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THEORY OF COVERINGS IN THE STUDY OF
RIEMANN SURFACES
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EWA TYSZKOWSKA (Gdańsk)

Abstract. For a G-covering Y → Y/G = X induced by a properly discontinuous
action of a group G on a topological space Y , there is a natural action of π(X,x) on the
set F of points in Y with nontrivial stabilizers in G. We study the covering of X obtained
from the universal covering of X and the left action of π(X,x) on F . We find a formula
for the number of fixed points of an element g ∈ G which is a generalization of Macbeath’s
formula applied to an automorphism of a Riemann surface. We give a new method for
determining subgroups of a given Fuchsian group.

1. Introduction. It turns out that the general theory of coverings pro-
vides some new insights into the theory of Riemann surfaces. Every covering
of a topological space X is isomorphic to one obtained from the universal
covering of X and the action of the fundamental group π(X,x) on some
set T .

In particular, for a homomorphism θ : π(X,x) → G of groups, we can
turn G into a π(X,x)-set and obtain a G-covering of X. There is a natural
action of π(X,x) on the set F of points with nontrivial stabilizers in G. Gro-
madzki [5] studied such an action in the case when G was an automorphism
group of a Riemann surface. We consider the covering obtained from the
univeral covering of a topological space X and the action of π(X,x) on F .
This approach allows us to find a formula for the number of fixed points of
any g ∈ G which is a generalization of Macbeath’s formula applied to an
automorphism of a Riemannn surface.

There is a one-to-one correspondence between the set of homomorphisms
θ : π(X,x) → G, up to conjugacy, and the set of G-coverings of X, up
to isomorphism. In the case when X is an orientable surface, isomorphic
G-coverings of X correspond to topologically equivalent actions, which in
turn correspond to equivalent representations of G in the symmetric group
on the set F .

The study of automorphism groups of Riemann surfaces of genera greater
than 1 uses the theory of Fuchsian groups which are discrete subgroups of
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the group of orientation preserving homeomorphisms of the complex upper
half-plane. There are well known useful methods for determining subgroups
of a given Fuchsian group. They were obtained by Hoare, Karrass and Soli-
tar [6], [7] and Bujalance [1]–[3], mainly by comparing fundamental regions
of Fuchsian groups. Singerman [9] proved that a Fuchsian group Λ admits a
subgroup Λ′ of index n if and only if Λ acts transitively on a set T of n points
and he found a presentation of Λ′ by studying the action of the elliptic gen-
erators of Λ on T . We suggest a new method using the theory of branch
coverings which provides the previously known methods as particular cases.

The paper is organized in the following way. The second section provides
preliminary information about G-sets, coverings, Fuchsian groups and Rie-
mann surfaces essential for understanding the paper. The third describes the
main results which are applied later in Section 4 to finite group actions on
Riemann surfaces.

2. Preliminaries

2.1. G-sets and G-coverings. This section is based on the book [4]
and it provides preliminary information about coverings and G-sets. Since it
is crucial for understanding the paper we provide the proofs although they
are not new.

Let X and Y be topological spaces. A continuous, open and discrete
map p : Y → X is called a branch covering. We say that the point y ∈ Y
is a ramification point if there is no neighborhood U of y such that p|U is
injective. The image p(y) of a ramification point is a branch point.

A branch covering is called a smooth covering if it has no branch points. In
that case, each point y ∈ Y has a neighborhood U such that p|U : U → p(U)
is a homeomorphism, with p(U) open in X.

An isomorphism between coverings p : Y → X and p′ : Y ′ → X is a
homeomorphism ϕ : Y → Y ′ such that p′ ◦ ϕ = p.

A group H is said to act discontinuously on a topological space Y if each
y ∈ Y has a neighborhood U such that h(U) ∩ U = ∅ for almost all h ∈ H.
In addition, if arbitrary points y and y′ belonging to different orbits have
neighborhoods U and V , respectively, such that h(U)∩V = ∅ for any h ∈ H
then H is said to act on Y properly discontinuously.

The canonical projection πH : Y → Y/H onto the orbit space Y/H maps
each point y ∈ Y to its orbit Hy under the action of H. It is a branch
covering, where the space Y/H is equipped with the quotient topology.

A covering p : Y → X is called an H-covering if it arises from a properly
discontinuous action of H on Y . An isomorphism between H-coverings p :
Y → X and p′ : Y ′ → X is a homeomorphism ϕ : Y → Y ′ such that
p′ ◦ ϕ = p and ϕ(hy) = hϕ(y).
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Construction 1. Given an H-covering πH : Y → X and a left action
of H on a set T , we can construct a new covering of X in the following
way. Give T the discrete topology. The group H acts on Y × T by the rule
h · (y× t) = (h ·y×h · t). Let YT be the orbit space (Y ×T )/H and let 〈y× t〉
denote the orbit in YT containing (y× t). Then pT : YT → X defined by the
assignment 〈y × t〉 7→ πH(y) is a covering map.

By an isomorphism of H-sets T and T ′ we mean a bijection ϕ : T → T ′

such that ϕ(h · t) = h · ϕ(t) for all h ∈ H and t ∈ T . An isomorphism ϕ of
two H-sets T and T ′ induces an isomorphism of the coverings YT and YT ′

which maps 〈y×t〉 to 〈y×ϕ(t)〉. If Y is connected then two H-sets determine
isomorphic coverings if and only if they are isomorphic.

Construction 2. Given an H-covering πH : Y → X and a homomor-
phism of groups θ : H → G, we turn G into an H-set by h · g = gθ(h)−1, the
latter being the group composition in G. Then Construction 1 with T = G
provides a covering pG : YG → X which can be made into a G-covering by
defining a compatible left action of G on YG by g′ · 〈y × g〉 = 〈y × g′g〉 for
g, g′ ∈ G, y ∈ Y .

Theorem 2.1. Let X be a connected, locally path-connected and semilo-
cally simply connected topological space. Then there is a canonical bijection
between the set of n-sheeted coverings of X, up to isomorphism, and the set
of epimorphisms from π1(X,x) to finite permutation groups transitive on n
points, up to conjugacy.

Proof. The assumption about X ensures the existence of a universal
covering u : X̃ → X which is an H-covering with H being the funda-
mental group π1(X,x) of X. Any connected covering of X is isomorphic
to X̃/H ′ → X for some subgroup H ′ ≤ H. If n is the index of H ′ in H then
the set T = H/H ′ of left cosets is an H-set via the action h′ ·hH ′ = (h′h)H ′

and the covering X̃T → X is isomorphic to an n-sheeted covering X̃/H ′ → X
by identifying 〈y × hH ′〉 ∈ X̃T with the H ′-orbit of h−1 · y.

Conversely, suppose that H = π1(X,x) acts transitively on a set T of n
points via a homomorphism ρ. Let K = Im ρ and let S ⊂ K be the stabilizer
of a point t ∈ T . Then S has index n in K and so H ′ = ρ−1(S) has index
n in H. There exists an isomorphism of H-sets T and H/H ′ which maps
h · t ∈ T to hH ′ ∈ H/H ′. Thus the n-sheeted covering pT : X̃T → X is
isomorphic to X̃/H ′ → X.

A left action of the group H on the set T is the same as a homomorphism
of H into the symmetric group Σ(T ) on T . Two such homomorphisms give
isomorphic H-sets if and only if the homomorphisms are conjugate.

From the above proof we obtain
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Corollary 2.2. For any subgroup H ′ ≤ H = π(X,x) of index n, there
is a transitive action of H on T = H/H ′ that induces an n-sheeted covering
pT : X̃T → X which is isomorphic to X̃/H ′ → X. In particular, if H ′ is a
normal subgroup of H then pT is a G-covering with G = H/H ′.

We finish this section with two useful lemmas.

Lemma 2.3. Let u : X̃ → X be a universal covering of X and let H1, H2

be two subgroups of H = π1(X,x0). Then the coverings p1 : X̃/H1 → X and
p2 : X̃/H2 → X are isomorphic if and only if H1 and H2 are conjugate in H.

Proof. The coverings p1 : X̃/H1 → X and p2 : X̃/H2 → X are iso-
morphic if and only if there is an isomorphism ϕ : T1 → T2 of the H-sets
T1 = H/H1 and T2 = H/H2. Let t ∈ T1 and t′ ∈ T2. Since the action
of H on T2 is transitive, there exists h ∈ H such that t′ = h · ϕ(t) and
so StabH(t

′) is conjugate to StabH(ϕ(t)) = StabH(t) via h. Furthermore,
StabH(t) is conjugate to H1 and StabH(t

′) is conjugate to H2, and so the
lemma holds.

Lemma 2.4. Let (T, ρ) be an H-set which splits into orbits Ti and let Hi

be the stabilizer of a point ti ∈ Ti for i ∈ I. Then the kernel of ρ : H → Σ(T )
is the largest normal subgroup of H contained in

⋂
i∈I Hi.

Proof. The orbits Ti are disjoint domains of transitivity, which means
that the action of H on each Ti is transitive. The orbit Ti is isomorphic to
the H-set H/Hi. The stabilizer in H of the coset Hi ∈ H/Hi is Hi and
so the stabilizer of hHi is a conjugate subgroup Hh

i . Thus the kernel of ρ
restricted to Ti is the group CoreH Hi =

⋂
h∈H H

h
i . Since CoreH Hi is the

largest normal subgroup of H contained in Hi, it follows that the kernel of
ρ is the largest normal subgroup of H contained in

⋂
i∈I Hi.

2.2. Fuchsian groups. A Fuchsian group Λ is a discrete subgroup of
the group of linear fractional transformations

LF(2,R) =
{
z 7→ az + b

cz + d
: a, b, c, d ∈ R, ad− bc = 1

}
,

of the complex upper half-plane H onto itself with compact orbit space.
This orbit space can be given an analytic structure such that the projection
πΛ : H → H/Λ is holomorphic. The algebraic structure of Λ is determined
by the signature

(1) σ(Λ) = (g;m1, . . . ,mr),

where g, mi are integers satisfying g ≥ 0,mi ≥ 2. The group with signa-
ture (1) has a canonical presentation given by

(2)
generators : x1, . . . , xr, a1, b1, . . . , ag, bg,

relations : xm1
1 = · · · = xmr

r = x1 . . . xr[a1, b1] . . . [ag, bg] = 1.
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Geometrically xi are elliptic elements which correspond to hyperbolic rota-
tions and the remaining generators are hyperbolic translations. The integers
m1, . . . ,mr are called the periods of Λ and g is the genus of the orbit space
H/Λ called the orbit genus of Λ. An element of Λ has a fixed point in H if
and only if it has a finite order and it is conjugate to some power of precisely
one xi. A Fuchsian group which has no fixed points in H is called a surface
group and has a signature (g;−). The group Λ with presentation (2) has
associated to it a fundamental region whose area µ(Λ), called the area of the
group, is given by

(3) µ(Λ) = 2π

(
2g − 2 +

r∑
i=1

(
1− 1

mi

))
.

An abstract group with presentation (2) can be realized as a Fuchsian group
if and only if the right hand side of (3) is greater than 0. If Γ is a subgroup
of finite index in Λ, then the Riemann–Hurwitz formula states that

(4) [Λ : Γ ] =
µ(Γ )

µ(Λ)
.

Each compact Riemann surface X of genus g ≥ 2 can be represented as the
orbit space of the hyperbolic plane H under the action of some Fuchsian
surface group Γ . Finally a finite group G is a group of automorphisms of
a surface X = H/Γ if and only if it can be represented as G = Λ/Γ for
another Fuchsian group Λ.

3. G-coverings and the set of fixed points of G. In this section we
assume that X is a connected, locally path-connected and semilocally sim-
ply connected topological space. We denote its fundamental group π1(X,x)
by H. Every covering of X is isomorphic to one obtained by Construction 1
from the universal covering u : X̃ → X and a left action of H on some set T .
This covering is connected if and only if the action on T is transitive. Two
such coverings are isomorphic if and only if the H-sets are isomorphic.

A homomorphism of groups θ : H → G gives the possibility to treat G
as an H-set and Construction 2 provides a covering pG : X̃G → X, where
X̃G = (X̃ × G)/H and pG(〈z × g〉) = u(z). It is a G-covering, where the
action of G on X̃G is defined by g′ · 〈z× g〉 = 〈z× g′g〉. In order to underline
that the construction involves θ, we shall write pθ and X̃θ instead of pG and
X̃G, respectively.

There is a one-to-one correspondence between the set of homomorphisms
θ : H → G and the set of G-coverings of X. Two coverings pθ : X̃θ → X and
pθ′ : X̃θ′ → X are isomorphic if and only if θ and θ′ are conjugate in G, i.e.,
there is an element g ∈ G such that θ′([σ]) = gθ([σ])g−1 for any homotopy
class [σ] of a loop σ at x.
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Theorem 3.1. Let pθ : X̃θ → X be a G-covering corresponding to a
homomorphism θ : H → G and suppose that G is conjugate to a group
G′ via a homeomorphism of X̃θ to itself. Then there exists a group H ′ of
homeomorphisms of X̃, isomorphisms ψ : H → H ′, ϕ : G → G′ and an
epimorphism θ′ : H ′ → G′ such that ϕθ = θ′ψ. Furthermore, for the G′-
covering pθ′ : X̃θ′ → X, there exists a homeomorphism η : X̃θ → X̃θ′ such
that ηg = ϕ(g)η for all g ∈ G.

Proof. Assume that G′ = {τgτ−1 : g ∈ G} for some homeomorphism
τ of X̃θ. Then there exists a homeomorphism τ̃ of X̃ such that πτ̃ = τπ,
where π : X̃ → X̃θ is defined by π(z) = 〈z × e〉 for z ∈ X̃ and the identity
element e of G. Let H ′ = {τ̃ [σ]τ̃−1 : [σ] ∈ H} and let ψ : H → H ′ be given
by the rule ψ([σ]) = τ̃ [σ]τ̃−1. There is an epimorphism θ′ : H ′ → G′ defined
by θ′([σ′]) = ϕθψ−1([σ′]), where ϕ : G → G′ is given by ϕ(g) = τgτ−1.
The epimorphism θ′ induces the G′-covering pθ′ : X̃θ′ → X. Let us define
η̃ : X̃ ×G→ X̃ ×G′ by η̃(z × g) = (τ̃(z)× ϕ(g)). Then for any [σ] ∈ H, we
have

η̃([σ] · (z × g)) = η̃([σ] · z × gθ([σ]−1)
= (τ̃([σ] · z)× ϕ(gθ([σ]−1))
= (ψ([σ]) · τ̃(z)× ϕ(g)θ′(ψ([σ]−1))
= ψ([σ]) · (τ̃(z)× ϕ(g))
= ψ([σ]) · η(z × g).

Thus the assignment 〈z × g〉 7→ 〈τ̃(z) × ϕ(g)〉 induces a homeomorphism
η : X̃θ → X̃θ′ and it is easy to check that ϕ(g)η = ηg for any g ∈ G.

We shall say that the actions of groups G and G′ from Lemma 3.1 are
topologically equivalent. Let F̃ be the set of points in X̃ with nontrivial
stabilizers in H and let θ : H → G be a homomorphism of groups. We
shall show that the set F of points in X̃θ with nontrivial stabilizers in G
depend on F̃ and we shall consider a natural action of H on F . We shall
show that topologically equivalent group actions correspond to equivalent
representations of H in the symmetric group on F .

Lemma 3.2. Assume that F̃ splits into H-orbits F̃i for i ∈ I. Let Hi

be the stabilizer in H of a point zi ∈ F̃i and Si = θ(Hi). Then the set F
splits into G-orbits Gfi for i ∈ I, were fi = 〈zi × e〉 and e is the identity
of G. Moreover, the stabilizer in G of any point gfi ∈ Gfi is conjugate to Si
via g.

Proof. Suppose that 〈z × g〉 = 〈z × g′g〉 for z ∈ X̃ and g, g′ ∈ G. Then
(h′ · z × g′gθ(h′)−1) = (z × g) for some h′ ∈ H. Thus z is a fixed point of h′
and g′ = gθ(h′)g−1. Let i ∈ I be an index such that z ∈ F̃i. Then z = h · zi
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for some h ∈ H and so 〈z × g〉 = 〈zi × gθ(h)〉 ∈ Gfi for fi = 〈zi × e〉.
Consequently, F splits into G-orbits Gfi and the stabilizer in G of gfi, for
g ∈ G, is conjugate to θ(Hi) via g.

Theorem 3.3. For a ∈ G and i ∈ I, let ri(a) be the number of elements
g ∈ G for which g〈a〉g−1 ⊂ Si, where 〈a〉 is the cyclic group generated by a.
Then the number F(a) of points in X̃θ fixed by a is given by the formula

(5) F(a) =
∑
i∈I

ri(a)/|Si|.

Proof. Let us calculate the total number of fixed points of a in a single
orbit Gfi. By Lemma 3.2, gfi is a fixed point of a if and only if 〈a〉 is
conjugate to a subgroup of Si via g. Since conjugate elements have the same
number of fixed points we can assume that 〈a〉 ⊂ Si. There are ri(a) elements
g ∈ G such that gfi is a fixed point of a, but |Si| of them correspond to the
same point. Thus a preserves ri(a)/|Si| points in Gfi.

Corollary 3.4. For any a ∈ G, F(a) = χ(a), where χ is the permuta-
tion character of the action of G on F .

Proof. According to the decomposition of F as a disjoint union of tran-
sitive G-sets Gfi for i ∈ I, the permutation character χ of the action of G
on F decomposes as a disjoint union of transitive permutation characters χi
which are the induced characters 1GSi

. By Theorem 3.3, for any a ∈ G,

F(a) =
∑
i∈I

ri(a)/|Si| =
∑
i∈I

1GSi
(a) =

∑
i∈I

χi(a) = χ(a).

Theorem 3.5. Let L ≤ G be a subgroup of G and let {gj}j∈J be the right
transversal of its normalizer NG(L). Let J0 ⊂ J be the maximal subset of
indices j for which the orders of Si ∩ Lgj are different integers greater than
1. If J0 is nonempty then for any j ∈ J0, there are exactly

(6) nij [NG(L) : L]/[Si : Si ∩ Lgj ]

L-orbits of points with nontrivial stabilizers in L, where nij is the number of
indices j′ ∈ J such that |Si ∩ Lgj′ | = |Si ∩ Lgj |.

Proof. Let mi denote the order of Si for i ∈ I. We want to calculate the
number of elements g ∈ G for which Si ∩ Lg are nontrivial subgroups of Si.
Since for any g, g′ ∈ G, Lg = Lg

′ if and only if g−1g′ ∈ NG(L), we need only
consider the elements {gj}j∈J of the right transversal of NG(L). For each
j ∈ J , let mij be the order of Si ∩ Lgj and let nij be the number of indices
j′ ∈ J for which mij = mij′ . There are nij |NG(L)|/mi points in the G-orbit
of Fi with stabilizers in L of orders mij . They split up into L-orbits, each
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containing |L|/mij points. Thus we obtain

nij |NG(L)|/mi

|L|/mij
=
nij [NG(L) : L]

[Si : Si ∩ Lgj ]
L-orbits of points whose stabilizers have orders equal to mij .

Corollary 3.6. Let L be a normal subgroup of G and suppose that
Si ∩ L is nontrivial for some i ∈ I. Then the points of Gfi split into [G :
L]/[Si : Si ∩ L] L-orbits and their stabilizers have orders |Si ∩ L|.

Proposition 3.7. For any epimorphism θ : H → G with kernel K, the
G-coverings pθ : X̃θ → X and πK : X̃/K → X are isomorphic.

Proof. Let µ̃ : X̃ ×G → X̃/K be induced by the assignment (z × g) 7→
g · πK(z) for z ∈ X̃ and g ∈ G. Since µ̃(h · z × gθ(h)−1) = g · πK(z) for any
homotopy class h = [σ] ∈ H of a loop σ at x, we have a well defined mapping
µ : X̃θ → X̃/K given by µ(〈z × g〉) = g · πK(z). We shall show that µ is an
isomorphism. For, suppose that µ(〈z × g〉) = µ(〈z′ × g′〉) for some z, z′ ∈ X̃
and g, g′ ∈ G and let h, h′ ∈ H be homotopy classes of loops at x such that
g = θ(h) and g′ = θ(h′). Then the equality g ·πK(z) = g′ ·πK(z′) implies that
πK(h · z) = πK(h′ · z′). Thus there exists k ∈ K such that (h−1kh′) · z′ = z.
So for h′′ = h−1kh′, h′′ · (z′ × g′) = (z × g′θ(h′′)−1) = (z × g), which means
that 〈z × g〉 = 〈z′ × g′〉. Clearly µ is a surjection since µ(〈z × e〉) = πK(z)
for any z ∈ X̃. Finally, since pµ = pG, it follows that µ is an isomorphism
of G-coverings.

For the G-covering πK : X̃/K → X, we have g ·Kz = K(g̃ · z), where
z ∈ X̃ and g̃ ∈ H is an element such that θ(g̃) = g. Let F =

⋃
i∈I Gpi for

pi = Kzi. Then by Lemma 2.4, we have the following

Theorem 3.8. The kernel of the homomorphism % : H → Σ(F ) given
by

%(h)(g · pi) = θ(h)g · pi, h ∈ H, g ∈ G,

is the greatest normal subgroup of H contained in
⋂
i∈I HiK.

Let pF : X̃F → X be a covering obtained by Construction 1 from the
universal covering of X and the left action of H on F .

Theorem 3.9. The covering pF : X̃F → X is a disjoint union of cov-
erings X̃/HiK → X, i ∈ I. Any bijection τ : F → F ′ of sets induces an
action of H on F ′ by the assignment h · f ′ = τ(h · τ−1(f ′)) and the covering
pF ′ : X̃F ′ → X is a disjoint union of coverings X̃/H ′iK → X, i ∈ I, for
which there exists a permutation π ∈ Σ(I) such that H ′i is conjugate to Hπ(i)

via some hi ∈ H.
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Proof. The covering X̃F → X is a disjoint union of coverings X̃Fi → X
for Fi = Hpi. The stabilizer in H of pi is equal to HiK and so by Corollary
2.2, the covering X̃Fi → X is isomorphic to X̃/HiK → X.

The bijection τ induces an isomorphism of the coverings pF and pF ′ de-
fined by the assignment 〈z × f〉 7→ 〈z × τ(f)〉. Thus by Lemma 2.3, there
exists a permutation π of the set I such that the covering pF ′ is a disjoint
union of coverings X̃/H ′iK → X, where H ′i is conjugate to Hπ(i) via some
hi ∈ H.

If F ′ = τ(F ) for some homeomorphism τ of X̃/K then F ′ is the set of
fixed points of the group G′ = {τgτ−1 : g ∈ G} and we have a homomor-
phism ρ′ : H → Σ(F ′) defined by the formula ρ′(h)(f ′) = τ(ρ(h)(τ−1(f ′))).
Thus topologically equivalent group actions give rise to equivalent represen-
tations of H in the symmetric group on F . This fact may be helpful in some
situations when we have to decide if some actions are equivalent or not.

4. Coverings and Riemann surfaces. Here we study finite group ac-
tions on Riemann surfaces. Throughout the section, Λ will be a Fuchsian
group with signature (1) and G will be a finite group. We say that a ho-
momorphism θ : Λ → G is surface-kernel if θ is surjective and its kernel is
torsion free. We shall denote the orbit space H/Λ and the canonical projec-
tion H → H/Λ by X(Λ) and πΛ, respectively.

Theorem 4.1. There is a one-to-one correspondence between the set of
G-coverings of X(Λ) by Riemann surfaces and the set of surface-kernel epi-
morphisms θ : Λ → G. Two such epimorphisms correspond to isomorphic
coverings if and only if they are conjugate.

Proof. If θ : Λ → G is a surface-kernel epimorphism with kernel Γ then
H/Γ is a Riemann surface and we have a G-covering p : H/Γ → X(Λ),
where the action of G on H/Γ is defined by the formula (λΓ )(Γz) = Γ (λz)
for any λ ∈ Λ and z ∈ H.

Conversely, suppose that p : Y → X(Λ) is a G-covering, where Y is a
Riemann surface. Then Y is isomorphic to the orbit space H/Γ for some
Fuchsian surface group Γ . Let πΓ : H → H/Γ be the canonical projection.
For any g ∈ G, there exists g̃ ∈ Aut(H) such that gπΓ = πΓ g̃. Let Λ̃ be
the Fuchsian group generated by such lifts to H of all elements of G and
let θ̃ : Λ̃ → G be the homomorphism defined by θ̃(g̃) = g. Then θ̃ is a
surface-kernel epimorphism with kernel Γ and there exists h̃ ∈ Aut(H) such
that Λ = {h̃g̃h̃−1 : g̃ ∈ Λ̃}. Thus there exists a surface-kernel epimorphism
θ : Λ→ G, up to Aut(H)-conjugation.

By Proposition 3.7 we have the following
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Remark 4.2. The G-covering pθ : Hθ → X(Λ) obtained from a Λ-
covering πΛ : H → X(Λ) and a surface-kernel epimorphism θ : Λ→ G with
kernel Γ is isomorphic to the G-covering p : H/Γ → H/Λ.

Now we determine the periods in the signature of any, not necessarily
normal, subgroup Λ′ of Λ. Recall that the periodsm1, . . . ,mr in the signature
of Λ are the orders of maximal cyclic subgroups of Λ generated by the elliptic
elements x1, . . . , xr. Any element of Λ has a fixed point in H if and only if it
is conjugate to some power of an elliptic element xi. The orbit genus of Λ′
can be calculated by the Riemann–Hurwitz formula (4).

Theorem 4.3. Assume that θ : Λ→ G is a surface-kernel epimorphism
and L = θ(Λ′) is the image of a subgroup Λ′ ≤ Λ. Let {g1, . . . , gs} be a
right transversal of NG(L) in G. For i and j in the range 1 ≤ i ≤ r and
1 ≤ j ≤ s, let mij = mi/lij, where lij is the smallest positive integer such
that g−1j θ(xi)

lijgj ∈ L. Let nij be the sum of all indices 1 ≤ j′ ≤ s for which
mij = mij′, and let pij = nij [NG(L) : L]/lij. If j runs over all indices for
which lij are different integers not equal to 1 and i changes from 1 to r then
{mij ,

pij. . .,mij} is the set of all periods in the signature of Λ′ .

Proof. The points of H with nontrivial stabilizers in Λ split into r Λ-
orbits F̃1, . . . , F̃r such that every point belonging to F̃i has a cyclic stabilizer
of order mi generated by a conjugation of the elliptic generator xi of Λ via
some element of Λ. The projection πΓ : H → H/Γ maps fixed points of Λ
to fixed points of G while θ maps stabilizers to stabilizers preserving their
orders. Thus the set of fixed points of G splits into orbits F1, . . . , Fr such
that a point in Fi has a cyclic stabilizer of order mi conjugate to Si = 〈θ(xi)〉
via an element of G. Thus for any gj belonging to the right transversal of
NG(L), the order of Si∩Lgj is equal tomij = mi/lij , where lij is the smallest
positive integer such that g−1j θ(xi)

lijgj ∈ L. Thus the statement follows from
Theorem 3.5.

As a corollary we obtain the well known result of Bujalance.

Corollary 4.4. Let Λ be a Fuchsian group with signature (1) and let
Λ′ ⊂ Λ be its normal subgroup of a finite index N . Then the proper periods
in the signature of Λ′ are: m1/l1,

N/l1. . . ,m1/l1, . . . ,mr/lr,
N/lr. . . ,mr/lr, where li

denotes the order of xiΛ′ ∈ Λ/Λ′ and the quotients equal to 1 are dropped
out.

A small modification of the proof of Theorem 2.1 provides Singerman’s
method of determining the signature of a subgroup Λ′ of a group Λ. We
describe it for the convenience of the reader.

Theorem 4.5. The existence of a homomorphism ρ from Λ onto a finite
permutation group acting transitively on a set of n points is equivalent to the
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existence of a subgroup Λ′ ⊂ Λ of index n. Furthermore, if for the elliptic
generator xi ∈ Λ, the permutation ρ(xi) is a product of si cycles of lengths
ki1 , . . . , kisi then {mi/kiji} for i = 1, . . . , r and ji = 1, . . . , si is the set of all
periods in Λ′.

Proof. If Λ′ is a subgroup of Λ of index n then Λ acts transitively, by left
multiplication, on the set Λ/Λ′ of left cosets. Conversely, if Λ acts transitively
on the left on n points then the stabilizer of a point is a subgroup Λ′ of
index n in Λ. Let us consider the action of an elliptic generator xi of Λ on
Λ′-cosets. If it has a cycle of length k then there exist cosets λ1Λ′, . . . , λkΛ′
such that xiλjΛ′ = λj+1Λ

′ for j = 1, . . . , k − 1 and xiλkΛ
′ = λ1Λ

′. Thus
λ1Λ

′ = xki λ1Λ
′ and so xi1 = λ−11 xki λ1 ∈ Λ′. This last element is an elliptic

generator of Λ′ with period mi/k. If xi has another cycle of length k then
similarly we conclude that there exists λ2 ∈ Λ such that xi2 = λ−12 xki λ2 ∈ Λ′.
The elements xi1 and xi2 provide the same period in Λ′ if and only if they
are conjugate via some γ ∈ Λ′ what implies that λ1Λ′ lies in the same cycle
as λ2Λ′. Thus distinct cycles give rise to different periods in the signature
of Λ′.

The representation of an automorphism group of a Riemann surface in
the symmetric group on the set of fixed points was studied by Gromadzki [5]
while the number of fixed points of an automorphism of a Riemann surface
was calculated by Macbeath [8]. Their results given below are particular
cases of Theorems 3.8 and 3.3.

Theorem 4.6. Let X = H/Γ be a Riemann surface with automorphism
group G = Λ/Γ and let x1, . . . , xr be elliptic canonical generators of Λ with
periods m1, . . . ,mr respectively. Let θ : Λ → G be a surface-kernel epimor-
phism with kernel Γ and for 1 6= g ∈ G let εi(g) be 1 or 0 according as g is
or is not conjugate to a power of θ(xi).

(i) Then the number F(g) of points of X fixed by g is given by the formula

(7) F(g) = |NG(〈g〉)|
r∑
i=1

εi(g)/mi.

(ii) If F ⊂ X is the set of points with nontrivial stabilizers in G and
Λi denote subgroups 〈xi〉Γ of Λ, i = 1, . . . , r, then the kernel of the
homomorphism ρ : Λ→ Σ(F ) defined by the rule ρ(λ)(f) = θ(λ)(f)
is the greatest normal subgroup of Λ contained in Λ1 ∩ · · · ∩ Λr.
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