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ON TWISTED GROUP ALGEBRAS OF
OTP REPRESENTATION TYPE
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LEONID F. BARANNYK and DARIUSZ KLEIN (Słupsk)

Abstract. Assume that S is a commutative complete discrete valuation domain of
characteristic p, S∗ is the unit group of S and G = Gp × B is a finite group, where Gp
is a p-group and B is a p′-group. Denote by SλG the twisted group algebra of G over S
with a 2-cocycle λ ∈ Z2(G,S∗). We give necessary and sufficient conditions for SλG to
be of OTP representation type, in the sense that every indecomposable SλG-module is
isomorphic to the outer tensor product V #W of an indecomposable SλGp-module V and
an irreducible SλB-module W .

0. Introduction. In [10], Brauer and Feit proved that if G = Gp × B
and L is an algebraically closed field of characteristic p, then the group al-
gebra LG is of OTP representation type. Blau [9] and Gudyvok [17, 18]
independently showed that if L is an arbitrary field of characteristic p, then
LG is of OTP representation type if and only if Gp is cyclic or L is a split-
ting field for B. Gudyvok [19, 20] also investigated a similar problem for
group algebras RG, where R is a commutative complete discrete valua-
tion domain. In particular, he proved that if R is of characteristic p and
F is the quotient field of R, then RG is of OTP representation type if and
only if |Gp| = 2 or F is a splitting field for B. In [3]–[6], the results of
Blau and Gudyvok are generalized to twisted group algebras LλG, where
L is either a field of characteristic p, or a commutative complete discrete
valuation domain of characteristic p and λ ∈ Z2(G,L∗) satisfies a specific
condition. Let L be a field of characteristic p. The main theorem in [4] as-
serts that, under suitable assumptions, LλG is of OTP representation type
if and only if LλGp is a uniserial algebra or L is a splitting field for LλB.
In [5], necessary and sufficient conditions on G and L were given for G to
be of OTP projective L-representation type, in the sense that there exists
a cocycle λ ∈ Z2(G,L∗) such that LλG is of OTP representation type.
Let L = K[[X]] be the ring of formal power series in the indeterminate
X with coefficients in a field K of characteristic p. Twisted group algebras

2010 Mathematics Subject Classification: Primary 16G60; Secondary 20C20, 20C25.
Key words and phrases: modular representation, outer tensor product, projective repre-
sentation, representation type, twisted group algebra.

DOI: 10.4064/cm127-2-5 [213] c© Instytut Matematyczny PAN, 2012



214 L. F. BARANNYK AND D. KLEIN

LλG of OTP representation type with λ ∈ Z2(G,K∗) were described in
[3, 6].

The reader is referred to [22, p. 66] for a definition of the twisted group
algebra.

In the present work we determine new classes of twisted group algebras
SλG of OTP representation type, where G = Gp×B and S is a commutative
complete discrete valuation domain of characteristic p ≥ 2.

By [28, p. 307], S is isomorphic to the ring K[[X]], where K is a field of
characteristic p. Throughout this paper, S denotesK[[X]] and T the quotient
field of S. By a principal unit in S we understand an element f(X) ∈ S
such that f(X) ≡ 1 (mod X). Denote by S∗0 the group of principal units
of S. Then S∗ = K∗ × S∗0 . Let q be a prime and q 6= p. Then (S∗0)

q = S∗0 .
Moreover S∗0 does not contain a primitive qth root of 1. By [22, Theorem 1.7,
p. 11], every 2-cocycle σ ∈ Z2(B,S∗0) is a coboundary. Hence each 2-cocycle
τ ∈ Z2(B,S∗) is cohomologous to a 2-cocycle ν ∈ Z2(B,K∗). Therefore we
shall use as a rule only K∗-valued 2-cocycles of B. We also assume that if Gp
is non-abelian, then [K(ξ) : K] is not divisible by p, where ξ is a primitive
(expB)th root of 1.

Let us briefly present the main results obtained. Let p 6= 2, G = Gp×B,
Ω be the subgroup of S∗ generated by K∗ and (S∗)p, µ ∈ Z2(Gp, Ω), ν ∈
Z2(B,K∗) and λ = µ × ν. We prove in Theorem 3.5 that the algebra SλG
is of OTP representation type if and only if one of the following conditions
is satisfied:

(i) Gp is abelian and TµGp is a field;
(ii) K is a splitting field for KνB.

Assume now that p = 2, G = G2 ×B, |G′2| 6= 2; Ω is the subgroup of S∗
generated by K∗ and (S∗)4; µ ∈ Z2(G2, Ω), ν ∈ Z2(B,K∗) and λ = µ× ν.
We show in Theorem 3.9 that the algebra SλG is of OTP representation
type if and only if one of the following conditions is satisfied:

(i) G2 is abelian and dimT (T
µG2/ radT

µG2) ≥ |G2|/2;
(ii) K is a splitting field for KνB.

We obtain similar results also in the case when Ω is a subgroup of S∗ gen-
erated by K∗ and f(X), where f(X) ≡ 1 (mod X) and f(X) 6≡ 1 (mod X2)
(Theorem 3.10).

We note that the results derived are generalizations of Proposition 3
in [6], where µ ∈ Z2(Gp,K

∗).
Throughout the paper, we use the standard group representation theory

notation and terminology introduced in the monographs by Alperin [1], Ben-
son [7], Curtis and Reiner [11, 12, 13], and Karpilovsky [21, 22]. The books
by Karpilovsky give a systematic account of the projective representation
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theory. For problems and solutions of the representation theory of orders
in finite-dimensional algebras, we refer to the books by Curtis and Reiner.
A background of the representation theory of finite-dimensional algebras can
be found in the monographs by Assem, Simson and Skowroński [2], Drozd
and Kirichenko [15], Simson [24], and Simson and Skowroński [27], where
among other things the representation types (finite, tame, wild) of finite
groups and algebras are discussed. Various aspects of representation types
are considered also in the papers by Dowbor and Simson [14], Simson [25],
and Simson and Skowroński [26].

1. Preliminaries. Throughout this paper, we use the following nota-
tion: K is a field of characteristic p; K∗ is the multiplicative group of K,
S = K[[X]], Sl = {al : a ∈ S}, S∗ is the unit group of S, (S∗)l = {al :
a ∈ S∗}, T is the quotient field of S; G = Gp × B is a finite group, where
Gp is a Sylow p-subgroup and |Gp| > 1, |B| > 1; G′p is the commutator
subgroup of a group Gp; e is the identity element of a group H, |h| is the
order of h ∈ H; socA is the socle of an abelian group A and expH is the
exponent of H. Unless stated otherwise, we assume that if Gp is non-abelian,
then [K(ξ) : K] is not divisible by p, where ξ is a primitive (expB)th root
of 1. We assume also that all cocycle groups are defined with respect to the
trivial action of the underlying group on S∗. An S-basis {uh : h ∈ H} of
SλH satisfying uaub = λa,buab for all a, b ∈ H is called canonical (corre-
sponding to λ ∈ Z2(H,S∗)). We often identify γue with γ ∈ S. If D is a
subgroup of H, then the restriction of λ ∈ Z2(H,S∗) to D × D will also
be denoted by λ. We suppose that in this case SλD is the S-subalgebra of
SλH consisting of all S-linear combinations of the elements {ud : d ∈ D},
where {uh : h ∈ H} is a canonical S-basis of SλH corresponding to λ. Given
λ ∈ Z2(H,K∗), KλH denotes the twisted group algebra of H over K and
KλH the quotient algebra of KλH by the radical radKλH.

Let Gp = 〈a1〉 × · · · × 〈am〉 be an abelian p-group of type (pn1 , . . . , pnm).
For each cocycle µ ∈ Z2(Gp, S

∗), the algebra SµGp is commutative. The
algebra SµGp has a canonical S-basis {vg : g ∈ G} satisfying the following
conditions:

(1) if g = aj11 · · · a
jm
m and 0 ≤ ji < pni for every i ∈ {1, . . . ,m}, then

vg = vj1a1 . . . v
jm
am ;

(2) vp
ni

ai = γive, where γi = µai,aiµai,a2i
. . . µai,a

ri
i
, ri = pni − 1.

We denote the algebra SµGp also by [Gp, S, γ1, . . . , γm]. Similarly, if µ ∈
Z2(Gp,K

∗), then we denote the algebra KµGp by [Gp,K, γ1, . . . , γm] as well.
Let R be either a field of characteristic p, or a commutative complete

discrete valuation domain of characteristic p, and G = Gp × B. Given µ ∈
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Z2(Gp, R
∗) and ν ∈ Z2(B,R∗), the map µ× ν : G×G→ R∗ defined by

(µ× ν)x1b1,x2b2 = µx1,x2 · νb1,b2 ,

for all x1, x2 ∈ Gp, b1, b2 ∈ B, belongs to Z2(G,R∗). Every cocycle λ ∈
Z2(G,R∗) is cohomologous to µ×ν, where µ is the restriction of λ to Gp×Gp
and ν is the restriction of λ to B ×B.

From now on, we assume that each cocycle λ ∈ Z2(G,R∗) under consid-
eration satisfies the condition λ = µ× ν, and all RλG-modules are assumed
to be finitely generated left RλG-modules which are R-free.

Let λ = µ × ν ∈ Z2(G,R∗) and {ug : g ∈ G} be a canonical R-basis of
RλG. Then {uh : h ∈ Gp} is a canonical R-basis of RµGp and {ub : b ∈ B}
is a canonical R-basis of RνB. Moreover, if g = hb, where g ∈ G, h ∈ Gp,
b ∈ B, then ug = uhub = ubuh. It follows that RλG ∼= RµGp ⊗R RνB.

Given an RµGp-module V and an RνB-module W , we denote by V #W
the RλG-module whose underlying R-module is V ⊗RW with RλG-module
structure given by

uhb(v ⊗ w) = uhv ⊗ ubw

for all h ∈ Gp, b ∈ B, v ∈ V , w ∈W , and extended to RλG and V ⊗RW by
R-linearity. The module V #W is called the outer tensor product of V andW
(see [22, p. 122]). The algebra RλG is defined to be of OTP representation
type if every indecomposable RλG-module is isomorphic to the outer tensor
product V #W , where V is an indecomposable RµGp-module and W is an
irreducible RνB-module.

Given an RλH-module V , we write EndRλH(V ) for the ring of all RλH-
endomorphisms of V , radEndRλH(V ) for the Jacobson radical of EndRλH(V )
and EndRλH(V ) for the quotient ring

EndRλH(V )/radEndRλH(V ).

Lemma 1.1. Let R be either a field of characteristic p, or a commuta-
tive complete discrete valuation domain of characteristic p, G = Gp × B,
µ ∈ Z2(Gp, R

∗), ν ∈ Z2(B,R∗) and λ = µ× ν. The algebra RλG is of OTP
representation type if and only if the outer tensor product of any indecom-
posable RµGp-module and any irreducible RνB-module is an indecomposable
RλG-module.

The proof is similar to that of the corresponding fact for a group algebra
(see [9, p. 41], [20, p. 68] and [21, p. 658]).

Lemma 1.2. Let R be either a field of characteristic p, or a commutative
complete discrete valuation domain of characteristic p, G = Gp × B, µ ∈
Z2(Gp, R

∗), ν ∈ Z2(B,R∗) and λ = µ×ν. If V is an indecomposable RµGp-
module and W is an irreducible RνB-module, then
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EndRλG(V #W ) ∼= EndRµGp(V )⊗R EndRνB(W ),

where R is the residue class field of R.

Proof. See [6, p. 15].

Lemma 1.3. Let R be either a field of characteristic p, or a commutative
complete discrete valuation domain of characteristic p, H a finite group,
λ ∈ Z2(H,R∗) and V an RλH-module. Then V is indecomposable if and
only if EndRλH(V ) is a skew field.

Proof. Apply Proposition 6.10 of [12, p. 125].

Lemma 1.4. Let S = K[[X]], H be a finite p-group, D a subgroup
of H, λ ∈ Z2(H,S∗) and M an indecomposable SλD-module. Assume that
EndSλD(M) is isomorphic to a field F , F ⊃ K, and one of the following
conditions is satisfied:

(i) H is abelian;
(ii) [s(F ) : K] is not divisible by p, where s(F ) is the separable closure

of K in F .

Then
MH := SλH ⊗SλDM

is an indecomposable SλH-module and EndSλH(M
H) is isomorphic to a field

that is a finite purely inseparable field extension of F .

The proof is similar to that of Lemma 2.2 in [3]. It uses the same idea as
in Theorem 8 of [16].

Lemma 1.5. Let L be a finite separable field extension of K and H be a
finite p-group. If |H| > 2 then there exists an indecomposable SH-module M
such that EndSH(M) is isomorphic to L.

Proof. See [6, p. 12].

Lemma 1.6. Let K be an arbitrary field of characteristic p, S = K[[X]],
G = Gp × B, µ ∈ Z2(Gp, S

∗), ν ∈ Z2(B,K∗) and λ = µ × ν. If K is a
splitting field for the K-algebra KνB, then SλG is of OTP representation
type.

Proof. See [6, p. 15].

Let H be a subgroup of Gp, µ ∈ Z2(Gp, S
∗) and τ ∈ Z2(H,S∗). We say

that SτH is a µ-extended algebra if there exists a subgroup D of Gp and a
cocycle σ ∈ Z2(D,S∗) such that the following properties hold:

(i) SµD = SσD as S-algebras;
(ii) H ⊂ D and τ is the restriction of σ to H ×H;
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(iii) SτH is the S-subalgebra of SσD consisting of all S-linear combina-
tions of the elements {vh : h ∈ H}, where {vd : d ∈ D} is a canonical
S-basis of SσD corresponding to σ.

Lemma 1.7. Let G = Gp × B, Gp be abelian, µ ∈ Z2(Gp, S
∗), ν ∈

Z2(B,K∗) and λ = µ × ν. Assume that Gp has a subgroup H such that
|H| > 2 and SH is a µ-extended algebra. Then SλG is of OTP representation
type if and only if K is a splitting field for KνB.

Proof. In view of Lemma 1.6, SλG is of OTP representation type if K
is a splitting field for KνB. Suppose that K is not a splitting field for the
K-algebra KνB. Then there is an irreducible SνB-module W such that
∆ := EndSνB(W ) is a division K-algebra of dimension greater than one.
SinceKνB is a separableK-algebra, by Proposition 7.25 in [12, p. 157], there
exists a splitting field L for KνB, which is a finite separable field extension
of K. Since SH is a µ-extended algebra, there exists a subgroup D of Gp
and σ ∈ Z2(D,S∗) such that H ⊂ D, SµD = SσD and SH = SσH as
S-algebras. By Lemma 1.5, there is an indecomposable SH-module M such
that EndSH(M) is isomorphic to L. According to Lemma 1.4, the SσD-
module

MD := SσD ⊗SH M

is indecomposable and EndSσD(MD) is isomorphic to a field L′ that is a
finite purely inseparable field extension of L. Applying again Lemma 1.4, we
show that the SµGp-module

V := SµGp ⊗SµDMD

is indecomposable and EndSµGp(V ) is isomorphic to a field F that is a finite
purely inseparable field extension of L′. The F -algebra F ⊗K∆ is not a skew
field, because F is a splitting field for ∆. Applying Lemmas 1.2 and 1.3,
we conclude that V #W is not an indecomposable SλG-module. Hence, by
Lemma 1.1, SλG is not of OTP representation type.

Lemma 1.8. Let B be a finite p′-group. Assume that [K(ξ) : K] is not
divisible by p, where ξ is a primitive (expB)th root of 1. Then, for any K-
algebra KνB, there exists a splitting field L such that [L : K] is not divisible
by p.

Proof. See [3, p. 548].
Proposition 1.9. Let G = Gp × B, |G′p| > 2, µ ∈ Z2(Gp, S

∗), ν ∈
Z2(B,K∗) and λ = µ × ν. The algebra SλG is of OTP representation type
if and only if K is a splitting field for the K-algebra KνB.

Proof. In view of Corollary 4.10 in [22, p. 42], the restriction of µ to
G′p × G′p is a coboundary. By Lemma 1.8, there exists a splitting field L
for KνB such that [L : K] is not divisible by p. The field L is a separable



TWISTED GROUP ALGEBRAS 219

extension of K. Arguing as in the proof of Lemma 1.7, we deduce that there
is an indecomposable SµGp-module V such that EndSµGp(V ) is isomorphic
to a field F that is a finite purely inseparable field extension of L. It follows
that if K is not a splitting field for KνB, then the algebra SλG is not of
OTP representation type.

Lemma 1.10. Let G = Gp×B, µ ∈ Z2(Gp, S
∗), ν ∈ Z2(B,K∗) and λ =

µ× ν. Denote by V an indecomposable SµGp-module such that EndSµGp(V )

is a finite purely inseparable field extension of K. The SλG-module V #W
is indecomposable for any irreducible SνB-module W .

Proof. Let L be a finite purely inseparable field extension of K, and
suppose L is K-isomorphic to EndSµGp(V ). Denote by W̃ the factor module
W/XW and by ∆ the K-algebra EndSνB(W ). By Proposition 5.22 in [12,
p. 112] and Theorem 76.8 in [11, p. 532], we have

EndSνB(W ) ∼= EndSνB(W )/X EndSνB(W ) ∼= EndKνB(W̃ ).

The center of the division K-algebra ∆ is a finite separable field extension
of K, because KνB is a separable algebra (see [11, p. 485]). The index of ∆
is not divisible by p (see [23]). This implies that L⊗K ∆ is a skew field. In
view of Lemmas 1.2 and 1.3, V #W is an indecomposable SλG-module.

Proposition 1.11. Let Gp be abelian, G = Gp × B, µ ∈ Z2(Gp, S
∗),

ν ∈ Z2(B,K∗) and λ = µ× ν. Assume that TµGp is a field and SµGp is the
valuation ring in TµGp. Then SλG is of OTP representation type.

Proof. Let σ ∈ Z2(Gp,K
∗) and σa,b ≡ µa,b (mod X) for all a, b ∈ Gp.

Then SµGp/XSµGp ∼= KσGp. Any indecomposable SµGp-module is isomor-
phic to the regular SµGp-module. Since EndSµGp(SµGp) ∼= SµGp, we obtain

EndSµGp(S
µGp) ∼= (SµGp/XS

µGp)/rad(S
µGp/XS

µGp) ∼= KσGp.

The K-algebra KσGp is isomorphic to a field that is a finite purely insepa-
rable field extension of K (see [22, p. 74]). By Lemmas 1.1 and 1.10, SλG is
of OTP representation type.

2. Twisted group algebras of OTP representation type of a
group Gp ×B with cyclic Gp

Proposition 2.1. Let K be an arbitrary field of characteristic p, S =
K[[X]], T the quotient field of S, F a finite purely inseparable field extension
of T , R the valuation domain in F , B a finite p′-group, ν ∈ Z2(B,K∗) and
RνB = R⊗S SνB.

(i) If W is an irreducible SνB-module then R ⊗S W is an irreducible
RνB-module.
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(ii) If U is an irreducible RνB-module then there exists an irreducible
SνB-module W such that U is isomorphic to R⊗S W .

Proof. The algebra T νB is separable. If A is a simple component of T νB,
then the center of A is a separable field extension of T and the index of A is
not divisible by p (see [23]). It follows that:

(1) if M is a simple T νB-module then F ⊗T M is a simple F νB-module,
where F νB = F ⊗T T νB;

(2) ifM ′ is a simple F νB-module then there exists a simple T νB-module
M such that M ′ ∼= F ⊗T M .

Assume that W is an irreducible SνB-module. Then, by Theorem 75.6
in [11], T ⊗S W is a simple T νB-module. It follows that F ⊗T (T ⊗S W ) is
a simple F νB-module. Since

F ⊗R (R⊗S W ) ∼= F ⊗T (T ⊗S W ),

we deduce that R⊗S W is an irreducible RνB-module.
Suppose now that U is an irreducible RνB-module. There exists an ir-

reducible SνB-module W such that the F νB-modules F ⊗R U and F ⊗T
(T ⊗S W ) are isomorphic. Since F ⊗T (T ⊗S W ) ∼= F ⊗R (R⊗S W ), we see
that F ⊗R U ∼= F ⊗R (R⊗S W ). By Theorem 76.17 in [11], U ∼= R⊗S W .

Let Gp be an abelian p-group, G = Gp × B, µ ∈ Z2(Gp, S
∗), ν ∈

Z2(B,K∗) and λ = µ × ν. Assume that H = 〈a〉 is a cyclic group of or-
der pn, Gp = A × H, F := TµA is a field and R := SµA is the valuation
domain in F . The algebra SµGp can be viewed as a twisted group algebra of
H over R. Denote it by RµH. Let D = H×B. The algebra SλG is a twisted
group algebra RσD of D over the ring R. We have RσD ∼= RµH ⊗R RνB.

Proposition 2.2. SλG is of OTP S-representation type if and only if
RσD is of OTP R-representation type.

Proof. Let M be an SλG-module. Then M is a finitely generated R-
module. Assume that r ∈ R, v ∈ M , v 6= 0 and rv = 0. If pl = expGp then
rp
l ∈ S. Since rplv = 0 andM is a free S-module, we find that rpl = 0, hence

r = 0. ThereforeM is a torsionfree module over the principal ideal ring R. It
follows that M is a free R-module. This proves that M is an RσD-module.
Conversely, if M is an RσD-module then M is a free R-module. Since R is
a free S-module of finite rank, we see that M is an SλG-module. Moreover
M is an indecomposable SλG-module if and only if M is an indecomposable
RσD-module.

Suppose that SλG is of OTP S-representation type. Let V be an inde-
composable RµH-module and U an irreducible RνB-module. By Proposition
2.1, there exists an irreducible SνB-module W such that U is isomorphic to
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R⊗SW . By Lemma 1.1, V ⊗SW is an indecomposable SλG-module. Hence
V ⊗S W is an indecomposable RσD-module. Since

V ⊗R U ∼= (V ⊗R R)⊗S W ∼= V ⊗S W,
we deduce that V ⊗RU is an indecomposableRσD-module. In view of Lemma
1.1, RσD is of OTP R-representation type.

Conversely, let RσD be of OTP R-representation type. Assume that V
is an indecomposable SµGp-module and W is an irreducible SνB-module.
By Proposition 2.1, U := R ⊗S W is an irreducible RσB-module. Since V
is an indecomposable RµH-module Lemma 1.1 shows that V ⊗R U is an
indecomposable RσD-module, hence V ⊗R U is an indecomposable SλG-
module. It follows that V ⊗S W is an indecomposable SλG-module. By
Lemma 1.1, SλG is of OTP S-representation type.

Let F be a field of characteristic 2 complete with respect to a discrete
valuation, R the valuation domain in F , γ ∈ R∗ and γ 6∈ R2. Denote by θ
a root of the irreducible polynomial

Y 2n − γ ∈ R[Y ], n ≥ 1,

and by θ̃ the matrix of multiplication by θ in the R-basis 1, θ, . . . , θ2
n−1 of

the ring R[θ]. For n > 1, let ρ = θ2 and ρ̃ be the matrix of multiplication by
ρ in the R-basis 1, ρ, . . . , ρ2n−1−1 of the ring R[ρ]. If n = 1, we shall assume
that ρ = 1 and ρ̃ is the identity matrix of order 1.

Lemma 2.3. Let G2 = 〈a〉 be a cyclic group of order 2n (n ≥ 1) and
RµG2 = [G2, R, γ

2l ], where l ∈ {0, 1} and γ ∈ R∗.

(i) If l = 0, γ 6∈ R2 and R[θ] is the valuation domain in F (θ), then, up
to equivalence, the algebra RµG2 has only one indecomposable matrix
R-representation Γ : ua 7→ θ̃.

(ii) Let l = 1, γ 6∈ R2 for n ≥ 2 and γ = 1 for n = 1. If R[ρ] is the val-
uation domain in F (ρ), then, up to equivalence, the indecomposable
matrix R-representations of the algebra RµG2 are the following:

Γ1 : ua 7→ ρ̃, Γ2j : ua 7→
(
ρ̃ 〈πj〉
0 ρ̃

)
, j = 0, 1, 2, . . . ,

where π is a prime element of R[ρ] and 〈πj〉 is the matrix in which
all columns but the last one are zero, and the last column consists of
the coordinates of πj in the R-basis 1, ρ, . . . , ρ2n−1−1 of the ring R[ρ].

Proof. If l = 0 then RµG2
∼= R[θ]. Each RµG2-module M can be con-

sidered as a torsionfree module over the principal ideal ring R[θ], therefore
if M 6= 0 then M ∼= R[θ]⊕ · · · ⊕R[θ]. Hence, up to equivalence, the algebra
RµG2 has only one indecomposable R-representation ua 7→ θ̃.
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Let l = 1, M be an arbitrary RµG2-module, M 6= 0 and

N = {v ∈M : (u2
n−1

a − γue)v = 0}.
One can view the RµG2-module N as a module over the ring

RµG2/(u
2n−1

a − γue)RµG2
∼= R[ρ].

Since R[ρ] is a principal ideal ring and N is an R[ρ]-torsionfree module, we
get N ∼= R[ρ]⊕· · ·⊕R[ρ]. The RµG2-module M/N can also be viewed as an
R[ρ]-module. Since M is an R-torsionfree module, N ∩ αM = αN for every
α ∈ R. If z ∈ R[ρ] then z2n−1 ∈ R, and therefore the equality z(v+N) = N
yields z = 0 or v ∈ N . This means that M/N is a torsionfree module over
R[ρ]. Hence in the case N 6=M we have M/N ∼= R[ρ]⊕ · · · ⊕R[ρ].

Since every R-basis of N can be extended to an R-basis of M (see [11,
p. 100]), we deduce that a matrix R-representation Γ of the algebra RµG2

afforded by the RµG2-module M can be written in the form

Γ (ua) =

(
ρ̃(s) ∗
0 ρ̃(t)

)
,

where ρ̃(s) = diag[ρ̃1, . . . , ρ̃s] and ρ1 = · · · = ρs = ρ. Using the technique
of [8], we conclude that indecomposable matrix R-representations of the
algebra RµG2 are Γ1 and Γ2j , where j = 0, 1, 2, . . . .

Lemma 2.4. Keeping the notation of Lemma 2.3, assume that one of the
following two conditions is satisfied:

(i) l = 0, γ 6∈ R2 and R[θ] is the valuation domain in the field F (θ);
(ii) l = 1, γ 6∈ R2 if n ≥ 2, γ = 1 if n = 1, and R[ρ] is the valuation

domain in the field F (ρ).

Then for every indecomposable RµG2-module V , the FµG2-module F ⊗R V
is also indecomposable.

Proof. Let V be an underlying RµG2-module of the representation Γ2j ,
s = 2n−1 and

πj =
s−1∑
i=0

αiρ
i, αi ∈ R.

Denote by (v1, . . . , v2s) an R-basis of V such that

uavk = vk+1 for all k 6∈ {s, 2s}, uavs = γv1, uav2s =
s−1∑
i=0

αivi+1+γvs+1.

Let V̂ := F ⊗R V . We shall identify v with 1⊗ v. We set

w1 = vs+1, . . . , ws = v2s, ws+1 =

s−1∑
i=0

αivi+1 + γvs+1,

ws+k = uk−1a ws+1 for k = 2, . . . , s.
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Then (w1, . . . , w2s) is an F -basis of V̂ , uawt = wt+1 for t = 1, . . . , 2s − 1
and uaw2s = γ2w1. Consequently, the FµG2-module V̂ is isomorphic to the
regular FµG2-module.

If V is an underlying RµG2-module of the representation Γ1, then F⊗RV
is a simple FµG2-module.

Proposition 2.5. Let G2 be a cyclic group of order 2n (n ≥ 1), G =
G2 × B, µ ∈ Z2(G2, R

∗), ν ∈ Z2(B,R∗), λ = µ × ν, and ξ be a root of a
polynomial

Y 2n − γ2l , γ ∈ R∗.
Assume that RµG2 = [G2, R, γ

2l ], where l ∈ {0, 1}, γ ∈ R∗, γ 6∈ R2 if either
l = 0, or l = 1 and n ≥ 2. If R[ξ] is the valuation domain in the field F (ξ),
then RλG is of OTP representation type.

Proof. Since FµG2 is a uniserial algebra, by Theorem 3.1 in [3], F λG is
of OTP representation type. Let V be an indecomposable RµG2-module and
W an irreducible RνB-module. By Lemma 2.4, F⊗RV is an indecomposable
FµG2-module. In view of Theorem 75.6 in [11], F ⊗R W is a simple F νB-
module. It follows that (F ⊗R V )⊗F (F ⊗RW ) is an indecomposable F λG-
module. Since

F ⊗R (V ⊗RW ) ∼= (F ⊗R V )⊗F (F ⊗RW ),

the RλG-module V ⊗RW is indecomposable. By Lemma 1.1, RλG is of OTP
representation type.

3. Twisted group algebras of OTP representation type of a
group Gp × B with |G′p| 6= 2. We recall that K is a field of character-
istic p, S = K[[X]], T is the quotient field of S and G = Gp × B is a finite
group, where Gp is a p-group, B is a p′-group and |Gp| 6= 1, |B| 6= 1. We
assume that if Gp is non-abelian then [K(ξ) : K] is not divisible by p, where
ξ is a primitive (expB)th root of 1.

Denote by lB the product of all pairwise district prime divisors of |B|.
It is not difficult to see that [K(ξ) : K] is not divisible by p if and only if
[K(ε) : K] is not divisible by p, where ε is a primitive lBth root of 1. This
condition is satisfied if K contains a primitive qth root of 1 for every prime
q dividing |B| such that the characteristic p divides q − 1.

Proposition 3.1. LetGp be abelian and µ∈Z2(Gp, S
∗). If SµGp/XSµGp

is a field then TµGp is also a field and SµGp is the valuation domain in TµGp.

Proof. The ring SµGp is an integral domain. It follows that the algebra
TµGp is also an integral domain, hence TµGp is a field. Denote by R the
valuation domain in F := TµGp. It is well known that [F : T ] = e(F/T ) ·
f(F/T ), where e(F/T ) is the ramification index and f(F/T ) is the residue
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class degree. Since SµGp/XSµGp is a field extension of K of degree |Gp| and
[F : T ] = |Gp|, we conclude that e(F/T ) = 1 and f(F/T ) = [F : T ]. Let
{ug : g ∈ Gp} be a canonical S-basis of SµGp corresponding to µ. The set
Γ := {

∑
g∈Gp αgug : αg ∈ K} is a full set of residue class representatives

in R of the residue class field R = R/m, where m is the unique maximal
ideal of R. Each ρ ∈ R is uniquely expressible as

ρ = v0 + v1X + v2X
2 + · · · , vi ∈ Γ.

Therefore R = SµGp.

Proposition 3.2. Let Gp = 〈a1〉 × · · · × 〈am〉, m ≥ 2, H = 〈a2〉 × · · · ×
〈am〉, H = socH and

SµGp = [Gp, S, γ1(1 +X), γ2(1 +X)pr2 , . . . , γm(1 +X)prm ],

where γ1, . . . , γm ∈ K∗. If KσH := [H,K, γ2, . . . , γm] is a field, then TµGp
is a field and SµGp is the valuation domain in TµGp.

Proof. Let Gp = socGp. Since KσH is a field, the T -algebra TµGp is a
field. It follows that TµGp is a field. Suppose that a ∈ Gp, |a| = pn and

up
n

a = γ(1 +X)ip
t
ue,

where γ ∈ K∗, 0 ≤ t < n, i ∈ Z and (i, p) = 1. There exist integers y and z
such that yi+ zpn−t = 1. We have

(uya)
pn = γy(1 +X)p

t
(1 +X)−zp

n
ue.

Consequently, we may assume that

up
n

a = γ(1 +X)p
t
ue, γ ∈ K∗, 0 ≤ t < n.

We put
w = (1 +X)−1up

n−t
a if t > 0.

Then wpt = γue, u
pn−t
a = (1 +X)w.

Let |aj | = pnj for j = 1, . . . ,m. The argument above yields the existence
of a canonical S-basis in SµGp such that

SµGp = [Gp, S, γ1(1 +X), γ2(1 +X)k2p
t2
, . . . , γm(1 +X)kmp

tm
],

where kj ∈ {0, 1}; 0 ≤ tj < nj ; γ1, . . . , γm ∈ K∗. If kj = 1, tj > 0, then

up
nj−tj
aj = (1 +X)wj , where wp

tj

j = γjue.

If kj = 0 or tj = 0, we set wj = γjue. We suppose that tj = 0 if kj = 0.
Let L = K(w2, . . . , wm) and Ŝ = L[[X]]. Then

SµGp = [Ĝp, Ŝ, γ1(1 +X)ue, w2(1 +X)k2 , . . . , wm(1 +X)km ],

where Ĝp = 〈b1〉 × · · · × 〈bm〉 is an abelian group of type (pn1 , pn2−t2 , . . . ,
pnm−tm). In the case k2 + · · · + km 6= 0 we may assume that k2 = 1,
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k3 = 0, . . . , km = 0. If n1 ≥ n2 and k2 = 1 then

SµGp = [Ĝp, Ŝ, γ1(1 +X)ue, γ
−1
1 w2, w3, . . . , wm].

If n1 < n2 and k2 = 1 then

SµGp = [Ĝp, Ŝ, γ1w
−1
2 , w2(1 +X), w3, . . . , wm].

We restrict ourselves to the case k2 = 0, . . . , km = 0.
Denote by F the field [Ĥ, L,w2, . . . , wm], where Ĥ = 〈b2〉 × · · · × 〈bm〉.

Then SµH = F [[X]]. Let R be the valuation domain in TµGp and R 6= SµGp.
Since

SµGp =

pn1−1⊕
i=0

SµHuia1 , up
n1

a1 = γ1(1 +X)ue,

the ring R contains a non-zero element

X−1
( pn1−1∑

i=0

δiu
i
a1

)
with δi ∈ F for every i. It follows that F [[X]] contains the non-zero element

X−p
n1

pn1−1∑
i=0

δp
n1

i γi1(1 +X)i,

a contradiction. Hence R = SµGp.

Proposition 3.3. Let Gp be abelian, G = Gp × B, µ ∈ Z2(Gp, S
∗),

ν ∈ Z2(B,S∗) and λ = µ×ν. If the K-algebra SµGp/XSµGp is a field, then
SλG is of OTP representation type.

Proof. By Proposition 3.1, SµGp is the valuation domain in the field
TµGp. Therefore, in view of Proposition 1.11, SλG is of OTP representation
type.

Proposition 3.4. Assume that p 6= 2, G = Gp × B; Ω is a subgroup
of S∗, generated by K∗, (S∗)p and f(X), where f(X) ≡ 1 (mod X) and
f(X) 6≡ 1 (mod X2). Let µ ∈ Z2(Gp, Ω), ν ∈ Z2(B,K∗) and λ = µ × ν.
If the algebra SλG is of OTP representation type then one of the following
conditions is satisfied:

(i) Gp is abelian and TµGp is a field;
(ii) K is a splitting field for KνB.

Proof. If Gp is non-abelian then, by Proposition 1.9, SλG is of OTP
representation type if and only if condition (ii) holds. Suppose that Gp is
abelian. Let Gp = 〈a1〉 × · · · × 〈am〉, m ≥ 2 and Gp = socGp. We have
(f(X)− 1)S = XS, hence we may assume that f(X) = 1 +X and

SµGp = [Gp, S, γ1(1 +X)if1(X)p, γ2f2(X)p, . . . , γmfm(X)p],
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where γ1, . . . , γm ∈ K∗ and f1(X), . . . , fm(X) are principal units in S. De-
note A = 〈a2〉 × · · · × 〈am〉, A = socA and KσA = [A,K, γ2, . . . , γm]. If
KσA is not a field then KσA = KτA = [A,K, γ2, . . . , γm−1, 1]. It follows
that SµGp contains a µ-extended group algebra of a group of order p over S.
By Lemma 1.7, SλG is of OTP representation type if and only if K is a
splitting field for KνB.

Suppose now that KσA is a field. By Proposition 3.1, TµA is a field and
SµA is the valuation domain in TµA. If γ1(1 +X)iue 6∈ (SµA)p then TµGp
is a field. If γ1(1 +X)iue ∈ (SµA)p then SµGp contains a µ-extended group
algebra of a cyclic group of order p over S. In view of Lemma 1.7, SλG is of
OTP representation type if and only if condition (ii) holds.

Theorem 3.5. Let p 6= 2, G = Gp×B; Ω be the subgroup of S∗ generated
by K∗ and (S∗)p; µ ∈ Z2(Gp, Ω), ν ∈ Z2(B,K∗) and λ = µ × ν. The
algebra SλG is of OTP representation type if and only if one of the following
conditions is satisfied:

(i) Gp is abelian and TµGp is a field;
(ii) K is a splitting field for KνB.

Proof. The necessity part follows from Proposition 3.4. Let us prove the
sufficiency. Keeping the notation of Proposition 3.4, assume that (i) holds.
Then [Gp,K, γ1, . . . , γm] is a field. It follows that [Gp,K, γ1, . . . , γm] is a field,
hence the K-algebra SµGp/XSµGp is a field. By Proposition 3.3, SλG is of
OTP representation type. If (ii) holds, we apply Lemma 1.6.

Proposition 3.6. Let p = 2, G = G2 × B, where |G′2| 6= 2; Ω is the
subgroup of S∗ generated by K∗ and (S∗)2; µ ∈ Z2(G2, Ω), ν ∈ Z2(B,K∗)
and λ = µ × ν. If the algebra SλG is of OTP representation type then one
of the following conditions is satisfied:

(i) G2 is abelian and dimT TµG2 ≥ |G2|/2;
(ii) K is a splitting field for KνB.

Proof. If G2 is non-abelian then, by Proposition 1.9, SλG is of OTP
representation type if and only if condition (ii) holds. Assume that G2 =
〈a1〉 × · · · × 〈am〉, G2 = socG2 and

SµG2 = [G2, S, γ1f1(X)2, . . . , γmfm(X)2],

where γ1, . . . , γm ∈ K∗ and f1(X), . . . , fm(X) are the principal units in S.
Choose a canonical S-basis of SµG2 such that SµG2 = [G2, S, γ1, . . . , γm].
Let KσG2 := [G2,K, γ1, . . . , γm]. If dimK KσG2 ≤ 2m−2 then (i) is not sat-
isfied and we may assume that SµG2 = SτG2 = [G2, S, γ1, . . . , γm−2, 1, 1].
According to Lemma 1.7, SλG is of OTP representation type if and only
if condition (ii) holds. Suppose now that dimK(KσG2/radK

σG2) = 2m−1.
Let H = 〈a1〉 × · · · × 〈am−1〉 and H = socH. We may assume that KσH =
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[H,K, γ1, . . . , γm−1] is a field. Then SµH/XSµH is a field and, by Propo-
sition 3.1, SµH is the valuation domain in the field TµH. If dimT TµG2 <
|G2|/2 then SµG2 contains a µ-extended group algebra of a cyclic group of
order 4 over S. By Lemma 1.7, SλG is of OTP representation type if and
only if condition (ii) holds.

Lemma 3.7. Let α, δ1, . . . , δr ∈ T ; ρ be a root of the polynomial Y 2d+1−α;
θi a root of the polynomial Y 2ni − δi for i = 1, . . . , r; L := T (ω1, . . . , ωr),
where

ωi =

{
θ2
ni−2

i if ni ≥ 2,
θi if ni = 1.

Assume that [T (θ1, . . . , θr) : T ] = 2l, where l = n1 + · · · + nr, and α = β2,
where β ∈ L and β 6∈ L2. Then [T (θ1, . . . , θr, ρ) : T ] = 2l+d.

Proof. Suppose that ni ≥ 2 for i = 1, . . . , j and ni = 1 for i = j+1, . . . , r.
Let F := T (ω2

1, . . . , ω
2
j , ωj+1, . . . , ωr). We have

β =
1∑

k1=0

. . .
1∑

kj=0

γk1,...,kjω
k1
1 . . . ω

kj
j ,

where γk1,...,kj ∈ F . Then

β2 =
1∑

k1=0

. . .
1∑

kj=0

γ2k1,...,kjω
2k1
1 . . . ω

2kj
j .

Since γ2k1,...,kj ∈ T , it follows that γk1,...,kj = 0 if kr = 1 for some r ∈
{1, . . . , j}. Therefore β ∈ F . Denote by ω a root of the polynomial Y 2 − β.
Then [L(ω) : L] = 2, hence [F (ω1, . . . , ωj , ω) : F ] = 2j+1. Since

[T (θ1, . . . , θr, ρ) : F (ω1, . . . , ωj , w)] = 2k,

where k = n1 + · · · + nj − 2j + d − 1, and [F : T ] = 2r, we obtain
[T (θ1, . . . , θr, ρ) : T ] = 2l+d.

Proposition 3.8. Let p = 2, and Ω be the subgroup of S∗ generated
by K∗, (S∗)4 and f(X), where f(X) ≡ 1 (mod X) and f(X) 6≡ 1 (mod X2).
Assume that G = G2 × B, |G′2| 6= 2, µ ∈ Z2(G2, Ω), ν ∈ Z2(B,K∗) and
λ = µ× ν. If the algebra SλG is of OTP representation type then one of the
following conditions is satisfied:

(i) G2 is abelian and dimT TµG2 ≥ |G2|/2;
(ii) K is a splitting field for KνB.

Proof. If |G′2| > 2, we apply Proposition 1.9. Let G2 be abelian. We may
assume that f(X) = 1+X. Suppose also that SλG is of OTP representation
type and K is not a splitting field for KνB. Let G2 = 〈a1〉 × · · · × 〈am〉,
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m ≥ 2 and D = {g ∈ G2 : g
4 = e}. By Proposition 3.6, we may assume that

SµG2 = [G2, S, γ1(1 +X)f1(X)4, γ2(1 +X)if2(X)4, . . . , γmfm(X)4],

where γ1, . . . , γm ∈ K∗, i ∈ {0, 2} and f1(X), . . . , fm(X) are principal units
in S. In this case

SµD = [D,S, γ1(1 +X), γ2(1 +X)i, γ3, . . . , γm].

Let H = 〈a2〉× · · ·× 〈am〉 and H = socH. If KσH := [H,K, γ2, . . . , γm] is a
field then, by Proposition 3.2, TµD is a field. It follows that TµG2 is a field.
If KσH is not a field then, by Lemma 1.7, dimK KσH = |H|/2. In view of
Lemma 1.7 and Proposition 3.2, dimT TµD = |D|/2. Applying Lemma 3.7,
we conclude that

dimT TµG2 = |G2|/2.

Theorem 3.9. Let p = 2, G = G2×B, |G′2| 6= 2; Ω be the subgroup of S∗
generated by K∗ and (S∗)4; µ ∈ Z2(G2, Ω), ν ∈ Z2(B,K∗) and λ = µ × ν.
The algebra SλG is of OTP representation type if and only if one of the
following conditions is satisfied:

(i) G2 is abelian and dimT TµG2 ≥ |G2|/2;
(ii) K is a splitting field for KνB.

Proof. The necessity follows from Proposition 3.8. Let us prove the suf-
ficiency. Let G2 = 〈a1〉 × · · · × 〈am〉 and G2 = socG2. We have

SµG2 = [G2, S, γ1f1(X)4, . . . , γmfm(X)4],

where γ1, . . . , γm ∈ K∗ and f1(X), . . . , fm(X) are principal units in S. If
TµG2 is a field then SµG2/XS

µG2 is also a field. By Proposition 3.3, SλG
is of OTP representation type.

Let dimT TµG2 = |G2|/2 and m ≥ 2. Up to renumbering a1, . . . , am, we
may assume that F := TµA is a field, where A = 〈a1〉 × · · · × 〈am−1〉. Then
SµA/XSµA is also a field. By Proposition 3.1, R := SµA is the valuation
domain in F . Let |ai| = 2ni , ai = a2

ni−1

i for i = 1, . . . ,m and A = socA.
Then A = 〈a1〉×· · ·×〈am−1〉. Denote by {ug : g ∈ G2} the canonical S-basis
of SµG2 corresponding to µ. We put

vi = fi(X)−2uai .

Then v2i = γiue, L := K[v1, . . . , vm−1] is a twisted group algebra of A over
the field K, and L is a subfield of SµA. We have γmue = v2m, where vm ∈ L
and vm 6∈ F 2 if |am| ≥ 4. The ring R is a twisted group algebra of the factor
group A/A over the ring Ŝ = L[[X]]. Assume that A 6= A and nm ≥ 2. Then

R = [A/A, Ŝ, v1f1(X)2, . . . , vtft(X)2],

where t is the number of invariants of A/A.
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Let w be a root of the irreducible polynomial

Y 2nm−1 − vmfm(X)2 ∈ Ŝ[Y ].

By Proposition 3.1, R[w] is the valuation domain in the field F (w). Let
D = 〈am〉 ×B. The algebra SλG is a twisted group algebra RσD of D over
the ring R. By Proposition 2.5, RσD is of OTP R-representation type. It
follows, by Proposition 2.2, that SλG is of OTP S-representation type. The
case when m = 1 is treated similarly.

Theorem 3.10. Let G = Gp×B, |G′p| 6= 2; Ω be the subgroup of S∗ gen-
erated by K∗ and f(X), where f(X) ≡ 1 (mod X) and f(X) 6≡ 1 (mod X2);
µ ∈ Z2(Gp, Ω), ν ∈ Z2(B,K∗) and λ = µ× ν. The algebra SλG is of OTP
representation type if and only if one of the following conditions is satisfied:

(i) Gp is abelian and TµGp is a field;
(ii) p = 2, G2 is abelian and dimT TµG2 = |G2|/2;
(iii) K is a splitting field for KνB.

Proof. The necessity follows from Propositions 3.4 and 3.8. Let us prove
the sufficiency. We may assume that f(X) = 1+X. LetGp = 〈a1〉×· · ·×〈am〉,
|aj | = pnj for j = 1, . . . ,m, m ≥ 2 and

SµGp = [Gp, S, γ1(1 +X)i1 , γ2(1 +X)pi2 , . . . , γm(1 +X)pim ],

where γ1, . . . , γm ∈ K∗. If TµGp is a field then, by Propositions 1.11, 3.1 and
3.2, SλG is of OTP representation type.

Now, let p = 2 and dimT TµG2 = |G2|/2. If i1 is divisible by 2, argue as
in the proof of Theorem 3.9. Let i1 = 1, [K(

√
γ2, . . . ,

√
γm−1) : K] = 2m−2,

2ij = kj · 2tj , where kj ∈ {0, 1}, 0 ≤ tj < nj and tj = 0 if kj = 0, for any
j = 2, . . . ,m. Denote

cj = a2
nj−tj
j ,

C = 〈c2〉 × · · · × 〈cm−1〉, D = 〈a1〉 × · · · × 〈am−1〉, G̃2 = G2/C, D̃ = D/C;
let wj be a root of the irreducible polynomial

Y 2tj − γj ∈ K[Y ], j ∈ {2, . . . ,m− 1},

L = K(w2, . . . , wm−1), Ŝ = L[[X]], and let T̂ be the quotient field of Ŝ. By
Proposition 3.2, F := TµD is a field and R := SµD is the valuation domain
in F .

We have

SµG2

= [G̃2, Ŝ, γ1(1 +X), w2(1 +X)k2 , . . . , wm−1(1 +X)km−1 , γm(1 +X)km·2
tm
].
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If k2+· · ·+km−1 6= 0 then we may assume that k2 = 1, k3 = 0, . . . , km−1 = 0.
Therefore

R = [D̃, Ŝ, γ1(1 +X), w2(1 +X)k2 , w3, . . . , wm−1]

and γm = w2
m, where wm ∈ L. If nm = 1 then, by Propositions 2.2 and 2.5,

SλG is of OTP representation type. Let nm ≥ 2. Denote by v a root of the
irreducible polynomial

Y 2nm−1 − wm(1 +X)km·2
tm−1 ∈ R[Y ]

with tm ≥ 1. Let

C1 = C × 〈a2nm−1

m 〉 and Ĝ2 = G2/C1.

Then

R[v] ∼= Ŝµ̂Ĝ2

= [Ĝ2, Ŝ, γ1(1 +X), w2(1 +X)k2 , w3, . . . , wm−1, wm(1 +X)km2tm−1
].

If n1 ≥ n2− t2 then we may suppose that k2 = 0. If n1 < n2− t2 and k2 = 1,
then choose a canonical Ŝ-basis of Ŝµ̂Ĝ2 such that

Ŝµ̂Ĝ2 = [Ĝ2, Ŝ, γ1w
−1
2 , w2(1 +X), w3, . . . , wm−1, wm(1 +X)km·2

tm−1
].

Let tm ≥ 2. Then wm 6∈ F 2. By Proposition 3.2, Ŝµ̂Ĝ2 is the valuation
domain in the field T̂ µ̂Ĝ2. Hence, by Propositions 2.2 and 2.5, SλG is of
OTP representation type. Now let tm = 1 and km = 1. Then

R[v] ∼= [Ĝ2, Ŝ, ρ1(1 +X), ρ2, . . . , ρm],

where ρ1, . . . , ρm ∈ L∗. In view of Propositions 2.2, 2.5 and 3.2, SλG is of
OTP representation type.
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