VOL. 113

2008

NO. 2

REFLEXIVE SUBSPACES OF SOME ORLICZ SPACES

ΒY

EMMANUELLE LAVERGNE (Lens)

Abstract. We show that when the conjugate of an Orlicz function ϕ satisfies the growth condition Δ^0 , then the reflexive subspaces of L^{ϕ} are closed in the L^1 -norm. For that purpose, we use (and give a new proof of) a result of J. Alexopoulos saying that weakly compact subsets of such L^{ϕ} have equi-absolutely continuous norm.

Introduction. Bretagnolle and Dacunha-Castelle showed in [3] that an Orlicz space L^{ϕ} embeds into L^1 (meaning that there exists an isomorphism of this space onto a subspace of L^1) if and only if ϕ is 2-concave (recall that a function f is r-concave if $f(x^{1/r})$ is concave). If ϕ is an Orlicz function whose conjugate ϕ^* satisfies the condition Δ^0 (see below for the definition), then ϕ is equivalent, for every r > 1, to an r-concave Orlicz function (Proposition 4) and hence L^{ϕ} embeds into L^1 . In this paper, we show that for such Orlicz functions ϕ , the reflexive subspaces of L^{ϕ} are actually closed in the L^1 -norm (and so the L^{ϕ} -topology is the same as the L^1 -topology). In order to prove this, we shall use a result of J. Alexopoulos (Theorem 1), saying that, when $\phi^* \in \Delta^0$, the weakly compact subsets of L^{ϕ} have equi-absolutely continuous norm, and we shall begin by giving a new proof of this result, using a recent characterization, due to P. Lefèvre, D. Li, H. Queffélec and L. Rodríguez-Piazza (see [6, Theorem 4]), of the weakly compact operators defined on a subspace of the Morse–Transue space M^{ψ} , when $\psi \in \Delta^0$.

1. Notation. We shall consider Orlicz spaces defined on a probability space (Ω, \mathbb{P}) (see [7], [13]). By an *Orlicz function*, we shall understand a nondecreasing convex function $\phi : [0, +\infty] \to [0, +\infty]$ such that $\phi(0) = 0$ and $\phi(\infty) = \infty$. To avoid pathologies, we shall assume that ϕ has the following additional properties: ϕ is continuous at 0, strictly convex, and moreover,

$$\lim_{x \to +\infty} \frac{\phi(x)}{x} = +\infty.$$

This is essentially to exclude the case of $\phi(x) = ax$, and so of L^1 .

2000 Mathematics Subject Classification: 46E30, 46B20.

 $Key\ words\ and\ phrases:$ Orlicz spaces, reflexive subspaces, equi-absolutely continuous norm.

Let ϕ be an Orlicz function. If ϕ' is the left derivative of ϕ , then, for every x > 0,

$$\phi(x) = \int_{0}^{x} \phi'(t) \, dt$$

The Orlicz space $L^{\phi}(\Omega)$ is the space of all equivalence classes of measurable functions $f: \Omega \to \mathbb{C}$ for which there is a constant C > 0 such that

$$\int_{\Omega} \phi\left(\frac{|f(t)|}{C}\right) d\mathbb{P}(t) < +\infty.$$

Then for all $f \in L^{\phi}(\Omega)$, we define the *Luxemburg norm* of f as the infimum of all possible constants C such that the above integral is ≤ 1 . With this norm, $L^{\phi}(\Omega)$ is a Banach space.

The Morse-Transue space $M^{\phi}(\Omega)$ is the subspace of $L^{\phi}(\Omega)$ generated by $L^{\infty}(\Omega)$, or equivalently, the subspace of all functions f for which the above integral is finite for all C > 0.

To every Orlicz function ϕ is associated the *conjugate Orlicz function* ϕ^* defined by

$$\phi^*: [0, +\infty) \to [0, +\infty), \quad x \mapsto \sup\{xy - \phi(y); y \ge 0\}.$$

(Observe that $\phi^*(x) < \infty$ since $\phi(x)/x$ tends to ∞ .)

The function ϕ^* is itself strictly convex. It should also be noticed that for all Orlicz functions ϕ , we have

$$(\phi^*)^* = \phi.$$

Moreover, if ϕ_1 and ϕ_2 are two Orlicz functions such that $\phi_1(x) \leq \phi_2(x)$ whenever $x \geq x_0$, then there exists y_0 such that $\phi_2^*(y) \leq \phi_1^*(y)$ for all $y \geq y_0$.

We shall also use some growth conditions for Orlicz functions. We shall say that ϕ satisfies the Δ_2 condition (and write $\phi \in \Delta_2$) if there exists a constant K > 1 such that for all x large enough,

$$\phi(2x) \le K\phi(x).$$

We shall say (see [6] and [7]) that ψ satisfies the Δ^0 condition (and write $\psi \in \Delta^0$) if there exists a constant $\beta > 1$ such that

$$\lim_{x \to +\infty} \frac{\psi(\beta x)}{\psi(x)} = +\infty.$$

It should be noticed that if ϕ is an Orlicz function such that $\psi = \phi^* \in \Delta^0$, then $\phi \in \Delta_2$. Indeed, $\phi \in \Delta_2$ if and only if there exists $\beta > 1$ such that for all x large enough (see [13, II.2.3]),

$$\frac{\psi(\beta x)}{\psi(x)} \ge 2\beta.$$

Let ϕ be an Orlicz function and let ψ be its complementary Orlicz function. We shall assume that $\phi \in \Delta_2$. Then, isomorphically,

$$L^{\phi} = (M^{\psi})^*, \quad L^{\psi} = (L^{\phi})^*,$$

and so

$$(M^{\psi})^{**} = L^{\psi}.$$

Moreover, $M^{\psi} = L^{\psi}$ if and only if $\psi \in \Delta_2$.

2. Equi-absolutely continuous norms of relatively weakly compact subsets of an Orlicz space. We first recall that if ϕ is an Orlicz function, then we say that $\mathcal{K} \subseteq L^{\phi}$ has equi-absolutely continuous norm if for all $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\mathbb{P}(E) < \delta \implies \sup\{\|\chi_E f\|_{L^{\phi}}; f \in \mathcal{K}\} < \varepsilon.$$

Every such \mathcal{K} is relatively weakly compact, and, under the assumption $\phi^* \in \Delta^0$, J. Alexopoulos ([2]) proved the converse:

THEOREM 1. Let ϕ be an Orlicz function such that $\psi = \phi^* \in \Delta^0$. Then every relatively weakly compact subset of L^{ϕ} has equi-absolutely continuous norm.

We are going to give a new proof of this result, using a criterion of weak compactness proved by P. Lefèvre, D. Li, H. Queffélec and L. Rodríguez-Piazza (see [6, Theorem 4]).

THEOREM 2. Let ψ be an Orlicz function such that $\psi \in \Delta^0$, X be a subspace of M^{ψ} , and Y be a Banach space. Then for every bounded linear operator $T: X \to Y$, T is weakly compact if and only if for some (and then all) $p \in [1, +\infty[$,

$$\forall \varepsilon > 0, \ \exists C_{\varepsilon} > 0, \ \forall f \in X, \qquad \|T(f)\| \le C_{\varepsilon} \|f\|_{p} + \varepsilon \|f\|_{\psi}.$$

Proof of Theorem 1. We first prove that if X is a reflexive subspace of L^{ϕ} , then the closed unit ball B_X of X has equi-absolutely continuous norm. B_X is also weakly compact, because X is reflexive. Moreover, as $L^{\phi} = (M^{\psi})^*$, B_X is weak^{*} compact, and so X is weak^{*} closed in L^{ϕ} (by Banach– Dieudonné's theorem). So there exists $Z \subseteq M^{\psi}$ such that $X = Z^{\perp}$. Then X is isometrically isomorphic to $(M^{\psi}/Z)^*$. Let us denote by

$$\Pi: M^{\psi} \to M^{\psi}/Z$$

the canonical projection. As $(M^{\psi}/Z)^*$ is isometrically isomorphic to X, M^{ψ}/Z is reflexive, and so Π is weakly compact. We can now use Theorem 2.

Let $\alpha > 0, g \in B_X$ and A be a measurable subset of Ω . We have

$$\begin{split} \|g\chi_A\|_{\phi} &\leq 2 \sup\{|\langle g\chi_A, f\rangle|; \ f \in M^{\psi}, \ \|f\|_{\psi} \leq 1\} \\ &= 2 \sup\{|\langle g, f\chi_A\rangle|; \ f \in M^{\psi}, \ \|f\|_{\psi} \leq 1\} \\ &= 2 \sup\{|\langle g, \Pi(f\chi_A)\rangle|; \ f \in M^{\psi}, \ \|f\|_{\psi} \leq 1\} \\ &\leq 2 \|g\|_{\phi} \sup\{\|\Pi(f\chi_A)\|; \ f \in M^{\psi}, \ \|f\|_{\psi} \leq 1\} \\ &\leq 2 \sup\{C_{\alpha}\|f\chi_A\|_{1} + \alpha\|f\chi_A\|_{\psi}; \ f \in M^{\psi}, \ \|f\|_{\psi} \leq 1\} \end{split}$$

Using Hölder's inequality for Orlicz spaces, we get

$$||f\chi_A||_1 = \int_{\Omega} |f|\chi_A \, d\mathbb{P} \le ||f||_{\psi} ||\chi_A||_{\phi} \le ||\chi_A||_{\phi}.$$

On the other hand, for every positive constant C,

$$\int_{\Omega} \phi\left(\frac{\chi_A}{C}\right) d\mathbb{P} = \int_{A} \phi\left(\frac{1}{C}\right) d\mathbb{P} = m(A)\phi\left(\frac{1}{C}\right),$$

and so

$$\|\chi_A\|_{\phi} = \frac{1}{\phi^{-1}(1/m(A))}$$

We also have

$$\|f\chi_A\|_{\psi} \le \|f\|_{\psi} \le 1.$$

Let $\varepsilon > 0$. Let us choose α such that $4\alpha < \varepsilon$, and $\delta > 0$ such that

$$m(A) < \delta \Rightarrow \frac{1}{\phi^{-1}(1/m(A))} \le \frac{\alpha}{C_{\alpha}}$$

Thus we get

 $\|g\chi_A\|_{\phi} \le 4\alpha < \varepsilon$

whenever $m(A) < \delta$; so B_X has equi-absolutely continuous norm.

We now assume that \mathcal{K} is a relatively weakly compact subset of L^{ϕ} . We use the following theorem (see [4, Theorem 11.17]):

THEOREM 3 (Davis, Figiel, Johnson, Pełczyński). Let K be a weakly compact subset of a Banach space X. Then there exist a reflexive space Y and a bounded linear one-to-one operator U from Y into X such that $K \subseteq U(B_Y)$.

Let $\alpha > 0$, $g \in B_X$ and A be a measurable subset of Ω . By the theorem above, there exists $h \in B_Y$ such that g = U(h). Denote by $U^* : L^{\psi} \to Y^*$ the dual operator, and T its restriction to M^{ψ} . As Y^* is reflexive, we can use Theorem 2 to obtain

$$\begin{split} |g\chi_A\|_{\phi} &\leq 2 \sup\{|\langle g\chi_A, f\rangle|; \ f \in M^{\psi}, \ \|f\|_{\psi} \leq 1\} \\ &= 2 \sup\{|\langle g, f\chi_A\rangle|; \ f \in M^{\psi}, \ \|f\|_{\psi} \leq 1\} \\ &= 2 \sup\{|\langle U(h), f\chi_A\rangle|; \ f \in M^{\psi}, \ \|f\|_{\psi} \leq 1\} \\ &= 2 \sup\{|\langle h, U^*(f\chi_A)\rangle|; \ f \in M^{\psi}, \ \|f\|_{\psi} \leq 1\} \\ &\leq 2 \sup\{\|T(f\chi_A)\|; \ f \in M^{\psi}, \ \|f\|_{\psi} \leq 1\} \\ &\leq 2 \sup\{C_{\alpha}\|f\chi_A\|_1 + \alpha\|f\chi_A\|_{\psi}; \ f \in M^{\psi}, \ \|f\|_{\psi} \leq 1\} \\ &\leq 4\alpha \end{split}$$

as above. \blacksquare

3. Reflexive subspaces of L^{ϕ} when $\phi^* \in \Delta^0$. We begin by the following consequence of the embedding theorem of Bretagnolle and Dacunha-Castelle quoted in the introduction.

PROPOSITION 4. Let ϕ be an Orlicz function $\phi^* \in \Delta^0$. Then L^{ϕ} embeds into L^1 .

Proof. Let us observe that condition Δ^0 for $\psi = \phi^*$ implies that the lower Matuszewska–Orlicz index at infinity of ψ is $\alpha_{\psi}^{\infty} = +\infty$ (see [11]). In fact, if $\beta > 1$ and $x_0 > 1$ are such that

$$\psi(\beta x) \ge C\psi(x) \quad \text{for every } x \ge x_0,$$

we can deduce that setting $q = \ln(C)/\ln(\beta)$ we have

 $\psi(tx) \ge C^{-1}t^q \psi(x)$ for every $x \ge x_0$ and $t \ge 1$,

and consequently $\alpha_{\psi}^{\infty} \geq q$. Since C is arbitrary, $\alpha_{\psi}^{\infty} = +\infty$.

By the duality of Matuszewska–Orlicz indices, the upper Matuszewska– Orlicz index of ϕ is $\beta_{\phi}^{\infty} = 1$. As a consequence, ϕ is equivalent to an *r*-concave Orlicz function, for every r > 1. But a result of Bretagnolle and Dacunha-Castelle tells us that any 2-concave Orlicz function space is isomorphic to a subspace of L^1 .

Our main result is:

THEOREM 5. Let ϕ be an Orlicz function with $\phi^* \in \Delta^0$. Then the reflexive subspaces of L^{ϕ} are closed in the L^1 -norm. In particular, the L^1 - and L^{ϕ} -norms are equivalent on reflexive subspaces of L^{ϕ} .

Together with Rosenthal's theorem (see [14, p. 268] or [8, p. 446]) this yields

COROLLARY 6. Let ϕ be an Orlicz function such that $\phi^* \in \Delta^0$ and let X be a reflexive subspace of L^{ϕ} . Then there exist some p > 1 and a probability density u > 0 such that the map

$$j: X \to j(X) \subseteq L^p(u.\mathbb{P}), \quad f \mapsto f/u,$$

is an isomorphism.

Proof of Theorem 5. First notice that $L^{\phi}(\Omega, \mathbb{P}) \subseteq L^{1}(\Omega, \mathbb{P})$. Indeed, ϕ is convex and ϕ' is non-decreasing, so

$$\phi(x) = \int_{0}^{x} \phi'(t) \, dt \ge \int_{1}^{x} \phi'(t) \, dt \ge (x-1)\phi'(1) \ge x\phi'(1).$$

Hence for every constant C > 0 and all $f \in L^{\phi}(\Omega, \mathbb{P})$, we have

$$\phi\left(\frac{|f(x)|}{C}\right) \ge \frac{\phi'(1)}{C} |f(x)| > 0,$$

and so

$$\int_{\Omega} \phi\left(\frac{|f|}{C}\right) d\mathbb{P} \ge \frac{\phi'(1)}{C} \, \|f\|_{L^1} \cdot$$

Choosing $C = ||f||_{\phi}$, we get

$$||f||_{L^{\phi}} \ge \phi'(1) ||f||_{L^{1}}.$$

In particular, convergence in L^{ϕ} -norm implies convergence in L^{1} -norm.

Let now X be a reflexive subspace of $L^{\phi}(\Omega)$ and $(f_n)_{n\in\mathbb{N}}$ be a sequence in X which converges in measure to a function f. We are going to prove that $(f_n)_{n\in\mathbb{N}}$ converges to f for the Luxemburg norm of $L^{\phi}(\Omega)$. The unit closed ball B_X of X is weakly compact because X is reflexive. Hence B_X has an equi-absolutely continuous norm: for every $\varepsilon > 0$, there is some $\delta > 0$ such that

 $\mathbb{P}(A) \leq \delta \implies \|g\chi_A\|_{\phi} \leq \varepsilon, \, \forall g \in B_X.$

By homogeneity,

$$\mathbb{P}(A) \le \delta \implies \|g\chi_A\|_{\phi} \le \varepsilon \|g\|_{\phi}, \, \forall g \in X.$$

Fix $\varepsilon > 0$ and let $\delta > 0$ be associated to ε as above. Since $(f_n)_{n \in \mathbb{N}}$ converges to f in measure, there is an $n_0 \ge 0$ such that $\mathbb{P}(|f_n - f| \ge \varepsilon) \le \delta$ for every $n \ge n_0$. Then for $n \ge n_0$,

$$\|f_n - f\|_{\phi} \le \|(f_n - f)\chi_{\{|f_n - f| \ge \varepsilon\}}\|_{\phi} + \|(f_n - f)\chi_{\{|f_n - f| \le \varepsilon\}}\|_{\phi}$$

$$\le \varepsilon \|f_n - f\|_{\phi} + \varepsilon/\phi^{-1}(1) \cdot$$

Indeed, if $g_n = (f_n - f)\chi_{\{|f_n - f| \le \varepsilon\}}$, then for every C > 0,

$$\int_{\Omega} \phi(|g_n|/C) \, d\mathbb{P} \le \phi(\varepsilon/C),$$

and so if $C \geq \varepsilon/\phi^{-1}(1)$, then

$$\int_{\Omega} \phi(|g_n|/C) \, d\mathbb{P} \le 1,$$

and hence $||g_n||_{\phi} \leq \varepsilon/\phi^{-1}(1)$.

For $0 < \varepsilon < 1$, we have obtained, for $n \ge n_0$,

$$||f_n - f||_{\phi} \le \frac{1}{\phi^{-1}(1)} \frac{\varepsilon}{1 - \varepsilon}.$$

So

$$\lim_{n \to +\infty} \|f_n - f\|_{\phi} = 0.$$

Hence, on X, the convergences in $L^{\phi}\text{-norm},$ in $L^1\text{-norm}$ and in measure are equivalent. \blacksquare

REMARK. Without the additional assumption on the Orlicz function ϕ , Proposition 3 is no longer true, and $\phi \in \Delta_2$ does not suffice; indeed, one has the following example.

EXAMPLE. There exists an Orlicz function ϕ such that $L^{\phi}(0,1)$ is reflexive (so $\phi \in \Delta_2$ and $\psi = \phi^* \in \Delta_2$), but not isomorphic to any subspace of any L^p space, $1 \leq p < \infty$.

This space was contructed by F. Hernández and V. Peirats in [5]. It is based on the construction by J. Lindenstrauss and L. Tzafriri ([9, Theorem 3]) of a reflexive Orlicz sequence space which contains no complemented subspace isomorphic to any ℓ_p , $1 \leq p \leq \infty$ ([10, Theorem 3]). More precisely, for every $2 \leq \alpha \leq \beta < +\infty$, they constructed an Orlicz function on [0, 1] such that ℓ_{ϕ} contains a subspace isomorphic to ℓ_q for any q such that $\alpha \leq q \leq \beta$ ([11, Theorem 1], or [12, Theorem 4.a.9]), but no complemented subspace isomorphic to any ℓ_p . It is proved in [5] that the minimal (see [9, Definition 2]) Orlicz function ϕ constructed by Lindenstrauss and Tzafriri on [0, 1] has an extension ϕ to a minimal Orlicz function defined on $[0, +\infty[$, and that the Orlicz function space $L^{\phi}(0, 1)$ contains a (complemented) subspace isomorphic to ℓ_{ϕ} , but no complemented subspace isomorphic to ℓ_p for $p \neq 2$.

This Orlicz space $L^{\phi}(0,1)$ is reflexive (because $1 < \alpha_{\phi}^{\infty} = \alpha$ and $\beta_{\phi}^{\infty} = \beta < +\infty$: see [5]) and cannot be isomorphic to a subspace of any L^p space. Indeed, if $\beta > \alpha$, then ℓ_{ϕ} , and hence $L^{\phi}(0,1)$, contains a subspace isomorphic to ℓ_q for any $q \in [\alpha, \beta]$, and in particular with q > 2; hence $L^{\phi}(0,1)$ cannot be isomorphic to a subspace of L^p for $1 \le p \le 2$, since these latter spaces have cotype 2, whereas the cotype of L^p is p. On the other hand, $L^{\phi}(0,1)$ cannot be isomorphic to a subspace of any L^p space for p > 2 since, by the Kadec–Pełczyński theorem (see [1, Theorem 6.4.8]), every non-Hilbertian reflexive subspace (which is the case of $L^{\phi}(0,1)$) of such an L^p space must contain a complemented subspace isomorphic to $\ell_p,$ and $L^\phi(0,1)$ contains no such subspace. \blacksquare

Acknowledgements. I thank my advisor D. Li for his advice about this work.

REFERENCES

- F. Albiac and N. J. Kalton, *Topics in Banach Space Theory*, Grad. Texts in Math. 233, Springer, 2006.
- J. Alexopoulos, De la Vallée Poussin's theorem and weakly compact sets in Orlicz spaces, Quaestiones Math. 17 (1994), 231–248.
- [3] J. Bretagnolle et D. Dacunha-Castelle, Application de l'étude de certaines formes linéaires aléatoires au plongement d'espaces de Banach dans des espaces L^p, Ann. Sci. École Norm. Sup. 4 (1969), 437–480.
- [4] M. Fabian, P. Habala, P. Hájek, V. M. Santalucía, J. Pelant, and V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, Springer, 2001.
- F. L. Hernández and V. Peirats, Orlicz function spaces without complemented copies of l^p, Israel J. Math. 56 (1976), 355–360.
- [6] P. Lefèvre, D. Li, H. Queffélec, and L. Rodríguez-Piazza, A criterion of weak compactness for operators on subspaces of Orlicz spaces, J. Function Spaces Appl., to appear.
- [7] —, —, —, —, Opérateurs de composition sur les espaces de Hardy-Orlicz, C. R. Math. Acad. Sci. Paris 344 (2007), 5–10.
- [8] D. Li et H. Queffélec, Introduction à l'étude des espaces de Banach, Soc. Math. France, 2004.
- [9] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971), 379–390.
- [10] —, —, On Orlicz sequence spaces II, ibid. 11 (1972), 355–379.
- [11] —, —, On Orlicz sequence spaces III, ibid. 14 (1973), 368–389.
- [12] —, —, Classical Banach Spaces I. Sequence Spaces, Ergeb. Math. Grenzgeb. 92, Springer, 1977.
- [13] M. Rao and Z. Ren, Theory of Orlicz Spaces, Dekker, 1991.
- [14] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. Press, 1991.

Laboratoire de Mathématiques Lens (LML) Équipe d'Accueil EA 2462 Fédération CNRS Nord-Pas-de-Calais FR 2956 Faculté des Sciences Jean Perrin Université d'Artois rue Jean Souvraz S.P. 18 62307 Lens Cedex, France

E-mail: lavergne@euler.univ-artois.fr

Received 21 August 2007; revised 6 March 2008

(4955)