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ON AFFINITY OF PEANO TYPE FUNCTIONS

TOMASZ SLONKA (Katowice)

Abstract. We show that if n is a positive integer and 280 < X,,, then for every posi-

tive integer m and for every real constant ¢ > 0 there are functions f1,..., fo4m: R" = R
such that (f1,..., fatm)(R™) = R*™™ and for every z € R™ there exists a strictly increas-
ing sequence (i1,...,%n) of numbers from {1,...,n+m} and a w € Z™ such that

(firse s fi)y) =y+w fory€a+(—cc)x R""

According to Theorem 1 of [2] by M. Morayne the Continuum Hypoth-
esis implies the existence of functions fi, fo: R — R such that (f1, f2)(R)
= R? and for each € R at least one of fi, fy is differentiable at x. In [3]
M. Morayne gave a more general result: If n € N and 2% < R, then there
are functions fi,..., far1: R® — R such that (f1,..., faor1)(R?) = R*H!
and for each point of R at least n of those functions are differentiable at
that point. J. Cichonn and M. Morayne [I] generalized this result as follows.
If 2% < N,,, then for any m € N there are functions fi,..., fotm: R* = R
such that (f1,..., form)(R™) = R and at each point of R" at least n
of them are analytic at that point. It is the aim of this paper to strengthen
this statement, replacing analyticity at the point by affinity in some of its
neighbourhoods. More exactly we will prove the following theorem.

THEOREM. If 280 <V, and m € N, then for every c € (0,00) there exist
functions f1,..., fpem: R™ — R with the following properties:

(i) for every x € R™ there exist a strictly increasing sequence (iy,. .., i)
of numbers from {1,...,n+m} and a w € Z™ such that

(firs-- s fi)y) =y +w f07’y€x+(—c,c)><R"_1.
(i) (1, farm)(R?) = RYF™

We begin by proving several lemmas. The first one is a special case of
[, Theorem| by R. Sikorski, which is a variant of the well-known Sierpinski
decomposition of the plane.
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LEMMA 1. If X is a nonvoid set with |X| < W, then there exists a
collection

(1) {Agy o (@1, 20) € X}

of countable sets such that
n+1

2 x={J U U {@n,. o a k.. 20}

k=1 (J?1,...,l’n)EX” CLEAxl ,,,,, Tn

Lemma 2 is probably folklore. For case n = 1 it boils down to the well-
known fact (see [4, Ch. I, Prop. P5|) that the square of a set of cardinality ®;
is the countable union of graphs of functions and their inverses (as relations).
Hence we only sketch its proof.

LEMMA 2. Assume |R| < N,,. Then for every k € N there are functions
fik s fnrik: [0,1]" —= [0, 1] with the following properties:

(iii) for every k € N there is an i € {1,...,n+ 1} such that
(3) (fl,kv o 7fi71,k7 f’i+1,k7 DRI fn+1,k) = id[O,l]";

(iv) Upen(frps - - -5 farrk)([0,1]") = [0, 1]

Proof. Applying Lemma [l for X = [0,1] we obtain a collection of
countable sets such that (2) holds. Let h: [0,1]" = U, 2 e AN

L1,y Ty
be a function such that h(xi,...,z,) maps N onto A, .. for any
x1,...,xy € [0,1]. We define fi,..., fat1,6: [0,1]" — [0,1] by
(L n41) (k=145 - - + > Frt 1, (n 1) (b= 1)) (T15 - -+ Tn)
= (z1,...,x—1, h(x1, ..., zn) (k) 21, . .y Tp)

forkeN/ le{l,...,n+1} and z1,...,2, €[0,1]. =

LEMMA 3. There is a bijection a: Z" T x N — 27 such that
(4) lsi —t1] > 1 = la(s1,...,Snt1, k) —a(ty, ..., the1,0)| > 2
for (s1,...,8n41), (t1, ... tny1) € Z" and k,1 € N.

Proof. Let (see the figure) a: NU {0} — Z x (NU {0}) be a bijection
such that «(0) = (0,0) and

k—1<1 = |aa(k) —a1()| <1
for k,1 e NU{0}, and §: (—=N) — Z x (—N) a bijection such that g(—1) =
(0,—1) and
k—1<1 = |Bik) - B0l <1
for k,I € —N. Putting v = a U 3 we obtain a bijection v: Z — Z? such that
k=<1 = |nk)-—n0<1
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AN

for k,l € Z. Further, take an arbitrary bijection 6: Z — Z" x N and define
b: 27 — Z"1 x N by

b(2k) = (m1(k),d(y2(k))) for k € Z.

It is easy to see that b is a bijection and its inverse a has the desired prop-
erties. m

LEMMA 4. If 2% < R, then there exists a real constant § > 0 and
functions fi,..., fnr1: R — R with the following properties:
(V) |fi(z) — fily) <3 forz €R™ and y € x + (—5,0) x R*~L;
(vi) for every x € R™ there exists ani € {1,...,n+ 1} and a w € Z"
such that

(fio ficts firts - Far) W) = y+w  fory € a+(—06,0) xR
(vii) (f1,.--, foe1)(R?) = RPHL
Before the proof we propose to consider the special case n = 1 with-
out (v).
LEMMA 4/, If 280 = Xy, then there exist functions fi, fo: R = R and a
d > 0 with the following properties:
(vi') for every x € R there is an integer w such that either
fiy)=y+w forye (z—4,z+5)
or
foly)=y+w forye (x—¥5x+0);
(vii') (f1, f2)(R) = R?.
Proof. We will construct the desired functions fi, f2 in two steps. First,
applying Lemma 2, we define them on J,.;[22,22 + 1] in such a manner
that for every z € Z there is an i € {1,2} and a ¢ € Z such that f;(x) = z+¢

on [2z,2z + 1], and (f1, f2)(U,ez[22,22 + 1]) = R2. In the second step we
extend them onto the whole R to functions satisfying (vi’).
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Clearly R? is the union of the squares [s1,s1 + 1] X [s2, 52 + 1] over all
s1, S92 € Z. Furthermore, each such square is a countable union of graphs of
functions and their inverses (as relations). Consequently, for every n € N there
exists a function (hy,,hap): [0,1] — R2 such that Unen(h1,n, h2,n)([0,1])
= R? and for every n € N there exists s € Z such that hyn =idjg ) + s or
h27n = id[O,l] + s.

Take now any bijection a: N — 27 and define f: |J,,[22,22 + 1] — R?
as follows:

(fl, fz)(ZL‘ + 22) = (hl,a*1(2z)a h27a71(22))({£) for x € [0, 1] and z € Z.
Consider any ¢: Z — {1,2} x Z such that
if ¥(2)=(i,c), then fz"[Qz,zzH} =id[; 2,41 ¢

As any extension (fi, f2) of f onto R? satisfies (vii'), the final step is to
extend f to a function f satisfying (vi’).

For each z € Z we define f on [22—1/2,22+3/2) by putting (i, ¢) = ¢(2)
and

(f1, f2) (@)
(f1, f2)(x) for x € [22,22 4 1],
=4 (x+c,x+c) forxe2z—1/4,224+5/4]\ [22,2z + 1],
(x+c ) for x € 22 —1/2,22+3/2) \ [22 — 1/4,22 4+ 5/4].
If z € Z, then

(22 —3/4,22z — 1/4)
C(2(z—=1)=1/2,2(z—1)+3/2)\ [2(z — 1) = 1/4,2(z — 1) + 5/4])
U([22 —1/2,22+3/2)\ [22 — 1/4,22 + 5/4])
whence
fo(x) =a forz € (22 —3/4,2z — 1/4);
moreover, if ¥ (z) = (i, c), then also
filx)=x+c forxe[22—1/4,22+5/4],
file)=x+4+c forxzel22—-1/2,22)U (22 + 1,22+ 3/2],
which yields (vi') with § =1/8.

In the proof of Lemma 4 we will construct the desired functions similarly,
but to have also (v) in the first step we rely on both Lemmas 3 and 2.

Proof of Lemma 4. Let a: Z"t! x N — 27 be a bijection such that ({4)
holds, for s = (s1,...,5,41) € Z"" k € N put aj, = a(s,k) and define
es: ag, a3l +1] x [0,1]"F — [0,1] and I°: [0, 1]+ — T [si, i + 1] by

er(u) =u—(aj,0,...,0), *(v)=s+w.
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Clearly e; and [° are bijections for all s € Z"*t1 k € N. For every k € N let
ik -5 fatik: [0,1] — [0,1] satisfy (iii) and (iv), and put

( ik; ceey hfz—l—l,k) =00 (fl,Im ey fTH-l,k) o ez for s € zntl
Then
5) g B ) (g af + 1] x [0,1]771)
keN
= U ls((fl,ka ceey fn+17k)(€i([az,az + 1] X [0’ 1]n—1)))
keEN
- IS(U (frks -+ Jnr1,2) ([0, 1]")) = (0,17 = [0, 1] 4 s
keN

for s € Z"*'. Moreover, if kK € N and i € {1,...,n + 1} is such that
holds, then for any s € Z"*! and = € [af, aj + 1] x [0,1]""! we have

6) ( fiw cees hffl,ka hf+1,ka cees hfLH,k)(f’?)

( Ky fimt fit ks - oo k) 0 €R(@) 4 (815- 005 Sim1, Sit1s -+, Sng1)
=e] +($1,.. , Si— 1,Si+1,...,8n+1)
{a:—i— (s2 —aj,53,...,5041) ifi=1,
ak,SQ,...,Si,1,8i+1,‘..,sn+1) ifi>1,
=xr+c
with a suitable ¢ € Z" (depending on s and k).
Since

[ap,ap + 1] Nag.ag +1] = ¢ for (p,s) # (¢,1),
the formula . 3
(f17 ce 7fn+1)($) = ( ikv ce ’hf7,+1,k2)(x)
for z € [aj,a; +1] x [0,1]"71, s € Z"™! and k € N defines a function
(fl, . .,fn+1): U.ez[22,22 4+ 1] x [0, 1]"~! — R". According to 1) we
have

(M oo Jar) (U 2222 4 1] x 0,177

2€EZ

= U 0 mha0aq ek + 1 x 0,177
(s,k)EZN+1 XN
= U (0.1 +5) =R
sezntl
Moreover, it follows from @ that there exists a ¢: Z — {1,...,n+1} xZ"*!
such that if ¢(z) = (i, ¢), then

(8) (fir-os ficts fivts - s Far)le2er)x o)1 = idos 00 1yx(o,1yn-1 + €.
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For z € Z we decompose the set (22 —2/3,2z +4/3] x R"~! putting
B, =[22,22+ 1] x [0,1]"7Y,  C, = (22 —2/3,22 —1/3) x R""},
+1+4j +j +j i+l —1
Coy = ([22 - 5igsh 22 — gas) U (22 + 1+ g5, 22 + 1+ T ) x R”
for j € {1,...,n}, and, with (i,c) = p(z),
B.o = [22 — 543,22+ 1+ 53] x RPN\ B,

_ i+ 4j—1 i4j—1 it -1
B.j=([22— gui5: 22 — i) U (22 + 1+ G 22 + 1+ 53] ) x R”
for j € {1,...,n+1—1i}, and then we define (fi,..., fn+1) on (22—2/3,2z+
4/3] x R™! by taking s € Z"*! and k € N such that af = 2z and putting

(f1,-- o fag1)(z) =

((fisee s fug) (@) for x € B,,
(x14c1,. oy Ti1 + €21, 81, T + Ciy ... T+ ¢)  for x € By,
(x1+ 81— 22,21+ €1y oy Ty + C) forxe B, ifi=1,
(x1+c1yee @i+ ¢y T+ Ciy ooy T+ Cp) forxe B, ifi>1,
(14581 — 22,20+ C2, ..., Tim145 + Cim144, for z € B, j and

Ti—14j + Cim14j, Titj + Cigjs - Tn+Cn) JE{2,...,n+1—1i},
(x1+ 81 — 22,29 + ¢, ... y Tntl—j + Cntl—j, for x € Cz,j and
Tntl—js---,Tn) JE€{1l,...,n},

(81,215, Tp) for z € C,.

We will show that (v)—(vii) hold with
1
0= .
12n +6
First, however, observe that if 2 € Z and aj, = 2z, then for 4 > 1 according
to the definition of ¢ in @, we have s; = ¢; + 2z and so

fi((22 —2/3,2(z 4+ 1) — 2/3] x R* 1)
C fiB)U((22—2/3,2(z+1) — 2/3] + 1)
C fi(B:) U (s1 —2/3,51 +4/3];
and if ¢ = 1, then
fi((22 —2/3,2(z+1) — 2/3] x R*™Y) € f1(B.) U (s1 — 2/3, 51 + 4/3]
as well. Consequently, for any z € Z, if aj, = 2z, then
f1((22 —2/3,2(z 4+ 1) — 2/3] x R*1)
C hf ([22,22 + 1] x R" 1) U (s1 — 2/3, 51 + 4/3]
C [s1,81+1]U(s1 —2/3,s1+4/3] = (s1 —2/3,s1 +4/3].
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Let z,y € R™ and |z1 — y1| < 1. Then there are integers 21, z2 such that
71 € (221 — 2/3,2(z1 + 1) — 2/3], y1 € (222 — 2/3,2(22 + 1) — 2/3]
and |22 — 21| < 1. If af = 2z; and a} = 229, then
la(s1, ...y Snt1, k) —alty, ... tnt1, )| = (221 — 22| < 2
and
fi(z) € (s1=2/3,s1+4/3], fi(y) € (t1 —2/3, 11 +4/3],
which together with (4]) shows that [s;1 —¢1] <1 and |fi(z) — fi(y)| < 3 and
proves (V).
To prove (vi) fix an x € R", let

r€(22—-2/3-6,2(2+1)—2/3 -] x R*!

for a z € Z and put (i,¢) = p(z). We will distinguish five cases depending
on the first coordinate x1 of x.

1.Ifz; € [227ﬁ+5,22+1+ﬁ7(5],then
x4 (=6,8) x R"! € B, U B,,
and taking into account for y € x + (—6,9) x R" we have
(froo fimt fivn oo fae) (W) =y + e

2. 1f
it itj—2
eloz— 1T 450, 1T
o [Z 6n+3 % on+s3 )
itj—2 i+
Ul2er1+2 72 1 50. 41 )
<z+ T onys PO T e ]

for some j € {1,...,n+ 1 — i}, then
T+ (—(5, 5) x R" ! ¢ Bzﬂ‘ U Bz,j—la
and for y € z+ (—6,5) x R"~! we have (note that if i > 1, then ¢; = 51 — 22)

Fro oo fivgz fiogees fu) ) = L2 °C =t
Lo Jikj—=25 Jitjo - o Jnp)(y) = U+ (51— 22,00 ien) iG> 1.
3. If
n-+2 n
€ |2z — 0,22 — -0
o [z 6nt3 "%  Gnt3 )
n n-+2
u(2:+1 52241 _
<Z+ Tt O T T 13 }
then

T + (—(5, (5) x R ¢ Bz,n+1—i U Cz,l
and for y €  + (—4,0) x R* we have
(flaafn)(y) :y+(51 —22,62,...,Cn).
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4. If

n+14j n—14j
elor TS 50, 2T
o [Z 6nt3 7T Ton+s >

n—1+4j n+1+j
Ul2e+1+2 T 450, 4142 -T0 5
<Z+ T onrs 0T T e ]

for some j € {2,...,n}, then
x+ (=9,0) x R"! ¢ C,;UC; 1,
and for y € x + (—4,8) x R"~! we have

(fisoos farimjs favs—js oo fo1) (W)
=1+t Ynt1—j + Cni—jy Ynd2—js - -5 Un)
=y+(s1 —2z,¢2,...,¢41-5,0,...,0).
5. If x1 € (22 —2/3—6,22—1/3+6), then
T+ (=6,0) xR CcC,UC,,UC, 1,
and for y € x + (—c,c) x R"! we have
(fas-- s far)(y) = .
To get (vii) it is enough to observe that according to we have

(frs oo far)®) D U (Fre s far)(B2) = [ (Frs s Farn)(B:)

2€7Z 2€Z

=R"" u

LEMMA 5. If 2% < X, then for every d € (0,00) there exists an M €
(0,00) and functions hy,..., hyy1: R™ — R with the following properties:

(V") [h(@) = ha(y)| < M for 2 € R" and y € 2+ (~d,d) x R*;
(vi") for every x € R™ there exists anl € {1,...,n+ 1} and a w € Z"
such that

(9) (hb ceey hl—lahl-i—la R hn+1)(y) =ytw fOT' yexr+ (_d7 d) X Rn_l;
(Vii’l) (h‘la s 7hn+1)(Rn) = Rn+1'

Proof. Fix a d € (0,00) and making use of Lemma 4 choose a positive

real constant ¢ and functions fi, ..., fn+1: R™ — R with properties (v)—(vii).
Let m be a natural number such that d < md. Defining hq, ..., hytq :
R™ — R by

hj(y):mfj<;y> forje{l,...,n+1}

we easily see that (v")—(vii”) hold with M = 3m.
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Proof of the Theorem. The proof goes by induction on m and Lemma 5
provides its first step. Let m be a positive integer and fix d € (0, 00). Apply-
ing Lemma 5 we obtain an M € (0, 00) and functions hi,...,hpy1: R” = R
with properties (v")—(vii”).

Making use of the induction hypothesis consider functions fi,..., foim :
R™ — R satisfying (i) with ¢ = max{d, M} and (ii). It follows from (ii) that

(fis-- o fngme1) s RPTL — RFMHL given by

(1o Farme) (@1, 1) = (Fro - frgm) (@1, ), Togd)
is a surjection and so is the function (g1, . .., gnrmi1): R” — R?F™+L defined
by

(G1s s Gntms1) = (f1s oy Farmr1) © (h1s- oy Bpgr).-

Fix now an z € R” and let [ € {1,...,n+ 1} and w € Z" be such that
(9) holds. Then

(10) if 1 > 1, then hy(y) =y1 +wy fory € x + (—d,d) x R" 1,

It follows from (i) that there exist a strictly increasing sequence (i1, ... ,i,) €
{1,...,n+m}"™ and a u € Z" such that
(11) (firs- s fi)W) =y +u  fory € (hi(z) + (=¢,¢)) x R

If | < n, then put
i for k < I,
igyr1 forl <k <mn,

U= ('LUl + U, ., Wwi— U1, W U -, Wi—d +unywn)

iny1 =n+m+1, ij{

Clearly, 1 < j; < --- < jp <n+m+landv € Z" Fix y € x+(—d,d) xR* 1,
According to (9) we have

(gjl» cee ,gjn)(l/) = (.]ZZ'N S »fil,p JEz‘lH, cee finafn+m+1)(h17 ooy hny1) ()
= (fir, - -v]Fiz_pfiH.p oo Fins Frema) (g1 + w1,
Yi—1 +wi—1, hi(y), g +wi, .. Y+ wy)
= ((firs -+ Juris firens oo fi)(yr F w1, yi—1 +wp—,
ha(y)s i +wi, - Yn—1 + Wn-1)), Yn + Wn).
Moreover, as follows from (v"),
(M), g1 + w1, Yot + wpo1) € (ha(2) + (—¢,¢)) x R
and if [ > 1, then (10) shows that the point

(1 + w1, g1+ wiey, a(y), g+ wis - Y-y + wpet)
belongs to (hi(z) + (—c,c)) x R*~!. Consequently, taking also into
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account,
(Gjrs - 95) (W) = (Y1 + w1 +ur, .y +wimy + we,
Y+ W+ U1, Yn1 T Waet - Uny Y+ Wh)
=Y+
If | = n + 1, then taking (10, (v) and into account we see that
Girs -+ i) () = (Firs s fi) (1 1) (1)
= (fivs s Fi) 1 wi, o g+ wn, g (9)
= (fir,-- Ji)W+w)=y+w+u. u
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