
COLLOQU IUM MATHEMAT ICUM
VOL. 127 2012 NO. 2

ON AFFINITY OF PEANO TYPE FUNCTIONS

BY

TOMASZ SŁONKA (Katowice)

Abstract. We show that if n is a positive integer and 2ℵ0 ≤ ℵn, then for every posi-
tive integer m and for every real constant c > 0 there are functions f1, . . . , fn+m : Rn → R
such that (f1, . . . , fn+m)(Rn) = Rn+m and for every x ∈ Rn there exists a strictly increas-
ing sequence (i1, . . . , in) of numbers from {1, . . . , n+m} and a w ∈ Zn such that

(fi1 , . . . , fin)(y) = y + w for y ∈ x+ (−c, c)× Rn−1.

According to Theorem 1 of [2] by M. Morayne the Continuum Hypoth-
esis implies the existence of functions f1, f2 : R → R such that (f1, f2)(R)
= R2 and for each x ∈ R at least one of f1, f2 is differentiable at x. In [3]
M. Morayne gave a more general result: If n ∈ N and 2ℵ0 ≤ ℵn, then there
are functions f1, . . . , fn+1 : Rn → R such that (f1, . . . , fn+1)(Rn) = Rn+1

and for each point of R at least n of those functions are differentiable at
that point. J. Cichoń and M. Morayne [1] generalized this result as follows.
If 2ℵ0 ≤ ℵn, then for any m ∈ N there are functions f1, . . . , fn+m : Rn → R
such that (f1, . . . , fn+m)(Rn) = Rn+m and at each point of Rn at least n
of them are analytic at that point. It is the aim of this paper to strengthen
this statement, replacing analyticity at the point by affinity in some of its
neighbourhoods. More exactly we will prove the following theorem.

Theorem. If 2ℵ0 ≤ ℵn and m ∈ N, then for every c ∈ (0,∞) there exist
functions f1, . . . , fn+m : Rn → R with the following properties:

(i) for every x ∈ Rn there exist a strictly increasing sequence (i1, . . . , in)
of numbers from {1, . . . , n+m} and a w ∈ Zn such that

(fi1 , . . . , fin)(y) = y + w for y ∈ x+ (−c, c)× Rn−1.

(ii) (f1, . . . , fn+m)(Rn) = Rn+m.

We begin by proving several lemmas. The first one is a special case of
[5, Theorem] by R. Sikorski, which is a variant of the well-known Sierpiński
decomposition of the plane.
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Lemma 1. If X is a nonvoid set with |X| ≤ ℵn, then there exists a
collection

(1) {Ax1,...,xn : (x1, . . . , xn) ∈ Xn}
of countable sets such that

(2) Xn+1 =
n+1⋃
k=1

⋃
(x1,...,xn)∈Xn

⋃
a∈Ax1,...,xn

{(x1, . . . , xk−1, a, xk, . . . , xn)}.

Lemma 2 is probably folklore. For case n = 1 it boils down to the well-
known fact (see [4, Ch. I, Prop. P2]) that the square of a set of cardinality ℵ1
is the countable union of graphs of functions and their inverses (as relations).
Hence we only sketch its proof.

Lemma 2. Assume |R| ≤ ℵn. Then for every k ∈ N there are functions
f1,k, . . . , fn+1,k : [0, 1]

n → [0, 1] with the following properties:

(iii) for every k ∈ N there is an i ∈ {1, . . . , n+ 1} such that

(3) (f1,k, . . . , fi−1,k, fi+1,k, . . . , fn+1,k) = id[0,1]n ;

(iv)
⋃

k∈N(f1,k, . . . , fn+1,k)([0, 1]
n) = [0, 1]n+1.

Proof. Applying Lemma 1 for X = [0, 1] we obtain a collection (1) of
countable sets such that (2) holds. Let h : [0, 1]n →

⋃
(x1,...,xn)∈[0,1]n A

N
x1,...,xn

be a function such that h(x1, . . . , xn) maps N onto Ax1,...,xn for any
x1, . . . , xn ∈ [0, 1]. We define f1,k, . . . , fn+1,k : [0, 1]

n → [0, 1] by

(f1,(n+1)(k−1)+l, . . . , fn+1,(n+1)(k−1)+l)(x1, . . . , xn)

= (x1, . . . , xl−1, h(x1, . . . , xn)(k), xl, . . . , xn)

for k ∈ N, l ∈ {1, . . . , n+ 1} and x1, . . . , xn ∈ [0, 1].

Lemma 3. There is a bijection a : Zn+1 × N→ 2Z such that

(4) |s1 − t1| > 1 ⇒ |a(s1, . . . , sn+1, k)− a(t1, . . . , tn+1, l)| > 2

for (s1, . . . , sn+1), (t1, . . . , tn+1) ∈ Zn+1 and k, l ∈ N.

Proof. Let (see the figure) α : N ∪ {0} → Z × (N ∪ {0}) be a bijection
such that α(0) = (0, 0) and

|k − l| ≤ 1 ⇒ |α1(k)− α1(l)| ≤ 1

for k, l ∈ N ∪ {0}, and β : (−N)→ Z× (−N) a bijection such that β(−1) =
(0,−1) and

|k − l| ≤ 1 ⇒ |β1(k)− β1(l)| ≤ 1

for k, l ∈ −N. Putting γ = α ∪ β we obtain a bijection γ : Z→ Z2 such that

|k − l| ≤ 1 ⇒ |γ1(k)− γ1(l)| ≤ 1
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for k, l ∈ Z. Further, take an arbitrary bijection δ : Z → Zn × N and define
b : 2Z→ Zn+1 × N by

b(2k) = (γ1(k), δ(γ2(k))) for k ∈ Z.
It is easy to see that b is a bijection and its inverse a has the desired prop-
erties.

Lemma 4. If 2ℵ0 ≤ ℵn, then there exists a real constant δ > 0 and
functions f1, . . . , fn+1 : Rn → R with the following properties:

(v) |f1(x)− f1(y)| ≤ 3 for x ∈ Rn and y ∈ x+ (−δ, δ)× Rn−1;
(vi) for every x ∈ Rn there exists an i ∈ {1, . . . , n + 1} and a w ∈ Zn

such that

(f1, . . . , fi−1, fi+1, . . . , fn+1)(y) = y+w for y ∈ x+(−δ, δ)×Rn−1;

(vii) (f1, . . . , fn+1)(Rn) = Rn+1.

Before the proof we propose to consider the special case n = 1 with-
out (v).

Lemma 4′. If 2ℵ0 = ℵ1, then there exist functions f1, f2 : R → R and a
δ > 0 with the following properties:

(vi′) for every x ∈ R there is an integer w such that either

f1(y) = y + w for y ∈ (x− δ, x+ δ)

or
f2(y) = y + w for y ∈ (x− δ, x+ δ);

(vii′) (f1, f2)(R) = R2.

Proof. We will construct the desired functions f1, f2 in two steps. First,
applying Lemma 2, we define them on

⋃
z∈Z[2z, 2z + 1] in such a manner

that for every z ∈ Z there is an i ∈ {1, 2} and a c ∈ Z such that fi(x) = x+c
on [2z, 2z + 1], and (f1, f2)(

⋃
z∈Z[2z, 2z + 1]) = R2. In the second step we

extend them onto the whole R to functions satisfying (vi′).
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Clearly R2 is the union of the squares [s1, s1 + 1] × [s2, s2 + 1] over all
s1, s2 ∈ Z. Furthermore, each such square is a countable union of graphs of
functions and their inverses (as relations). Consequently, for every n∈N there
exists a function (h1,n, h2,n) : [0, 1] → R2 such that

⋃
n∈N(h1,n, h2,n)([0, 1])

= R2 and for every n ∈ N there exists s ∈ Z such that h1,n = id[0,1] + s or
h2,n = id[0,1] + s.

Take now any bijection a : N→ 2Z and define f̃ :
⋃

z∈Z[2z, 2z + 1]→ R2

as follows:

(f̃1, f̃2)(x+ 2z) = (h1,a−1(2z), h2,a−1(2z))(x) for x ∈ [0, 1] and z ∈ Z.
Consider any ψ : Z→ {1, 2} × Z such that

if ψ(z) = (i, c), then f̃i|[2z,2z+1] = id[2z,2z+1] + c.

As any extension (f1, f2) of f̃ onto R2 satisfies (vii′), the final step is to
extend f̃ to a function f satisfying (vi′).

For each z ∈ Z we define f on [2z−1/2, 2z+3/2) by putting (i, c) = ψ(z)
and

(f1, f2)(x)

=


(f̃1, f̃2)(x) for x ∈ [2z, 2z + 1],
(x+ c, x+ c) for x ∈ [2z − 1/4, 2z + 5/4] \ [2z, 2z + 1],
(x+ c, x) for x ∈ [2z − 1/2, 2z + 3/2) \ [2z − 1/4, 2z + 5/4].

If z ∈ Z, then

(2z − 3/4, 2z − 1/4)

⊂ ([2(z − 1)− 1/2, 2(z − 1) + 3/2) \ [2(z − 1)− 1/4, 2(z − 1) + 5/4])

∪ ([2z − 1/2, 2z + 3/2) \ [2z − 1/4, 2z + 5/4])

whence
f2(x) = x for x ∈ (2z − 3/4, 2z − 1/4);

moreover, if ψ(z) = (i, c), then also

fi(x) = x+ c for x ∈ [2z − 1/4, 2z + 5/4],

f1(x) = x+ c for x ∈ [2z − 1/2, 2z) ∪ (2z + 1, 2z + 3/2],

which yields (vi′) with δ = 1/8.

In the proof of Lemma 4 we will construct the desired functions similarly,
but to have also (v) in the first step we rely on both Lemmas 3 and 2.

Proof of Lemma 4. Let a : Zn+1 × N → 2Z be a bijection such that (4)
holds, for s = (s1, . . . , sn+1) ∈ Zn+1, k ∈ N put ask = a(s, k) and define
esk : [a

s
k, a

s
k + 1]× [0, 1]n−1 → [0, 1]n and ls : [0, 1]n+1 →

∏n+1
i=1 [si, si + 1] by

esk(u) = u− (ask, 0, . . . , 0), ls(v) = s+ v.
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Clearly esk and ls are bijections for all s ∈ Zn+1, k ∈ N. For every k ∈ N let
f1,k, . . . , fn+1,k : [0, 1]

n → [0, 1] satisfy (iii) and (iv), and put

(hs1,k, . . . , h
s
n+1,k) = ls ◦ (f1,k, . . . , fn+1,k) ◦ esk for s ∈ Zn+1.

Then

(5)
⋃
k∈N

(hs1,k, . . . , h
s
n+1,k)([a

s
k, a

s
k + 1]× [0, 1]n−1)

=
⋃
k∈N

ls((f1,k, . . . , fn+1,k)(e
s
k([a

s
k, a

s
k + 1]× [0, 1]n−1)))

= ls
(⋃
k∈N

(f1,k, . . . , fn+1,k)([0, 1]
n)
)
= ls([0, 1]n+1) = [0, 1]n+1 + s

for s ∈ Zn+1. Moreover, if k ∈ N and i ∈ {1, . . . , n + 1} is such that (3)
holds, then for any s ∈ Zn+1 and x ∈ [ask, a

s
k + 1]× [0, 1]n−1 we have

(6) (hs1,k, . . . , h
s
i−1,k, h

s
i+1,k, . . . , h

s
n+1,k)(x)

= (f1,k, . . . , fi−1,k, fi+1,k, . . . , fn+1,k) ◦ esk(x) + (s1, . . . , si−1, si+1, . . . , sn+1)

= esk(x) + (s1, . . . , si−1, si+1, . . . , sn+1)

=

{
x+ (s2 − ask, s3, . . . , sn+1) if i = 1,
x+ (s1 − ask, s2, . . . , si−1, si+1, . . . , sn+1) if i > 1,

= x+ c

with a suitable c ∈ Zn (depending on s and k).
Since

[asp, a
s
p + 1] ∩ [atq, a

t
q + 1] = φ for (p, s) 6= (q, t),

the formula
(f̃1, . . . , f̃n+1)(x) = (hs1,k, . . . , h

s
n+1,k)(x)

for x ∈ [ask, a
s
k + 1] × [0, 1]n−1, s ∈ Zn+1 and k ∈ N defines a function

(f̃1, . . . , f̃n+1) :
⋃

z∈Z[2z, 2z + 1] × [0, 1]n−1 → Rn+1. According to (5) we
have

(7) (f̃1, . . . , f̃n+1)
(⋃
z∈Z

[2z, 2z + 1]× [0, 1]n−1
)

=
⋃

(s,k)∈Zn+1×N

(hs1,k, . . . , h
s
n+1,k)([a

s
k, a

s
k + 1]× [0, 1]n−1)

=
⋃

s∈Zn+1

([0, 1]n+1 + s) = Rn+1.

Moreover, it follows from (6) that there exists a ϕ : Z→ {1, . . . , n+1}×Zn+1

such that if ϕ(z) = (i, c), then

(8) (f̃1, . . . , f̃i−1, f̃i+1, . . . , f̃n+1)|[2z,2z+1]×[0,1]n−1 = id[2z,2z+1]×[0,1]n−1 + c.
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For z ∈ Z we decompose the set (2z − 2/3, 2z + 4/3]× Rn−1 putting

Bz = [2z, 2z + 1]× [0, 1]n−1, Cz = (2z − 2/3, 2z − 1/3)× Rn−1,

Cz,j =
([
2z − n+1+j

6n+3 , 2z −
n+j
6n+3

)
∪
(
2z + 1 + n+j

6n+3 , 2z + 1 + n+j+1
6n+3

])
× Rn−1

for j ∈ {1, . . . , n}, and, with (i, c) = ϕ(z),

Bz,0 =
[
2z − i

6n+3 , 2z + 1 + i
6n+3

]
× Rn−1 \Bz,

Bz,j =
([
2z − i+j

6n+3 , 2z −
i+j−1
6n+3

)
∪
(
2z + 1 + i+j−1

6n+3 , 2z + 1 + i+j
6n+3

])
× Rn−1

for j ∈ {1, . . . , n+1−i}, and then we define (f1, . . . , fn+1) on (2z−2/3, 2z+
4/3]× Rn−1 by taking s ∈ Zn+1 and k ∈ N such that ask = 2z and putting

(f1, . . . , fn+1)(x) =

(f̃1, . . . , f̃n+1)(x) for x ∈ Bz,
(x1 + c1, . . . , xi−1 + ci−1, s1, xi + ci, . . . , xn + cn) for x ∈ Bz,0,
(x1 + s1 − 2z, x1 + c1, . . . , xn + cn) for x ∈ Bz,1 if i = 1,
(x1 + c1, . . . , xi + ci, xi + ci, . . . , xn + cn) for x ∈ Bz,1 if i > 1,
(x1 + s1 − 2z, x2 + c2, . . . , xi−1+j + ci−1+j , for x ∈ Bz,j and

xi−1+j + ci−1+j , xi+j + ci+j , . . . , xn + cn) j∈{2, . . . , n+ 1− i},
(x1 + s1 − 2z, x2 + c2, . . . , xn+1−j + cn+1−j , for x ∈ Cz,j and

xn+1−j , . . . , xn) j ∈ {1, . . . , n},
(s1, x1, . . . , xn) for x ∈ Cz.

We will show that (v)–(vii) hold with

δ =
1

12n+ 6
.

First, however, observe that if z ∈ Z and ask = 2z, then for i > 1 according
to the definition of c in (6), we have s1 = c1 + 2z and so

f1((2z − 2/3, 2(z + 1)− 2/3]× Rn−1)

⊂ f̃1(Bz) ∪ ((2z − 2/3, 2(z + 1)− 2/3] + c1)

⊂ f̃1(Bz) ∪ (s1 − 2/3, s1 + 4/3];

and if i = 1, then

f1((2z − 2/3, 2(z + 1)− 2/3]× Rn−1) ⊂ f̃1(Bz) ∪ (s1 − 2/3, s1 + 4/3]

as well. Consequently, for any z ∈ Z, if ask = 2z, then

f1((2z − 2/3, 2(z + 1)− 2/3]× Rn−1)

⊂ hs1,k([2z, 2z + 1]× Rn−1) ∪ (s1 − 2/3, s1 + 4/3]

⊂ [s1, s1 + 1] ∪ (s1 − 2/3, s1 + 4/3] = (s1 − 2/3, s1 + 4/3].



AFFINITY OF PEANO TYPE FUNCTIONS 239

Let x, y ∈ Rn and |x1 − y1| < 1. Then there are integers z1, z2 such that

x1 ∈ (2z1 − 2/3, 2(z1 + 1)− 2/3], y1 ∈ (2z2 − 2/3, 2(z2 + 1)− 2/3]

and |z2 − z1| ≤ 1. If ask = 2z1 and atl = 2z2, then

|a(s1, . . . , sn+1, k)− a(t1, . . . , tn+1, l)| = |2z1 − 2z2| ≤ 2

and
f1(x) ∈ (s1 − 2/3, s1 + 4/3], f1(y) ∈ (t1 − 2/3, t1 + 4/3],

which together with (4) shows that |s1− t1| ≤ 1 and |f1(x)− f1(y)| ≤ 3 and
proves (v).

To prove (vi) fix an x ∈ Rn, let

x ∈ (2z − 2/3− δ, 2(z + 1)− 2/3− δ]× Rn−1

for a z ∈ Z and put (i, c) = ϕ(z). We will distinguish five cases depending
on the first coordinate x1 of x.

1. If x1 ∈
[
2z − i

6n+3 + δ, 2z + 1 + i
6n+3 − δ

]
, then

x+ (−δ, δ)× Rn−1 ⊂ Bz ∪Bz,0,

and taking into account (8) for y ∈ x+ (−δ, δ)× Rn−1 we have

(f1, . . . , fi−1, fi+1, . . . , fn+1)(y) = y + c.

2. If

x1 ∈
[
2z − i+ j

6n+ 3
+ δ, 2z − i+ j − 2

6n+ 3
− δ
)

∪
(
2z + 1 +

i+ j − 2

6n+ 3
+ δ, 2z + 1 +

i+ j

6n+ 3
− δ
]

for some j ∈ {1, . . . , n+ 1− i}, then
x+ (−δ, δ)× Rn−1 ⊂ Bz,j ∪Bz,j−1,

and for y ∈ x+(−δ, δ)×Rn−1 we have (note that if i > 1, then c1 = s1−2z)

(f1, . . . , fi+j−2, fi+j , . . . , fn+1)(y) =

{
y + c if j = 1,
y + (s1 − 2z, c2, . . . , cn) if j > 1.

3. If

x1 ∈
[
2z − n+ 2

6n+ 3
+ δ, 2z − n

6n+ 3
− δ
)

∪
(
2z + 1 +

n

6n+ 3
+ δ, 2z + 1 +

n+ 2

6n+ 3
− δ
]
,

then
x+ (−δ, δ)× Rn−1 ⊂ Bz,n+1−i ∪ Cz,1

and for y ∈ x+ (−δ, δ)× Rn−1 we have

(f1, . . . , fn)(y) = y + (s1 − 2z, c2, . . . , cn).
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4. If

x1 ∈
[
2z − n+ 1 + j

6n+ 3
+ δ, 2z − n− 1 + j

6n+ 3
− δ
)

∪
(
2z + 1 +

n− 1 + j

6n+ 3
+ δ, 2z + 1 +

n+ 1 + j

6n+ 3
− δ
]

for some j ∈ {2, . . . , n}, then

x+ (−δ, δ)× Rn−1 ⊂ Cz,j ∪ Cz,j−1,

and for y ∈ x+ (−δ, δ)× Rn−1 we have

(f1, . . . , fn+1−j , fn+3−j , . . . , fn+1)(y)

= (y1 + c1, . . . , yn+1−j + cn+1−j , yn+2−j , . . . , yn)

= y + (s1 − 2z, c2, . . . , cn+1−j , 0, . . . , 0).

5. If x1 ∈ (2z − 2/3− δ, 2z − 1/3 + δ), then

x+ (−δ, δ)× Rn−1 ⊂ Cz ∪ Cz,n ∪ Cz−1,n

and for y ∈ x+ (−c, c)× Rn−1 we have

(f2, . . . , fn+1)(y) = y.

To get (vii) it is enough to observe that according to (7) we have

(f1, . . . , fn+1)(Rn) ⊃
⋃
z∈Z

(f1, . . . , fn+1)(Bz) =
⋃
z∈Z

(f̃1, . . . , f̃n+1)(Bz)

= Rn+1.

Lemma 5. If 2ℵ0 ≤ ℵn, then for every d ∈ (0,∞) there exists an M ∈
(0,∞) and functions h1, . . . , hn+1 : Rn → R with the following properties:

(v′′) |h1(x)− h1(y)| ≤M for x ∈ Rn and y ∈ x+ (−d, d)× Rn−1;
(vi′′) for every x ∈ Rn there exists an l ∈ {1, . . . , n + 1} and a w ∈ Zn

such that

(9) (h1, . . . , hl−1, hl+1, . . . , hn+1)(y) = y+w for y ∈ x+ (−d, d)×Rn−1;

(vii′′) (h1, . . . , hn+1)(Rn) = Rn+1.

Proof. Fix a d ∈ (0,∞) and making use of Lemma 4 choose a positive
real constant δ and functions f1, . . . , fn+1 : Rn → R with properties (v)–(vii).

Let m be a natural number such that d < mδ. Defining h1, . . . , hn+1 :
Rn → R by

hj(y) = mfj

(
1

m
y

)
for j ∈ {1, . . . , n+ 1}

we easily see that (v′′)–(vii′′) hold with M = 3m.
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Proof of the Theorem. The proof goes by induction on m and Lemma 5
provides its first step. Let m be a positive integer and fix d ∈ (0,∞). Apply-
ing Lemma 5 we obtain an M ∈ (0,∞) and functions h1, . . . , hn+1 : Rn → R
with properties (v′′)–(vii′′).

Making use of the induction hypothesis consider functions f1, . . . , fn+m :
Rn → R satisfying (i) with c = max{d,M} and (ii). It follows from (ii) that
(f̃1, . . . , f̃n+m+1) : Rn+1 → Rn+m+1 given by

(f̃1, . . . , f̃n+m+1)(x1, . . . , xn+1) = ((f1, . . . , fn+m)(x1, . . . , xn), xn+1)

is a surjection and so is the function (g1, . . . , gn+m+1) : Rn → Rn+m+1 defined
by

(g1, . . . , gn+m+1) = (f̃1, . . . , f̃n+m+1) ◦ (h1, . . . , hn+1).

Fix now an x ∈ Rn and let l ∈ {1, . . . , n + 1} and w ∈ Zn be such that
(9) holds. Then

(10) if l > 1, then h1(y) = y1 + w1 for y ∈ x+ (−d, d)× Rn−1.

It follows from (i) that there exist a strictly increasing sequence (i1, . . . , in) ∈
{1, . . . , n+m}n and a u ∈ Zn such that

(11) (fi1 , . . . , fin)(y) = y + u for y ∈ (h1(x) + (−c, c))× Rn−1.

If l ≤ n, then put

in+1 = n+m+ 1, jk =

{
ik for k < l,
ik+1 for l ≤ k ≤ n,

v = (w1 + u1, . . . , wl−1 + ul−1, wl + ul+1, . . . , wn−1 + un, wn).

Clearly, 1 ≤ j1 < · · · < jn ≤ n+m+1 and v ∈ Zn. Fix y ∈ x+(−d, d)×Rn−1.
According to (9) we have

(gj1 , . . . , gjn)(y) = (f̃i1 , . . . , f̃il−1
, f̃il+1

, . . . , f̃in , f̃n+m+1)(h1, . . . , hn+1)(y)

= (f̃i1 , . . . , f̃il−1
, f̃il+1

, . . . , f̃in , f̃n+m+1)(y1 + w1, . . . ,

yl−1 + wl−1, hl(y), yl + wl, . . . , yn + wn)

= ((fi1 , . . . , fil−1
, fil+1

, . . . , fin)(y1 + w1, . . . , yl−1 + wl−1,

hl(y), yl + wl, . . . , yn−1 + wn−1)), yn + wn).

Moreover, as follows from (v′′),

(h1(y), y1 + w1, . . . , yn−1 + wn−1) ∈ (h1(x) + (−c, c))× Rn−1

and if l > 1, then (10) shows that the point

(y1 + w1, . . . , yl−1 + wl−1, hl(y), yl + wl, . . . , yn−1 + wn−1)

belongs to (h1(x) + (−c, c)) × Rn−1. Consequently, taking also (11) into
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account,
(gj1 , . . . , gjn)(y) = (y1 + w1 + u1, . . . , yl−1 + wl−1 + ul−1,

yl + wl + ul+1, . . . , yn−1 + wn−1 + un, yn + wn)

= y + v.

If l = n+ 1, then taking (10), (v′′) and (11) into account we see that
(gi1 , . . . , gin)(y) = (f̃i1 , . . . , f̃in)((h1, . . . , hn+1)(y))

= (f̃i1 , . . . , f̃in)(y1 + w1, . . . , yn + wn, hn+1(y))

= (fi1 , . . . , fin)(y + w) = y + w + u.
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