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RELATIVE BUCHSBAUMNESS OF BIGRADED MODULES

BY

KEIVAN BORNA (Tehran), AHAD RAHIMI (Kermanshah and Tehran) and
SYROUS RASOULYAR (Kermanshah)

Abstract. We study finitely generated bigraded Buchsbaum modules over a standard
bigraded polynomial ring with respect to one of the irrelevant bigraded ideals. The regu-
larity and the Hilbert function of graded components of local cohomology at the finiteness
dimension level are considered.

Introduction. Let S = K[x1, . . . , xm, y1, . . . , yn] be the standard bi-
graded polynomial ring over a field K with bigraded irrelevant ideals P
generated by all elements of degree (1, 0), and Q generated by all elements
of degree (0, 1). In other words, P = (x1, . . . , xm) and Q = (y1, . . . , yn).
Let M be a finitely generated bigraded S-module. Let K.(Q,M) be the
Koszul complex of M with respect to Q and H i(Q,M) its ith cohomology
module. Note that the local cohomology modules H i

Q(M) and H i(Q,M) are
naturally bigraded.

We say that M is a relative Buchsbaum module with respect to Q if
the canonical maps λiM : H i(Q,M) → H i

Q(M) are surjective for all i <
cd(Q,M) where cd(Q,M) denotes the cohomological dimension of M with
respect to Q. Note that in general the map λiM is neither injective nor
surjective. We observe that ordinary graded Buchsbaum modules are special
cases of our definition. In fact, if we assume P = 0, then m = 0, and Q = m is
the unique graded maximal ideal of S and cd(Q,M) = cd(m,M) = dimM .

In the preliminary section, we observe that there is an equivalent def-
inition of relative Buchsbaum modules in terms of Ext functors. In fact,
M is relative Buchsbaum with respect to Q if and only if the canonical
maps ϕiM : ExtiS(S/Q,M) → H i

Q(M) are surjective for all i < cd(Q,M).
This in particular implies the known result that M is Buchsbaum if and
only if the canonical maps ϕiM : ExtiK[y](K,M)→ H i

m(M) are surjective for

all i < dimM (see [7, Corollary 2.16]). By using this new characterization
of relative Buchsbaum modules, we have the following result: First, we set
K[x] = K[x1, . . . , xm], K[y] = K[y1, . . . , yn] and M = M1 ⊗K M2 where
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M1 is a non-zero finitely generated graded K[x]-module and M2 a non-zero
finitely generated graded K[y]-module. Then M is relative Buchsbaum with
respect to Q if and only if M2 is Buchsbaum. Secondly, we show that if
M is relative Buchsbaum with respect to Q with grade(Q,M) = 0, then
M/H0

Q(M) is relative Buchsbaum with respect to Q too.
In Section 2, we give a characterization of all relative Buchsbaum mod-

ules with two non-vanishing local cohomology modules. In fact, we prove the
following: let M be a finitely generated bigraded S-module, r = grade(Q,M)
< cd(Q,M) = d and H i

Q(M) = 0 for all i 6= r, d; then M is relative
Buchsbaum with respect to Q if and only if QHr

Q(M) = 0. This generalizes
the following known result: if M is finitely generated graded K[y]-module,
r = depthM < dimM = d and H i

m(M) = 0 for all i 6= r, d, then M is
Buchsbaum if and only if mHr

m(M) = 0 (see [7, Corollary 3.6]). By us-
ing these results we give several examples to show that one cannot expect
any connections between Buchsbaumness and relative Buchsbaumness with
respect to the irrelevant bigraded ideals P and Q.

In the final section, we consider the jth components of H i
Q(M) as a

finitely generated graded K[x]-module with grading (H i
Q(M)j)k =

H i
Q(M)(k,j). We improve [6, Proposition 2.3] as follows: let M be a finitely

generated bigraded S-module such that fQ(M) = cd(Q,M) where fQ(M)
is the finiteness dimension of M with respect to Q; then for j � 0, we have
−c ≤ regHq

Q(M)j ≤ c for some c. In particular, if M is relative Buchs-

baum with respect to Q, then the regularity of H i
Q(M)j is bounded for all

i and j � 0. Finally, we give an explicit formula for the Hilbert function
of Hq

Q(M)j where q = fQ(M) = cd(Q,M). As a consequence, the Krull

dimension of Hq
Q(M)j is constant for j � 0. This is a well known result

originally proved in [1]. Here we obtain it by a different method.

1. Preliminaries. Let S = K[x1, . . . , xm, y1, . . . , yn] be the standard
bigraded polynomial ring over a field K with bigraded irrelevant ideals P =
(x1, . . . , xm) and Q = (y1, . . . , yn). Let M be a finitely generated bigraded S-
module, and letK.(Q,M) be the Koszul complex andH i(Q,M) its ith coho-
mology module. We denote by cd(Q,M) the cohomological dimension of M

with respect to Q, i.e., the least integer i such that Hj
Q(M) = 0 for all j > i.

Definition 1.1. Let M be a finitely generated bigraded S-module. We
say that M is relative Buchsbaum with respect to Q if the canonical maps

λiM : H i(Q,M)→ H i
Q(M)

are surjective for all i < cd(Q,M).

By an ordinary Buchsbaum module we mean a relative Buchsbaum mod-
ule with respect to the maximal ideal m = P +Q. We observe that ordinary
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Buchsbaum modules are special cases of our definition. In fact, if we assume
P = 0, then m = 0, and Q = m is the unique graded maximal ideal of S
with deg yi = 1 for i = 1, . . . ,m and cd(Q,M) = cd(m,M) = dimM .

Note that, for i = 0 the map is indeed injective, simply because the
isomorphism

H0(Q,M) ∼= Hn(Q,M) ∼= Hom(S/Q,M) ∼= (0 :M Q)

gives an embedding in H0
Q(M) = {x ∈M : xQk = 0 for some k}. But in gen-

eral the map λiM is neither injective nor surjective. In the following we give
a characterization of relative Buchsbaum modules by replacing cohomology
modules with Ext functors.

Proposition 1.2. Let M be a finitely generated bigraded S-module.
Then M is relative Buchsbaum with respect to Q if and only if the canonical
maps

ϕiM : ExtiS(S/Q,M)→ H i
Q(M)

are surjective for all i < cd(Q,M).

Proof. As y1, . . . , yn is an S-sequence, the assertion follows from the
well-known fact that ExtiS(S/Q,M) = H i(Q,M) for all i.

As an immediate consequence we obtain the following known result (see
[7, Corollary 2.16]).

Corollary 1.3. Let M be a finitely generated graded K[y]-module.
Then M is Buchsbaum if and only if the canonical maps

ϕiM : ExtiK[y](K,M)→ H i
m(M)

are surjective for all i < dimM .

Proof. Assume P = 0. Thenm = 0,Q = m is the unique graded maximal
ideal S with deg yi = 1 for i = 1, . . . , n and cd(m,M) = dimM . Thus the
assertion follows from Proposition 1.2.

As another consequence we have

Corollary 1.4. Let M be a finitely generated bigraded S-module which
is relative Buchsbuam with respect to Q. Then H i

Q(M) is finitely generated
for all i < cd(Q,M).

Proof. Since M is a finitely generated S-module, ExtiS(S/Q,M) is a
finitely generated S-module for all i. Hence the result follows from Proposi-
tion 1.2.

Remark 1.5. Let M be a finitely generated bigraded S-module. We
may define the finiteness dimension of M with respect to Q by

fQ(M) = inf{i ∈ N : H i
Q(M) is not finitely generated}.

Thus, ifM is relative Buchsbaum with respect toQ, then fQ(M)=cd(Q,M).
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Using Proposition 1.2 we have the following results:

Proposition 1.6. Let M1 be a non-zero finitely generated graded K[x]-
module and M2 a non-zero finitely generated graded K[y]-module. Set M =
M1 ⊗K M2. Then:

(a) M is relative Buchsbaum with respect to Q if and only if M2 is
Buchsbaum;

(b) M is relative Buchsbaum with respect to P if and only if M1 is
Buchsbaum.

Proof. In order to prove (a), in view of [6, Lemma 1.4], for all i we have
the isomorphisms of S-modules

ExtiS(S/Q,M) ∼= ExtiS(K[x]⊗K K[y]/Q,M1 ⊗K M2)

∼=
⊕
s+t=i

ExtsK[x](K[x],M1)⊗K ExttK[y](K[y]/Q,M2)

∼= M1 ⊗K ExtiK[y](K[y]/Q,M2).

Here we note that Q is not an ideal of K[y], but the extension of an ideal
of K[y], say q. On the other hand, by a similar argument as above we have

(1) H i
Q(M) ∼= M1 ⊗K H i

Q(M2) for all i

(see [6, Proposition 1.5]). Thus it immediately follows that cd(Q,M) =
dimM2 as we may consider M1 and H i

Q(M2) as K-vector spaces. Now let
M2 be a Buchsbaum module. Then M is relative Buchsbaum with respect
to Q using Proposition 1.2, Corollary 1.3 and the above observation. The
converse is of course the case, because we may consider M1 as a free K-
module. Part (b) is proved in the same way.

Proposition 1.7. Let M be a finitely generated bigraded S-module. Sup-
pose that grade(Q,M) = 0 and cd(Q,M) > 0. If M is relative Buchsbaum
with respect to Q, then so is M/H0

Q(M).

Proof. Set N = H0
Q(M). We have to show that the maps ExtiS(Q,M/N)

→ H i
Q(M/N) are surjective for all i < cd(Q,M/N). The claim is clear

for i = 0, because M/N is Q-torsion free, i.e., H0
Q(M/N) = 0 and the

map Ext0S(S/Q,M/N) → H0
Q(M/N) is always injective. Now let 0 < i <

cd(Q,M/N). The exact sequence 0 → N → M → M/N → 0 yields the
commutative diagram of S-modules

// ExtiS(S/Q,N)

ϕi
N
��

// ExtiS(S/Q,M)

ϕi
M
��

// ExtiS(S/Q,M/N)

ϕi
M/N

��

//

// H i
Q(N) // H i

Q(M) // H i
Q(M/N) //
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Since H i
Q(N) = 0 for i > 0, it follows that H i

Q(M) ∼= H i
Q(M/N) for i > 0

and hence cd(Q,M) = cd(Q,M/N). Our assumption says that the maps ϕiM
are surjective for all i < cd(Q,M). In view of the above diagram, it therefore
follows that the maps ϕiM/N are surjective for all i < cd(Q,M/N).

2. Relative Buchsbuam modules with two non-vanishing local
cohomology modules. Let M be a finitely generated bigraded S-module
and q ∈ Z. In [6] we call M relative Cohen–Macaulay with respect to Q if
H i
Q(M) = 0 for i 6= q, i.e., M has only one non-vanishing local cohomology

module with respect to Q. Clearly, if M is a relative Cohen–Macaulay mod-
ule with respect to Q, then M is relative Buchsbaum with respect to Q. In
the following we give a characterization for Buchsbaumness modules with
two non-vanishing local cohomology modules. First, we need the following
lemma.

Lemma 2.1. Let M be a finitely generated bigraded S-module which is
relative Buchsbaum with respect to Q. Then QH i

Q(M) = 0 for all i <
cd(Q,M).

Proof. As the maps λiM are surjective for all i < cd(Q,M), we have
H i
Q(M) ∼= H i(Q,M)/U for some S-submodule U of H i(Q,M) and for all

i < cd(Q,M). Using the fact that QH i(Q,M) = 0 for all i, we therefore
have

QH i
Q(M) ∼= Q(H i(Q,M)/U) ∼= (QH i(Q,M) + U)/U = 0

for all i < cd(Q,M), as required.

Proposition 2.2. Let M be a finitely generated bigraded S-module. Sup-
pose r = grade(Q,M) < cd(Q,M) = d and H i

Q(M) = 0 for all i 6= r, d.
Then the following statements are equivalent:

(a) M is relative Buchsbaum with respect to Q;
(b) QHr

Q(M) = 0.

Proof. (a)⇒(b): This follows from Lemma 2.1.

(b)⇒(a): Consider the Grothendieck spectral sequence

ExtjS(S/Q,H i
Q(M))⇒ Extj+iS (S/Q,M).

As H i
Q(M) = 0 for all i 6= r and i < cd(Q,M), the spectral sequence de-

generates and one obtains for all j the isomorphisms ExtjS(S/Q,Hr
Q(M)) ∼=

Extj+rS (S/Q,M). Our assumption implies

ExtrS(S/Q,M) = HomS(S/Q,Hr
Q(M)) = (0 :Hr

Q(M) Q) = Hr
Q(M).

Hence, the result follows from Proposition 1.2.
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This in particular generalizes the following known result (see [7, Corol-
lary 3.6]):

Corollary 2.3. Let M be a finitely generated graded K[y]-module. Sup-
pose r = depthM < dimM = d and H i

m(M) = 0 for all i 6= r, d where
m = (y1, . . . , yn) is the unique graded maximal ideal of K[y]. Then the fol-
lowing statements are equivalent:

(a) M is Buchsbaum;
(b) mHr

m(M) = 0.

Proof. In Theorem 2.2, we put m = 0. Then Q = m is the unique
graded maximal ideal S with deg yi = 1 for i = 1, . . . , n. Thus the assertion
follows.

In the following we give several examples to show that one cannot expect
any relation between Buchsbaumness and relative Buchsbaumness with re-
spect to the irrelevant ideals P and Q. We recall the following facts from [6]:

cd(P,M) = dimM/QM and cd(Q,M) = dimM/PM.

First we give a Buchsbaum K-algebra which is relative Buchsbaum with
respect to both P and Q.

Example 2.4. LetR = K[x, y]/(xy, y2). One has depthR=0, dimR=1,
grade(P,R) = 0 where P = (x) and cd(P,R) = dimR/(y)R = 1. We claim
that R is relative Buchsbaum with respect to P . By Proposition 2.2, we
only need to show that PH0

P (R) = 0. Let g ∈ H0
P (R) with g 6= 0. Thus g =

f+(xy, y2) where f ∈ K[x, y] with f 6∈ (xy, y2) and gP t = 0 for some t. It fol-
lows that gxt = 0 and hence xtf ∈ (xy, y2). Therefore f contains y as a factor
and hence xg = 0, as desired. The K-algebra R is relative Buchsbaum with
respect to Q too, simply because grade(Q,R) = cd(Q,R) = dimR/(x)R
= 0. Now we claim that R is a Buchsbaum K-algebra. By Corollary 2.3 we
only need to show that mH0

m(R) = 0. This is equivalent to saying that xg = 0
and yg = 0 for all non-zero g ∈ H0

m(R). As before, let g = f +(xy, y2) where
f ∈ K[x, y] with f 6∈ (xy, y2) and gmt = 0 for some t. Thus xtf ∈ (xy, y2).
Hence f contains y as a factor. Therefore, xg = 0 and yg = 0, as desired.

Next we give a Buchsbaum K-algebra which is relative Buchsbaum with
respect to P but not relative Buchsbaum with respect to Q.

Example 2.5. We consider the hypersurface ring R = K[x, y]/(xy2). It
is a Cohen–Macaulay K[x, y]-module of dimension 1. Thus it is a Buchs-
baum K-algebra. Note that grade(P,R) = 0 and cd(P,R) = 1. By the
same argument as in Example 2.4, one finds that R is relative Buchsbaum
with respect to P . We claim that R is not relative Buchsbaum with respect
to Q = (y). Note that grade(Q,R) = 0 and cd(Q,R) = 1. Consider the
non-zero element x + (xy2) in R. Since Q2(x + (xy2)) = 0, it follows that
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x+ (xy2) ∈ H0
Q(R). Observe that y(x+ (xy2)) 6= 0 and hence QH0

Q(R) 6= 0.
Thus R is not relative Buchsbaum with respect to Q by Proposition 2.2.

In the following example the ring R is not Buchsbaum but relative Buchs-
baum with respect to both P and Q.

Example 2.6. Let R = K[x, y]/(x3, xy). One has depthR = 0 and
dimR = 1. The K-algebra R is not Buchsbaum. In fact, consider the non-
zero element x+ (x3, xy) in R. Since m3(x+ (x3, xy)) = 0 where m = (x, y),
it follows that x + (x3, xy) ∈ H0

m(R). We observe that x(x + (x3, xy)) 6= 0
and hence mH0

m(R) 6= 0. Thus, R is not Buchsbaum by Corollary 2.3.
Since grade(P,R) = cd(P,R) = dimR/(y)R = 0, it follows that R is rel-
ative Buchsbaum with respect to P . We claim that R is relative Buchs-
baum with respect to Q too. In fact, cd(Q,R) = dimR/(x)R = 1 and as
Ass(R) = {(x), (x, y)} we have grade(Q,R) = 0. By the same argument as
in Example 2.4, we deduce that QH0

Q(R) = 0. Thus R is relative Buchsbaum
with respect to Q by Proposition 2.2.

Finally we give an example in which R is relative Buchsbaum with re-
spect to Q with grade(Q,R) > 0.

Example 2.7. Let I be a homogeneous ideal of K[x] and set Q1 =
(y1, . . . , yn/2) and Q2 = (yn/2+1, . . . , yn) where n is even. Set R = R0⊗K R1

where R0 = K[x]/I and R1 = K[y]/Q1 ∩ Q2. One has dimR1 = n/2 and
depthR1 = 1. We consider the exact sequence

0→ K[y]/Q1 ∩Q2 → K[y]/Q1 ⊕K[y]/Q2 → K[y]/(Q1 +Q2)→ 0.

Applying the functor H i
Q(−) to this exact sequence yields

H i
Q(R1) = 0 for all i 6= 1, n/2 and H1

Q(R1) ∼= K[y]/Q.

By (1), we have

H i
Q(R) ∼= R0 ⊗K H i

Q(R1) = 0 for all i 6= 1, n/2,

and

H1
Q(R) ∼= R0 ⊗K H1

Q(R1) ∼= S/(I,Q).

Since QH1
Q(R) = 0, it follows that R is relative Buchsbaum with respect to

Q by Proposition 2.2. Note that if m = 0, then R is a Buchsbaum K-algebra.

3. On the graded components of local cohomology at the finite-
ness dimension level. Let M be a finitely generated bigraded S-module.
Then the local cohomology modules H i

Q(M) are naturally bigraded S-mod-

ules and each graded component H i
Q(M)j is a finitely generated graded

K[x]-module with grading (H i
Q(M)j)k = H i

Q(M)(k,j). Let F be a finitely

generated bigraded free S-module, i.e., F =
⊕t

i=1 S(−ai,−bi). By using
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formula (1) in [4] we obtain

(2) Hn
Q(F )j =

t⊕
i=1

⊕
|a|=−n−j+bi

K[x](−ai)za.

Thus, we may consider Hn
Q(F )j as a finitely generated graded free K[x]-

module.

Let N be a finitely generated graded K[x]-module with graded minimal
free resolution

F : 0→ Fk → Fk−1 → · · · → F1 → F0 → 0.

The Castelnuovo–Mumford regularity of N is the invariant

reg(N) = max{bi(F)− i : i ≥ 0}
where bi(F) denotes the maximal degree of the generators of Fi. As a gen-
eralization of [6, Proposition 2.3] we have the following

Proposition 3.1. Let M be a finitely generated bigraded S-module such
that fQ(M) = cd(Q,M) = q. Then for j � 0 we have

−c ≤ regHq
Q(M)j ≤ c for some c.

Proof. Let

F : 0→ Fm+n
ϕm+n−−−−→ Fm+n−1 → · · · → F1

ϕ1−→ F0
ϕ0−→ 0,

where Fi =
⊕ti

k=0 S(−aik,−bik) is a bigraded free resolution of M . Applying
the functor Hn

Q(−)j to this resolution yields a graded complex Hn
Q(F)j of

free K[x]-modules

(3) 0→ Hn
Q(Fm+n)j

ψm+n−−−−→ Hn
Q(Fm+n−1)j → · · ·

ψ1−→ Hn
Q(F0)j

ψ0−→ 0,

where the maps ψi : Hn
Q(Fi)j → Hn

Q(Fi−1)j are induced by ϕi for all i. By
[4, Theorem 1.1] we have the graded isomorphisms of K[x]-modules

(4) Hn−i
Q (M)j ∼= Hi(H

n
Q(F)j).

By [4, Proposition 2.6], and by (2) and (4), we deduce that regHq
Q(M)j =

regHn−q(H
n
Q(F)j) is bounded below. Thus we only need to prove that

reg Hq
Q(M)j is bounded above. Note that Hi(H

n
Q(F)j) = Kerψi/Imψi+1 = 0

for i < n− q and i > n. Thus we get the following resolutions of free K[x]-
modules:

0→ Kerψn−q → Hn
Q(Fn−q)j → · · ·

ψ1−→ Hn
Q(F0)j

ψ0−→ 0,(5)

0→ Hn
Q(Fm+n)j → · · ·

ψn+2−−−→ Hn
Q(Fn+1)j

ψn+1−−−→ Imψn+1 → 0.(6)

From (5) and (6) by a similar argument to the proof of [6, Proposition 2.3]
we infer that reg Kerψn−q and reg Imψn+1 are bounded above. Next from
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(3) and (4) for i = n− q, . . . , n we have the exact sequences

0→ Imψi+1 → Kerψi → Hn−i
Q (M)j → 0,(7)

0→ Kerψi → Hn
Q(Fi)j → Imψi → 0.(8)

We first assume that i = n. From the exact sequence 0 → Imψn+1 →
Kerψn → H0

Q(M)j → 0, using the fact that H i
Q(M)j = 0 for j � 0 and

i < q and that reg Imψn+1 is bounded above, we deduce that reg Kerψn
is bounded above. Hence the exact sequence 0 → Kerψn → Hn

Q(Fn)j →
Imψn → 0 shows that reg Imψn is bounded above. Assume i = n − 1.
Using the first part, (7) and (8), we find that reg Kerψn−1 and reg Imψn−1
are bounded above. Continuing in this way, we conclude from the last two
exact sequences 0 → Kerψn−q+1 → Hn

Q(Fn−q+1)j → Imψn−q+1 → 0 and

0 → Imψn−q+1 → Kerψn−q → Hq
Q(M)j → 0 that regHq

Q(M)j is bounded
above, as required.

Corollary 3.2. Let M be a finitely generated bigraded S-module. If M
is relative Buchsbaum with respect to Q, then for all i and j � 0 we have

−c ≤ regH i
Q(M)j ≤ c for some c.

Proof. The assertion for i = cd(Q,M) follows from Proposition 3.1. For
i < cd(Q,M) we note that H i

Q(M)j = 0 for j � 0.

Corollary 3.3. Let M be a finitely generated bigraded S-module. If M
is relative Cohen–Macaulay with respect to Q with cd(Q,M) = q, then for
j � 0 we have

−c ≤ regHq
Q(M)j ≤ c for some c.

Let M be a graded K[x]-module. We denote by H(M, j) = dimKMj for
all j ∈ Z the Hilbert function of M . The formal Laurent series

HM (t) =
∑
j∈Z

H(M, j)tj

is called the Hilbert series of M . In the following we give an explicit formula
for the Hilbert function of the graded components of local cohomology at
the finiteness dimension level.

Proposition 3.4. Let M be a finitely generated bigraded S-module such
that fQ(M) = cd(Q,M) = q. Let

F : 0→ Fm+n
ϕm+n−−−−→ Fm+n−1 → · · · → F1

ϕ1−→ F0
ϕ0−→ 0

be a bigraded free resolution of M where Fl =
⊕tl

k=0 S(−alk,−blk) for l =
0, . . . ,m+ n. Then for all i and j � 0 we have

H(Hq
Q(M)j , i) =

m+n∑
l=0

(−1)n−q+l
tl∑
k=0

(
m+ i− alk − 1

m− 1

)(
−j + blk − 1

n− 1

)
.
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Proof. By using formula (1) in [4], we have

Hn
Q(Fl)(i,j) =

tl⊕
k=0

Hn
Q(S)(i−alk,j−blk) =

tl⊕
k=0

⊕
|a|=i−alk|b|=−n−j+blk

Kxayb.

Thus

(9) dimK H
n
Q(Fl)(i,j) =

tl∑
k=0

(
m+ i− alk − 1

m− 1

)(
−j + blk − 1

n− 1

)
.

From (5) and (6), it follows that

(10) H(Kerψn−q, i) =

n−q∑
l=0

(−1)n−q+lH(Hn
Q(Fl)j , i)

and

(11) H(Imψn+1, i) =
m+n∑
l=n+1

(−1)n+l+1H(Hn
Q(Fl)j , i).

Since Ht
Q(M)j = 0 for j � 0 and t < q, it follows from (7) that

(12) H(Imψl+1, i) = H(Kerψl, i) for l = n− q + 1, . . . , n

and

(13) H(Hq
Q(M)j , i) = H(Kerψn−q, i)−H(Imψn−q+1, i).

Applying (8) for i = n− q + 1, . . . , n and using (12) and (11), we have

H(Imψn−q+1, i)

=
n∑

l=n−q+1

(−1)n−q+l+1H(Hn
Q(Fl)j , i) + (−1)2n−q+2H(Imψn+1, i)

=

m+n∑
l=n−q+1

(−1)n−q+l+1H(Hn
Q(Fl)j , i).

Now the assertion follows from (9), (10) and (13).

Proposition 3.5. Let M be a finitely generated bigraded S-module. If
fQ(M) = cd(Q,M) = q, then the Krull dimension of Hq

Q(M)j is constant
for j � 0. In particular, this result holds for relative Cohen–Macaulay mod-
ules and also for relative Buchsbaum modules with respect to Q.

Proof. We have

HHq
Q(M)j (s) =

∞∑
i=0

dimK H
q
Q(M)(i,j)s

i

=

∞∑
i=0

m+n∑
l=0

(−1)n−q+l
tl∑
k=0

(
m+ i− alk − 1

m− 1

)(
−j + blk − 1

n− 1

)
si
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=
m+n∑
l=0

(−1)n−q+l
tl∑
k=0

(
−j + blk − 1

n− 1

) ∞∑
i=0

(
m+ i− alk − 1

m− 1

)
si

=
1

(1− s)m
{m+n∑

l=0

(−1)n−q+l
tl∑
k=0

(
−j + blk − 1

n− 1

)
salk
}

=
Qj(s)

(1− s)m
,

where Qj(s) =
∑m

i=0Br(j)s
r and Br(j) is a polynomial with coefficients in

Q of degree at most n− 1. Here we used the fact that

1

(1− s)t
=
∞∑
i=0

(
t+ i− 1

t− 1

)
si for all t > 0.

We proceed in the same way as at the end of the proof of [5, Theorem 1.9]

to find an integer c such that Qj(s) = (1− s)cQ̃j(s) for j � 0 where Q̃j(s)

is a polynomial in s with Q̃j(1) 6= 0. Therefore by [2, Corollary 4.1.8] we
have dimHq

Q(M)j = m− c for j � 0, as desired.

Let R be a graded ring and N a graded R-module. The R-module N is
called tame if there exists an integer j0 such that either

Nj = 0 for all j ≤ j0, or Nj 6= 0 for all j ≤ j0.

Corollary 3.6. Let M be a finitely generated bigraded S-module such
that fQ(M) = cd(Q,M). Then H i

Q(M) is tame for all i.

Proof. The assertion for i = cd(Q,M) follows from Proposition 3.5. For
i < cd(Q,M) we note that H i

Q(M)j = 0 for j � 0.

Remark 3.7. Let M be a finitely generated bigraded S-module and
let f = fQ(M) be the finiteness dimension of M relative to Q. By [1,

Proposition 5.6] we know that AssK[x](H
f
Q(M)j) is asymptotically stable for

j � 0, i.e., there exists an integer j0 such that AssHf
Q(M)j = AssHf

Q(M)j0
for all j ≤ j0. This, in particular implies Proposition 3.5 and of course
Corollary 3.6. We remark that here we obtained this result by a different
method. Finally, we recall that if R is a Noetherian local ring and I an ideal
of R, then the R-module N is said to be I-cofinite if SuppN ⊆ V (I) and
ExtiR(R/I,N) is finitely generated for all i ≥ 0. Now let M be a finitely
generated bigraded S-module with fQ(M) = cd(Q,M). Thus H i

Q(M) is
Q-cofinite for all i < cd(Q,M), and hence by [3, Proposition 2.5] it is Q-
cofinite for all i. In particular, if M is relative Cohen–Macaulay with respect
to Q or relative Buchsbaum with respect to Q, then H i

Q(M) is Q-cofinite
for all i.
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