex-
ample 1. Let X be a dendroid and P the set of combs contained in X. Let
P ∈ P and h : P → P be a fixed homeomorphism. We say that h((0, 0)) =
v(P ) is the vertex of P . Moreover, we set b(P ) = h(P ∩ {(0, y) : y ∈ R})
and P ∗ = P − b(P ). Let L(P ) denote the arc-component of X − {v(P )}
containing P ∗.

Lemma 1. Let p, q, x, y ∈ X (p and q are not necessarily different).
Assume that p ∈ S(X), p /∈ Aq(x), Aq(x) 6= Aq(y) and Cl(Aq(x)) ∩ Aq(y)
6= ∅. Then there exists P ∈ P with q = v(P ). Moreover , Aq(x) = L(P ) and
y /∈ L(P ).

Proof. Let {an}n∈N ⊆ Aq(x) with lim an = a ∈ Aq(y). We may assume
that an 6= am if n 6= m. For each n > 1, let qn ∈ Aq(x) satisfy qa1∩qan = qqn.
Suppose that there exists a subsequence {qnj}j∈N such that lim qnj = q. We
may assume qnj 6= qnk

if j 6= k. Let P = Cl(
⋃

j∈N qanj ). Since p /∈ Aq(x)
and p ∈ S(X), we see that P = qa ∪

⋃
j∈N qanj is a comb with vertex q.

Moreover, x ∈ L(P ), so that Aq(x) = L(P ) and y /∈ L(P ) as desired.
Therefore, we only need to prove that {qnj}j∈N exists. Otherwise there exists
q0 ∈ (qa1] such that q0 ∈ qan for every n ∈ N. Since p /∈ Aq(x), we obtain
pan = pq ∪ qq0 ∪ q0an, which leads to lim pan = pq0 ∪ pa. This contradicts
the smoothness at p and proves the lemma.
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Proposition 1. Let p ∈ U(X). Then Ap(x) is closed in X − {p} for
each x ∈ X.

Proof. By Corollary 1, p ∈ S(X). Assume that some Ap(x) is not closed
in X −{p}. By Lemma 1, p is the vertex of some comb contained in X, and
hence, by Example 1, p /∈ U(X).

We summarize the previous results in the following theorem.

Theorem 2. Let X be a dendroid and p ∈ U(X). Then p ∈ S(X) and
Ap(x) is closed in X − {p} for each x ∈ X.

The converse of Theorem 2 is not necessarily true, as the following ex-
ample shows:

Example 3. Let P be the comb in Example 1, p = (−1, 0) and Y =
P∪ pv, so that p is an endpoint of Y , and therefore the only arc-component
of Y − {p} is closed in Y − {p}. Moreover, p ∈ S(Y ). Let a and a1 be as
in Example 1. Suppose that there exists a ≤p-retraction r : Y → pa ∪ pa1.
Notice that r−1(pv) = pv. Therefore the mapping γ = r|P : P → va ∪ va1

is a ≤v-retraction, contrary to what was proved in Example 1.

Proposition 2. Let n ∈ N and {x1, . . . , xn, p} ⊆ X, where p ∈ S(X).
Assume that X − {p} =

⋃n
i=1Hi where each Hi is open in X − {p}, Ap(xi)

⊆ Hi and Hi ∩Hj = ∅ for i 6= j. Then there exists a ≤p-retraction r : X →⋃n
i=1 pxi.

Proof. Define r : X →
⋃n

i=1 pxi as r(w) = ψp,xi(w) if w ∈ Hi ∪ {p},
where ψp,xi is defined in the introduction. Then r is a ≤p-retraction.

The following lemma is a consequence of [6, Lemma 3.2, p. 37] and [2,
Theorem 9, p. 309].

Lemma 2. Let X be a smooth dendroid and M a subcontinuum of X
such that M ∩ S(X) 6= ∅. Then the quotient space Y = X/M is a dendroid
which is smooth at M ∈ Y .

Proposition 3. Let n ∈ N and {x1, . . . , xn, p} ⊆ X, where p ∈ S(X).
Assume that Cl(Ap(xi)) ∩ Ap(xj) = ∅ for i 6= j. Then there exists a ≤p-
retraction r : X →

⋃n
i=1 pxi.

Proof. Since every metric space X is completely normal, there are open
sets Ui such that Ap(xi) ⊆ Ui and Ui ∩ Uj = ∅ for i 6= j.

Let M = {w ∈ X : w ∈ pu for some u /∈
⋃n

i=1 Ui}. Since p ∈ M,
M 6= ∅. Clearly, M is a connected subset of X and by the smoothness
at p, M is closed. By Lemma 2, Y = X/M is a dendroid which is smooth
at M . Let ϕ : X → Y be the quotient map and define Hi = ϕ(Ui) − {M},
i ∈ {1, . . . , n}. Then Hi is an open subset of Y − {M}, AM (xi) ⊆ Hi,
Y −{M} =

⋃n
i=1Hi and Hi∩Hj = ∅ for i 6= j. By Proposition 2, there exists
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a ≤M -retraction % : Y →
⋃n

i=1Mϕ(xi). Let h :
⋃n

i=1Mϕ(xi) →
⋃n

i=1 pxi

be the natural homeomorphism. Since ϕ is a monotone mapping, a ≤p b
implies ϕ(a) ≤M ϕ(b), and the mapping r = h ◦ % ◦ ϕ : X →

⋃n
i=1 pxi is the

desired ≤p-retraction.

Corollary 2. Let n ∈ N and {x1, . . . , xn, p} ⊆ X, where p ∈ S(X) and
Ap(xi) 6= Ap(xj) if i 6= j. Assume that each Ap(xi) is closed in X − {p}.
Then there exists a ≤p-retraction r : X →

⋃n
i=1 pxi.

Since a smooth fan X is smooth at the vertex p and the arc-components
of X − {p} are closed in X − {p}, we obtain the following corollary:

Corollary 3. Every smooth fan is ultrasmooth.

Proposition 4. Let n ∈ N and {x1, . . . , xn, p, q} ⊆ X. Assume that

(i) p ∈ S(X),
(ii) pxi ∩ pxj = pq for all i, j ∈ {1, . . . , n}, i 6= j,
(iii) Cl(Aq(xi)) ∩ Aq(xj) = ∅ for i 6= j.

Then there exists a ≤p-retraction r : X →
⋃n

i=1 pxi.

Proof. Let E = pq and Y = X/E. By Lemma 2, Y is a dendroid smooth
at E. Let ϕ : X → Y be the quotient map. Since ϕ|Aq(xi) : Aq(xi) →
AE(ϕ(xi)) is a homeomorphism, it follows from (iii) that Cl(AE(ϕ(xi))) ∩
AE(ϕ(xj)) = ∅ for i 6= j. Therefore, by Proposition 3, there exists a ≤E-
retraction % : Y →

⋃n
i=1Eϕ(xi). Let f = ϕ−1 :

⋃n
i=1Eϕ(xi)→

⋃n
i=1 qxi be

the natural homeomorphism and define r : X →
⋃n

i=1 pxi as follows:

r(a)=
{
ψp,q(a) if either µ(pa) ≤ µ(pq) or %(ϕ(a)) = E,
min{ψp,xi(a), f(%(ϕ(a)))} if µ(pa) ≥ µ(pq) and %(ϕ(a)) ∈ Eϕ(xi),

where the minimum is taken in the arc pxi with respect to the order ≤p.
Since r is well defined and the functions defining r are continuous, so is

r, and it is not difficult to verify that it is a ≤p-retraction.

Corollary 4. Let p ∈ S(X). Assume that for every q ∈ R(X), every
arc-component of X − {q} which does not contain p is closed in X − {q}.
Then p ∈ U(X).

We recall some terminology: A point p of a dendroid X is called terminal
if it is an endpoint of any arc containing it.

A tree is a dendroid which has only finitely many terminal points (and
therefore a finite number of ramification points).

Let T be a tree contained in X, denote by R(T ) the set of ramifica-
tion points of T , and let p ∈ T ∩ S(X). For the purposes of the following
proposition, we set

R∗(T ) =
{
R(T ) if p is a terminal point of T ,
R(T ) ∪ {p} otherwise.
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Proposition 5. Let T be a tree contained in X and p ∈ T ∩ S(X).
Assume that for each q ∈ R∗(T ) and x ∈ T, Aq(x) is closed in X − {q}.
Then there exists a ≤p-retraction r : X → T .

Proof. We proceed by induction on |R∗(T )| = k. Proposition 4 proves the
case k = 1. Suppose the assertion is true for every tree T with |R∗(T )| < k
and let T be a tree for which |R∗(T )| = k. We consider two cases:

(i) p ∈ R∗(T ). Since X − {p} is completely normal there exist open
sets Ui, i = 1, 2, contained in X − {p} such that for each x ∈ T, Ap(x)
is contained either in U1 or in U2. Moreover, we may choose Ui so that
|Ui ∩ R∗(T )| < k (i = 1, 2). Let M = {w ∈ X : w ∈ pu for some u /∈
U1 ∪U2}. Let Y = X/M and let ϕ : X → Y be the quotient map. Then, by
Lemma 2, Y is a dendroid and M = ϕ(p) ∈ S(Y ). On the other hand, the
sets Yi = ϕ(Ui)∪{M} are closed in Y. Moreover, since Y = Y1∪Y2 and Y1∩Y2

consists of exactly one point, the sets Y1 and Y2 are arcwise connected, so
they are subdendroids of Y . Since ϕ(T ) is homeomorphic to T , for i = 1, 2,
Ti = (ϕ(Ui)∪ {M})∩ϕ(T ) is a tree contained in Yi, and |Ti| < k. It follows
from the hypothesis that for each x ∈ T, AM (ϕ(x))∪{M} = ϕ(Ap(x)∪{p})
is closed in Y. Since AM (ϕ(x)) = (AM (ϕ(x))∪{M})∩(Y −{M}), AM (ϕ(x))
is closed in Y − {M}. It follows, by induction hypothesis, that there exists
a ≤M -retraction %i : ϕ(Ui) ∪ {M} → Ti, i = 1, 2. Let h : ϕ(T ) → T be
the natural homeomorphism (h = ϕ−1|ϕ(T )) and define r : X → T as
r(a) = h(%i(ϕ(a))) if ϕ(a) ∈ ϕ(Ui) ∪ {M}, i = 1, 2. Then r is the desired
retraction.

(ii) p /∈ R∗(T ). Then p is a terminal point of T , so there is a point
q ∈ R(T ) for which pq ∩ R(T ) = {q}. Let E = pq and Y = X/E. Then, by
Lemma 2, Y is a dendroid smooth at E. Let ϕ : X → Y be the quotient
map. Then ϕ(T ) is a tree and E ∈ R(T ), so that we may apply (i): Let
% : Y → ϕ(T ) be a ≤E-retraction and let {x1, . . . , xn} be the set of terminal
points of T which are different from p.

We define r : X → T as follows:

r(a)

=
{
ψp,q(a) if either µ(pa) ≤ µ(pq) or %(ϕ(a))=E,
min{ψp,xi(a), (ϕ−1(%(ϕ)))(a)} if µ(pa) ≥ µ(pq) and %(ϕ(a)) ∈ Exi.

As before, the minimum is taken in the arc pxi with respect to the order ≤p.
Since r is well defined and the functions defining r are continuous, so

is r, and it is not difficult to verify that it is a ≤p-retraction.

2. The sets L(P ). Let P, Q ∈ C(X), P ∩Q = ∅. We say that uv is the
minimal arc from P to Q if P ∩ uv = {u} and Q ∩ uv = {v}. If p ∈ P, we
say that {p} is the minimal arc from {p} to P.
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In what follows, we assume that P 6= ∅. We will find a relationship be-
tween the sets L(P ) and U(X).

Proposition 6. U(X) =
⋂
{L(P ) : P ∈ P} ∩ S(X).

Proof. The inclusion U(X) ⊆ S(X) has been established in Corollary 1.
Assume that p /∈ L(P ) for some P ∈ P, and let pq be the minimal arc from
p to P . Then q ∈ b(P ). If q 6= v(P ), then p /∈ S(X), so that p /∈ U(X). If
q = v(P ), we proceed as in Example 3 to prove that p /∈ U(X).

Now, let p ∈
⋂
{L(P ) : P ∈ P} ∩ S(X) and q ∈ X. Then, by Lemma 1,

any arc-component of X−{q} which does not contain p is closed in X−{q},
since otherwise there would exist P ∈ P such that p /∈ L(P ). It follows from
Corollary 4 that p ∈ U(X).

With the aid of the following definitions we will establish necessary and
sufficient conditions for U(X) to be nonempty.

Let P,Q ∈ P and assume:

(i) P ∩Q = ∅. If uv is the minimal arc from P to Q, we write:

P ∗∗ Q if u ∈ P ∗ and v ∈ Q∗,
P ∗b Q if u ∈ P ∗ and v /∈ Q∗,
P bb Q if u /∈ P ∗ and v /∈ Q∗.

(ii) P ∩Q 6= ∅. We write

P ∗∗ Q if P ∗ ∩Q∗ 6= ∅,
P ∗b Q if P ∗ ∩Q∗ = ∅, b(P ) ∩ b(Q) = ∅ and P ∗ ∩ b(Q) 6= ∅,
P bb Q if P ∗ ∩Q∗ = ∅ and b(P ) ∩ b(Q) 6= ∅.

Then
P ∗∗ Q ⇒ L(P ) ∩ L(Q) ⊇ P ∗ ∪Q∗,
P ∗b Q ⇒ L(P ) ∩ L(Q) ⊇ Q∗,
P bb Q ⇒ L(P ) ∩ L(Q) = ∅.

It then follows that P bb Q⇔ L(P ) ∩ L(Q) = ∅.

Lemma 3. Let P0 ∈ P and define P0 = {P ∈ P : P0 ∗b P} ∪ {P0}.
Assume that X does not contain P, Q ∈ P such that P bb Q. Then

⋂
{L(P ) :

P ∈ P0} 6= ∅.

Proof. Let P ∈ P0 and set a0 = v(P0). Define aP ∈ b(P ) so that a0aP is
the minimal arc from {a0} to P . Then for any P,Q ∈ P0, either aP ∈ a0aQ

or aQ ∈ a0aP , since otherwise we would obtain P bb Q. It follows that for
any P,Q ∈ P0, either a0aP ⊆ a0aQ or a0aQ ⊆ a0aP . On the other hand,
if P,Q ∈ P0 − {P0} and a0aP ⊆ a0aQ, then P ∗b Q, so that the minimal
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arc from P to Q is bPaq where bP ∈ P ∗. Let L =
⋃
{a0aP : P ∈ P0}. We

consider two cases:

Case 1: L is a closed subset of X. Then L = a0aQ for some Q ∈ P0 and⋂
{L(P ) : P ∈ P0} ⊇ Q∗ 6= ∅.

Case 2: L is not closed. Then L is homeomorphic to the interval [0, 1)
and it follows from [1, Lemma 3, p. 18] that Cl(L) = a0a for some a ∈ X.
Let P ∈ P0. Then the minimal arc from a to P is abP , so that a ∈ L(P ) and
therefore a ∈

⋂
{L(P ) : P ∈ P0}.

Theorem 3. In a dendroid X ,
⋂
{L(P ) : P ∈ P} = ∅ iff there exist

P0, Q0 ∈ P such that L(P0) ∩ L(Q0) = ∅.

Proof. Clearly L(P0) ∩ L(Q0) = ∅ implies
⋂
{L(P ) : P ∈ P} = ∅.

We now assume that for any P,Q ∈ P, L(P )∩L(Q) 6= ∅, so that X does
not contain two elements P,Q ∈ P such that P bb Q. Fix P0 ∈ P. Then,
by Lemma 4, ∅ 6=

⋂
{L(P ) : P ∈ P0}. Let a ∈

⋂
{L(P ) : P ∈ P0}. Then

a ∈ L(P0). If P ∈ P and either P ∗∗ P0 or P ∗b P0 then a ∈ L(P ), therefore
a ∈

⋂
{L(P ) : P ∈ P}.

The following lemma is easy to prove.

Lemma 4. For every arc tu ⊆ X, tu ∩ S(X) is a closed subset of X.

Theorem 4. Assume that
⋂
{L(P ) : P ∈P} 6= ∅. Then

⋂
{L(P ) : P ∈P}

∩ S(X) 6= ∅ iff L(P ) ∩ S(X) 6= ∅ for each P ∈ P.

Proof. The implication “⇒” is clear.
To prove the converse, using the notation of Lemma 3, we consider three

cases:

1) P0 = {P0}. Let p ∈ S(X)∩L(P0). Then clearly p ∈ L(P ) for every P
such that P ∗∗ P0 or P ∗b P0, so that

⋂
{L(P ) : P ∈ P} ∩ S(X) 6= ∅.

2) P0 6= {P0} and the set L in the proof of Lemma 3 (Case 1) is closed.
Then

⋂
{L(P ) : P ∈ P0} = L(Q) where Q is as in that proof. If p ∈

L(Q) ∩ S(X), then p ∈
⋂
{L(P ) : P ∈ P} ∩ S(X).

3) P0 6= {P0} and L is not closed (Case 2 in the proof of Lemma 3). We
will prove that a ∈ S(X). Let w ∈ L(P0)∩S(X) and assume that a /∈ S(X).
Then, by Lemma 4, wa ∩ S(X) = wb, b 6= a. We notice that there must be
a Q ∈ P0 such that aQ ∈ ba, and it is not difficult to see that for such Q,
L(Q) ∩ S(X) = ∅, a contradiction which proves the theorem.

3. Characterization of ultrasmooth dendroids. We start this sec-
tion with an affirmative answer to a natural question. Let p ∈ U(X). Is it
posssible to replace “two points” by “a finite number of points” in the defi-
nition of ultrasmoothness? In this section we also characterize U(X) using
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the sets L(P ) and we give a list of dendroids such that a smooth dendroid
is ultrasmooth iff it does not contain any dendroid in the list.

Theorem 5. A point p ∈ X is an element of U(X) iff for every tree T
such that p ∈ T ⊆ X, there exists a ≤p-retraction r : X → T.

Proof. Let p ∈ U(X). We consider two cases: (i) P 6= ∅, so that Propo-
sition 6 implies p ∈

⋂
{L(P ) : P ∈ P}∩S(X), and (ii) P = ∅. In both cases,

by Lemma 1, the hypotheses of Proposition 5 are satisfied. Thus there exists
a ≤p-retraction r : X → T. The converse is immediate.

The following example shows a dendroid X, p ∈ U(X) and a dendrite Y
such that p ∈ Y ⊆ X and there is no ≤p-retraction of X onto Y .

Example 4. Let X be the harmonic fan X =
⋃

n∈N(0, 0)(1, 1/n) ∪
(0, 0)(1, 0) where (a, b)(c, d) denotes the rectilinear segment from (a, b) to
(c, d).

Clearly p = (0, 0) ∈ U(X). Let Y =
⋃

n∈N(0, 0)(1/n, 1/n2) ∪ (0, 0)(1, 0).
Then Y is a dendrite. Suppose that there exists a ≤p-retraction r : X → Y .
Then since r preserves ≤p, r(1, 1/n) = (1, 1/n2), and since r is a retraction,
r(1, 0) = (1, 0), contradicting the continuity of r at (1, 0).

As a corollary, we obtain the theorem below.

Theorem 6. The following are equivalent for a dendroid X:

(a) X is ultrasmooth.
(b)

⋂
{L(P ) : P ∈ P} ∩ S(X) 6= ∅.

(c) For all P,Q ∈ P, L(P ) ∩ L(Q) 6= ∅ and L(P ) ∩ S(X) 6= ∅.
Theorem 7. If P = ∅, then S(X) = U(X).

Proof. We only need to prove that S(X) ⊆ U(X). Let p ∈ S(X) and
q ∈ X. Suppose that A is a nonclosed arc-component of X − {q} such that
p /∈ A. Then, by Lemma 1, there exists P ∈ P with vertex q. But this is
impossible since P = ∅. Hence, by Corollary 4, p ∈ U(X).

The converse of this theorem is not true, as shown by the following
example.

Example 5. Let P be the comb of Example 1 and q1, q2 ∈ P. Let F be
a harmonic fan with vertex at a point V and let B be the limit bar of F .
Define a homeomorphism f : B → q1q2 where f(V ) = q1. Then X = P∪f F ,
the space obtained by attaching F to P by means of f , is a dendroid such
that S(X) = U(X) and P 6= ∅.

The proof of the following lemma is left to the reader.

Lemma 5. Let X be a dendroid and A,B ∈ X. Then A ∈ S(X) and
B /∈ S(X) iff there exists either a harmonic fan or a comb such that the
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limit arc vw of either one Y is contained in AB and A ≤ v < w ≤ B where
v denotes the vertex of Y .

The dendroids Pω which we now construct by induction will be used in
Theorem 8.

Let M = {0, 1, 2, 3} and M∗ = {ω = (ω1, ω2, ω3, . . .) ∈ MN : ωi 6=
0 for infinitely many indices i}. With the notation of Example 1 and in
Figure 2, we consider qi+1qi ⊆ P, i ∈ N. Given ω = (ω1, ω2, ω3, . . .) ∈ M∗,
we fix a homeomorphism fωi : qi+1qi → AωiBωi where fωi(qi) = Bωi . We
define Pω1 = P ∪fω1

Xω1 . If Pωn has been constructed, then we set Pωn+1 =
Pωn∪fωn+1

Xωn . Finally, Pω =
⋃

n∈N Pωn (see Figure 2). Therefore P ⊆ Pω1 ⊆
Pω2 ⊆ · · · ⊆ Pω, Pω is a dendroid, and it is easy to see, using Lemma 5, that
L(Pω) ∩ S(X) = ∅.

Fig. 1. Construction of the dendroids Pω

Theorem 8. A smooth dendroid X is not ultrasmooth iff it contains
one of the dendroids in Figure 1 below or one of the dendroids Pω described
above.

Proof. We notice that dendroids 1 to 6 of Figure 1 contain combs P and
Q such that L(P )∩L(Q) = ∅; dendroids 7 and 8, as well as the dendroids Pω,
contain a comb P such that L(P ) ∩ S(X) = ∅. Therefore by Theorem 7
none of them is ultrasmooth. Since the property of being ultrasmooth is
hereditary, if X contains any of those dendroids, then X is not ultrasmooth.

Assume now that X is not ultrasmooth. Then, by Theorem 7, there are
two possibilities:
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Fig. 2. These dendroids are not allowed

(I) X contains two combs P and Q such that L(P ) ∩ L(Q) = ∅, or
(II) X contains a comb P such that L(P ) ∩ S(X) = ∅.
In case (I), we consider the following subcases:

1) P ∩ Q = ∅. Let ab be the minimal arc from P to Q and recall that
L(P ) ∩ L(Q) = ∅ iff P bb Q and that v(P ) is the vertex of P. Three
cases are possible:

• a = v(P ) and b = v(Q). Then P ∪Q ∪ ab contains dendroid 1.
• a = v(P ) and b 6= v(Q). Then P ∪Q ∪ ab contains dendroid 2.
• a 6= v(P ) and b 6= v(Q). Then P ∪Q∪ab contains dendroid 3 which

is not smooth. Therefore X is not smooth (see [3]).

2) P ∩Q 6= ∅. Then we have four possibilities:

• v(P ) = v(Q) and P ∩Q = {v(P )}. Then P ∪Q contains dendroid 4.
• v(P ) = v(Q) and {v(P )}  P ∩Q. Then P ∪Q contains dendroid 5

or 6.
• v(P ) 6= v(Q) and v(P ) ∈ P ∩Q. Then P ∪Q contains dendroid 2.
• v(P ) 6= v(Q), v(P ) /∈ P ∩Q and v(Q) /∈ P ∩Q. Then P ∪Q contains

dendroid 3. As noticed before, X is not smooth.

To deal with case (II), let λ(X) = {x ∈ X : X is locally connected at x}
and consider the following cases:
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1) v(P ) ∈ S(X). Then, since S(X) is the component of λ(X) containing
v(P ) [2, Theorem 2, p. 299], we may have two cases:

• There exists u ∈ v(P )q1 (see Example 1 for notation) such that
v(P )u∩λ(X) = ∅. In this case, by Lemma 5, X contains dendroid 6
or 7.
• There exists a sequence {xn}n∈N ⊆ v(P )q1 such that xn /∈ λ(X) for

each n ∈ N. Using again Lemma 5, we see that X ⊇ Pω for some
ω ∈M∗.

2) v(P ) /∈ S(X). Then X contains dendroid 8 or 2.
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