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JOIN-SEMILATTICES WITH TWO-DIMENSIONAL

CONGRUENCE AMALGAMATION

BY

FRIEDRICH WEHRUNG (Caen)

Abstract. We say that a 〈∨, 0〉-semilattice S is conditionally co-Brouwerian if (1) for
all nonempty subsets X and Y of S such that X ≤ Y (i.e. x ≤ y for all 〈x, y〉 ∈ X × Y ),
there exists z ∈ S such that X ≤ z ≤ Y , and (2) for every subset Z of S and all a, b ∈ S,
if a ≤ b ∨ z for all z ∈ Z, then there exists c ∈ S such that a ≤ b ∨ c and c ≤ Z. By
restricting this definition to subsets X, Y , and Z of less than κ elements, for an infinite
cardinal κ, we obtain the definition of a conditionally κ-co-Brouwerian 〈∨, 0〉-semilattice.

We prove that for every conditionally co-Brouwerian lattice S and every partial lattice
P , every 〈∨, 0〉-homomorphism ϕ : Conc P → S can be lifted to a lattice homomorphism
f : P → L for some relatively complemented lattice L. Here, Conc P denotes the 〈∨, 0〉-
semilattice of compact congruences of P .

We also prove a two-dimensional version of this result, and we establish partial con-
verses of our results and various of their consequences in terms of congruence lattice rep-
resentation problems. Among these consequences, for every infinite regular cardinal κ and
every conditionally κ-co-Brouwerian S of size κ, there exists a relatively complemented
lattice L with zero such that Conc L ∼= S.

1. Introduction. The present paper deals essentially with two cate-
gories of structures. The first one is the category PL of all partial lattices

(see Definition 3.1) and their homomorphisms (see Definition 4.1), while the
second one is the category S of all 〈∨, 0〉-semilattices and 〈∨, 0〉-homomor-
phisms. These categories are related by the functor Conc : PL → S. For a
partial lattice P , Conc P is the 〈∨, 0〉-semilattice of compact congruences of
P ; see Section 3.

In the last few years some effort has been put on the investigation of the
effect of the Conc functor not only on the objects of PL, but also on the
diagrams of PL, in fact, essentially on the diagrams of the full subcategory
L of PL whose objects are all lattices. A complete account of the pre-1998
stages of this research is presented in [7]. Formally, a diagram of PL is a
functor from a category C to PL. Most of the results of the last years on
this topic can then be conveniently formulated via the following definition.
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Definition 1.1. Let D be a diagram of partial lattices. We denote the
composition Conc ◦D by Conc D. For a 〈∨, 0〉-semilattice S and a partial
lattice P , we say that a homomorphism ϕ : Conc D → S can be

(i) factored through P if there are a homomorphism f : D → P and a
〈∨, 0〉-homomorphism ψ : Conc P → S such that ϕ = ψ ◦ Conc f ;

(ii) lifted through P if there are a homomorphism f : D → P and an
isomorphism ψ : Conc P → S such that ϕ = ψ ◦ Conc f .

In (i) (resp., (ii)) above, we say that ϕ can be factored to (resp., lifted

to) f .

Homomorphisms between diagrams have to be understood in the cate-
gorical sense, e.g., if D : C → PL is a diagram of partial lattices and if P is a
partial lattice, a homomorphism f : D → P consists of a family (fX)X∈ObC

of homomorphisms fX : D(X) → P , for any object X of C, such that if
u : X → Y is a morphism in C, then fX = fY ◦D(u). Of particular interest
to us will be the case where D consists exactly of one partial lattice, i.e.,
C is the trivial category with one object and one morphism, and the case
where D is a truncated square, i.e., C consists of distinct objects 0, 1, and 2
together with nontrivial morphisms e1 : 0 → 1 and e2 : 0 → 2. In that case
D can be described by partial lattices P0, P1, and P2, together with homo-
morphisms f1 : P0 → P1 and f2 : P0 → P2. Moreover, if P is a partial lattice,
a homomorphism from D to P can then be described by homomorphisms of
partial lattices gi : Pi → P , for i < 3, such that g1 ◦ f1 = g2 ◦ f2 = g0. The
situation can be described by the following commutative diagrams:

P

P1 P2 P1

g1
>>||||||||

P2

g2
``BBBBBBBB

P0

f1

``AAAAAAAA f2

>>}}}}}}}}

Illustrating D and a homomorphism from D to P

P0

f1

``AAAAAAAA f2

>>}}}}}}}}

g0

OO

We shall call P0 (resp., P1 and P2) the bottom (resp., the sides) of D.
Then a typical lifting result for the Conc functor is the following (see

J. Tůma [10] and G. Grätzer, H. Lakser, and F. Wehrung [6]):

Theorem 1. Let D be a truncated square of lattices and let S be a finite

distributive 〈∨, 0〉-semilattice. Then every homomorphism ϕ : Conc D → S
can be lifted through a relatively complemented lattice.

For infinite S, completely different methods yield the following result
(see Theorem C in F. Wehrung [15]).
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Theorem 2. Let K be a lattice and let S be a distributive lattice with

zero. Then every 〈∨, 0〉-homomorphism ϕ : ConcK → S can be lifted. Fur-

thermore, a lift f : K → L can be found in such a way that :

(i) L is relatively complemented.

(ii) The range of f generates L as an ideal (resp., a filter).

(iii) If the range of ϕ is cofinal in S, then the range of f generates L as

a convex sublattice.

We will express the fulfilment of conditions (i)–(iii) above by saying that
ϕ has a good lift, although, strictly speaking, one would need to define good
ideal lifts and good filter lifts. Moreover, this condition turns out to be
somewhat looser than it appears, as, for example, it can be strengthened by
many additional properties of L, such as the ones listed in the statement of
Proposition 20.8 of [15]. For example, L has definable principal congruences.

One can then say that Theorem 1 is a two-dimensional lifting result for
finite distributive 〈∨, 0〉-semilattices, while Theorem 2 is a one-dimensional
lifting result for arbitrary distributive lattices with zero. In fact, the follow-
ing stronger, “two-dimensional” result holds (see [15, Theorem D]):

Theorem 3. Let D be a truncated square of lattices with finite bottom,
let S be a distributive lattice with zero, and let ϕ : Conc D → S be a homo-

morphism. Then ϕ has a good lift.

In the “good lift” statement, the range of f : D → L has to be understood
as the union of the ranges of the images under f of the individual objects
in D, while the range of ϕ is the 〈∨, 0〉-semilattice generated by the union
of the ranges of the images under ϕ of the individual objects in Conc D.

As we shall see in the present paper, the statement of Theorem 3 does
not extend to the case where the bottom of D is an infinite lattice. How-
ever, we shall introduce a class of distributive lattices with zero, the so-
called conditionally co-Brouwerian ones (see Definition 6.1), that includes
all finite distributive lattices. Moreover, every complete sublattice of a com-
plete Boolean lattice is conditionally co-Brouwerian. For those lattices, the
stronger statement remains valid, and much more:

Theorem 4. Let P be a partial lattice and let S be a conditionally co-

Brouwerian lattice. Then every homomorphism ϕ : Conc P → S has a good

lift.

Now the two-dimensional version of Theorem 4:

Theorem 5. Let D be a truncated square of partial lattices with bottom

a lattice and let S be a conditionally co-Brouwerian lattice. Then every

homomorphism ϕ : Conc D → S has a good lift.
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As we shall prove in Sections 8 and 9, some of the assumptions on S are
also necessary for the statements of Theorems 4 and 5 to hold.

All these results imply the following corollaries:

Corollary 6.4. Let S be a distributive 〈∨, 0〉-semilattice that can be

expressed as a 〈∨, 0〉-direct limit of at most ℵ1 conditionally co-Brouwerian

lattices. Then there exists a relatively complemented lattice L with zero such

that Conc L ∼= S. Furthermore, if S is bounded, then L can be taken bounded

as well.

This result extends a well known result of A. Huhn [8, 9] that states
that every distributive 〈∨, 0〉-semilattice of size at most ℵ1 is isomorphic to
Conc L for some lattice L.

Our next corollary also implies a positive solution for Problem 4 of [6].

Corollary 6.5. Let K be a lattice that can be expressed as a direct

union of countably many lattices whose congruence semilattices are condi-

tionally co-Brouwerian. Then K embeds congruence-preservingly into some

relatively complemented lattice L, which it generates as a convex sublattice.

We also establish relativizations of the methods leading to Theorems
4 and 5. These statements involve a relativized version, for every infinite
cardinal κ, of the notion of a conditionally co-Brouwerian lattice. We call
the resulting objects conditionally κ-co-Brouwerian 〈∨, 0〉-semilattices (see
Definition 7.1).

Theorem 6. Let κ be an infinite cardinal and let S be a conditionally

κ-co-Brouwerian 〈∨, 0〉-semilattice of size κ. Then there exists a relatively

complemented lattice L with zero such that Conc L ∼= S. Furthermore, if S
is bounded , then L can be taken bounded as well.

2. Algebraic lattices. We recall that in a lattice L, an element a is
compact if for any nonempty upward directed subset X of L, a ≤

∨

X im-
plies that a ≤ x for some x ∈ X. We denote by K(L) the join-semilattice
of compact elements of L. We say that L is algebraic if L is complete and
every element of L is a join of compact elements. If L is an algebraic lattice,
then K(L) is a 〈∨, 0〉-semilattice, while for every 〈∨, 0〉-semilattice S, the
lattice IdS of all ideals of S is an algebraic lattice. These transformations
can be extended to functors in a canonical way. The relevant definitions
for the morphisms are the following. For 〈∨, 0〉-semilattices, they are the
〈∨, 0〉-homomorphisms, while for algebraic lattices, they are the compact-
ness preserving complete join-homomorphisms; by definition, for complete
lattices A and B, a map f : A → B is a complete join-homomorphism if
f(

∨

X) =
∨

f [X] for any subset X of A, while f is compactness preserving
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if f [K(A)] ⊆ K(B). Then the aforementioned category equivalence can be
stated in the following condensed form:

Proposition 2.1. The functors S 7→ IdS and A 7→ K(A) define a

category equivalence between 〈∨, 0〉-semilattices with 〈∨, 0〉-homomorphisms

and algebraic lattices with compactness preserving complete join-homomor-

phisms.

3. Partial lattices. Our notations and definitions are the same as in
[15]. If X is a subset of a quasi-ordered set P and if a ∈ P , let a = supX
(resp., a = infX) be the statement that a is a majorant (resp., minorant) of
X and that every majorant (resp., minorant) x of X satisfies a ≤ x (resp.,
x ≤ a). We observe that this statement determines a only up to equivalence.

Definition 3.1. A partial prelattice is a structure 〈P,≤,
∨

,
∧

〉, where P
is a nonempty set, ≤ is a quasi-ordering on P , and

∨

,
∧

are partial functions
from the set [P ]<ω∗ of all nonempty finite subsets of P to P with the following
properties:

(i) a =
∨

X implies that a = supX for all a ∈ P and all X ∈ [P ]<ω∗ .
(ii) a =

∧

X implies that a = infX for all a ∈ P and all X ∈ [P ]<ω∗ .

We say that P is a partial lattice if ≤ is antisymmetric.
A congruence of P is a quasi-ordering � of P containing ≤ such that

〈P,�,
∨

,
∧

〉 is a partial prelattice.

For a partial lattice P , a congruence c of P , and elements x, y of P ,
we shall often write x ≤c y instead of 〈x, y〉 ∈ c, and x ≡c y instead of
the conjunction of x ≤c y and y ≤c x. The quotient P/c has underlying
set P/≡c, and we endow it with the quotient quasi-ordering ≤c/≡c and the
partial join defined by the rule

a =
∨

X iff there are X ∈ [P ]<ω∗ and a ∈ P

with a =
∨

X, a = a/c, and X = X/c,

where a/c denotes the equivalence class of a modulo c and we put X/c =
{x/c | x ∈ X}. The partial meet on P/c is defined dually.

For a, b ∈ P , we denote by Θ+
P (a, b) the least congruence c of P such

that a ≤c b, and we put ΘP (a, b) = Θ+
P (a, b)∨Θ+

P (b, a), the least congruence
c of P such that a ≡c b. Of course, the congruences of the form Θ+

P (a, b) are
generators of the join-semilattice Conc P .

We shall naturally identify lattices with partial lattices P such that
∨

and
∧

are defined everywhere on [P ]<ω∗ .

Proposition 3.2. Let P be a partial prelattice. Then the set ConP of

all congruences of P is a closure system in the powerset lattice of P × P ,
closed under directed unions. In particular , it is an algebraic lattice.
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We denote by Conc P the 〈∨, 0〉-semilattice of all compact congruences
of P , by 0P the least congruence of P (that is, 0P is the quasi-ordering
of P ), and by 1P the largest (coarse) congruence of P .

If P is a lattice, then ConP is distributive, but this may not hold for a
general partial lattice P .

Many 〈∨, 0〉-homomorphisms will be constructed by using the following
notion of measure.

Definition 3.3. Let P be a partial lattice and let S be a 〈∨, 0〉-semi-
lattice. An S-valued measure on P is a map µ : P × P → S that has the
following properties (we write µ(x, y) instead of µ(〈x, y〉) from now on):

(i) µ(x, y) = 0 for all x, y ∈ P such that x ≤ y.

(ii) µ(x, z) ≤ µ(x, y) ∨ µ(y, z) for all x, y, z ∈ P .

(iii) µ(a, b) =
∨

x∈X µ(x, b) for all a, b ∈ P and all X ∈ [P ]<ω∗ such that
a =

∨

X.

(iv) µ(a, b) =
∨

y∈Y µ(a, y) for all a, b ∈ P and all Y ∈ [P ]<ω∗ such that
b =

∧

Y .

We omit the easy proof of the following lemma (see also Proposition 13.1
in [15]). This lemma states that the notion of measure on P and the notion
of 〈∨, 0〉-homomorphism from Conc P are essentially equivalent.

Lemma 3.4. Let P be a partial lattice and let S be a 〈∨, 0〉-semilattice.

Then:

(i) For every 〈∨, 0〉-homomorphism µ : Conc P → S, the map

µ : P × P → S, 〈x, y〉 7→ µΘ+
P (x, y), is an S-valued measure on P .

(ii) For any S-valued measure µ on P , there exists a unique 〈∨, 0〉-homo-

morphism µ : Conc P → S such that µ(x, y) = µΘ+
P (x, y) for all x, y ∈ P .

The homomorphism µ (the “integral” with respect to µ) is of course
defined by the formula

µ
(

∨

i<n

Θ+
P (xi, yi)

)

=
∨

i<n

µ(xi, yi)

for all n < ω and all x0, . . . , xn−1, y0, . . . , yn−1 ∈ P .

4. Homomorphisms of partial lattices

Definition 4.1. If P and Q are partial prelattices, a homomorphism of

partial prelattices from P to Q is an order preserving map f : P → Q such
that a =

∨

X (resp., a =
∧

X) implies that f(a) =
∨

f [X] (resp., f(a) =
∧

f [X]) for all a ∈ P and all X ∈ [P ]<ω∗ . We say that a homomorphism f is
an embedding if f(a) ≤ f(b) implies that a ≤ b for all a, b ∈ P .
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For a homomorphism f : P → Q of partial lattices, the kernel of f ,
denoted by ker f , is defined as

ker f = {〈x, y〉 ∈ P × P | f(x) ≤ f(y)}.

Moreover, we can define the following maps:

• The map Con f : ConP → ConQ, obtained by defining, for any con-
gruence a of P , the congruence (Con f)(a) as the least congruence of Q that
contains all the pairs 〈f(x), f(y)〉 for 〈x, y〉 ∈ a.

• The restriction Conc f of the map Con f from Conc P to ConcQ.

• The map Res f : ConQ → ConP , obtained by defining, for any con-
gruence b of Q, the congruence (Res f)(b) as the set of all 〈x, y〉 ∈ P × P
such that 〈f(x), f(y)〉 ∈ b. If, in particular, P is a partial sublattice of Q
and f : P →֒ Q is the inclusion map, then we shall write b↾P instead of
(Res f)(b).

This way the maps P 7→ ConP and P 7→ Conc P can be extended
to functors from partial lattices and their homomorphisms to, respectively,
complete lattices with compactness preserving join-complete homomor-
phisms, and 〈∨, 0〉-semilattices with 〈∨, 0〉-homomorphisms. On the other
hand, f 7→ Res f defines a contravariant functor from partial lattices to com-
plete lattices with meet-complete homomorphisms that preserve nonempty
directed joins.

The following lemma is a special case of a universal algebraic triviality:

Lemma 4.2. Let f : P → Q be a homomorphism of partial lattices. Then

the following are equivalent :

(i) Con f is one-to-one.

(ii) Conc f is one-to-one.

(iii) a = (Res f) ◦ (Con f)(a) for all a ∈ ConP .

If one of the items of Lemma 4.2 is satisfied, we say that f has the
congruence extension property.

For a partial lattice P , we denote, as in [15], by FL(P ) the free lattice

over P (see [2]). We denote by jP the canonical embedding from P into
FL(P ).

Proposition 4.3. Let P be any partial lattice. Then jP has the congru-

ence extension property.

Proof. For a congruence a of P , we denote by pa the canonical projection
from P onto P/a. Since k = jP/a ◦ pa is a homomorphism of partial lattices
from P to FL(P/a), there exists, by the universal property of the map jP , a
unique lattice homomorphism qa : FL(P ) ։ FL(P/a) such that qa ◦ jP = k,
as in the following commutative diagram:
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P
� � jP //

pa
���� k $$JJJJJJJJJJ FL(P )

qa
����

P/a � �

jP/a

// FL(P/a)

Put b = (Res jP ) ◦ (Con jP )(a), and let x, y ∈ P be such that x ≤b y. This
means that jP (x) ≤(Con jP )(a) jP (y), hence, by composing with qa, we obtain

(4.1) k(x) ≤(Con k)(a) k(y).

However, (Con k)(a) = Con(jP/a ◦ pa)(a) = (Con jP/a)(0P/a) = 0FL(P/a).
Therefore, the relation (4.1) is equivalent to k(x) ≤ k(y), whence, since jP/a
is an embedding, pa(x) ≤ pa(y), that is, x ≤a y. Therefore, b ⊆ a. The
converse inequality is trivial, hence a = b. The conclusion follows.

Let us recall some further classical definitions, also used in [15]:

Definition 4.4. Let P be a partial lattice.

(i) A partial sublattice of P is a subset Q of P that is closed under
∨

and
∧

.
(ii) An ideal (resp., filter) of P is a lower (resp., upper) subset of P closed

under
∨

(resp.,
∧

).

We observe that both ∅ and P are simultaneously an ideal and a filter
of P . For a subset X of P , we denote by I(X) (resp., F(X)) the ideal (resp.,
filter) of P generated by X.

Lemma 4.5. Let f : P → Q be a homomorphism of partial lattices.

If I(f [P ]) = F(f [P ]) = Q, then Conc f is a cofinal map from Conc P to

ConcQ.

Proof. Put b = (Con f)(1P ); it suffices to prove that b = 1Q.
Fix x ∈ P . Then f(x) ≤b f(y) for all y ∈ P , thus the set Fx = {v ∈ Q |

f(x) ≤b v} contains f [P ]. Since Fx is obviously a filter of Q, it follows from
the assumptions that Fx = Q. Hence, we have established that

(4.2) f(x) ≤b v for all x ∈ P and all v ∈ Q.

Now it follows from (4.2) that the set Iv = {u ∈ Q | u ≤b v} contains
f [P ] for all v ∈ Q. Since Iv is obviously an ideal of Q, it follows from
the assumptions that Iv = Q. Therefore, u ≤b v for all u, v ∈ Q, that is,
b = 1Q.

Corollary 4.6. Let P be a partial lattice. Then the canonical map

Conc jP : Conc P → Conc FL(P ) is a cofinal embedding.

Proof. By Proposition 4.3, Conc jP is an embedding. Furthermore, P
generates FL(P ) as a lattice, thus, a fortiori, P generates FL(P ) both as an
ideal and as a filter. Therefore, by Lemma 4.5, Conc jP has cofinal range.
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5. Duality of complete lattices. The facts presented in this section
are standard, although we do not know of any reference where they are
recorded. Most of the proofs are straightforward, in which case we omit
them. We shall mainly follow the presentation of [11].

In what follows, complete meet-homomorphisms are defined in a dual
fashion as complete join-homomorphisms, and we denote by C∨ (resp., C∧)
the category of complete lattices with complete join-homomorphisms (resp.,
complete meet-homomorphisms).

Definition 5.1. Let A and B be complete lattices. Two maps f : A→B
and g : B → A are dual if the equivalence

f(a) ≤ b if and only if a ≤ g(b)

holds for all 〈a, b〉 ∈ A×B.

We recall some basic folklore facts stated in [11]. For complete lattices A
and B, if f : A → B and g : B → A are dual, then f is a complete join-ho-
momorphism and g is a complete meet-homomorphism. Also, for every com-
plete join-homomorphism (resp., complete meet-homomorphism) f : A→ B
(resp., g : B → A), there exists a unique g : B → A (resp., f : A→ B) such
that f and g are dual, in symbols g = f∗ (resp., f = g†).

The basic categorical properties of the duality are recorded in the fol-
lowing lemma.

Lemma 5.2. (i) The correspondence f 7→ f∗ defines a contravariant

functor from C∨ to C∧.

(ii) The correspondence g 7→ g† defines a contravariant functor from

C∧ to C∨.

(iii) If f is a complete join-homomorphism, then (f∗)† = f .

(iv) If g is a complete meet-homomorphism, then (g†)∗ = g.

Of particular importance is the effect of the duality on complete join-
homomorphisms of the form Con f : ConP → ConQ, where f : P → Q is a
homomorphism of partial lattices.

Lemma 5.3. Let P and Q be partial lattices, and let f : P → Q be a

homomorphism of partial lattices. Then Con f and Res f are dual.

Lemma 5.4. Let A and B be complete lattices, and let g : B → A be

a complete meet-homomorphism. Then g ◦ g† ◦ g = g. In particular , if g is

surjective, then g† is an embedding.

Let A and B be complete lattices. A map f : A→ B is said to preserve

nonempty directed joins if f(
∨

X) =
∨

f [X] for any nonempty upward di-
rected subset X of A.
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Lemma 5.5. Let A and B be complete lattices.

(i) Let g : B → A be a complete meet-homomorphism. If g preserves

nonempty directed joins, then the dual map g† : A→ B preserves compact-

ness.

(ii) Let f : A → B be a complete join-homomorphism. If A is algebraic

and f preserves compactness, then the dual map f∗ : B → A preserves

nonempty directed joins.

Proof. (i) Let a ∈ K(A); we prove that b = g†(a) belongs to K(B). So
let X be a nonempty upward directed subset of B such that b ≤

∨

X. By
the definition of g†, this means that a ≤ g(

∨

X), which, by the assumption
on g, can be written a ≤

∨

g[X]. Therefore, since a ∈ K(A), there exists
x ∈ X such that a ≤ g(x), that is, b ≤ x. Hence b ∈ K(B).

(ii) Let Y be an upward directed subset of B and put b =
∨

Y . Let
a ∈ K(A) be such that a ≤ f∗(b). This means that f(a) ≤ b; but f(a) is,
by assumption on f , compact in B, thus f(a) ≤ y for some y ∈ Y , whence
a ≤

∨

f∗[Y ]. Since A is algebraic, this proves that f∗(b) ≤
∨

f∗[Y ]. The
converse inequality is trivial.

As a corollary, we get the following well known fact (see, e.g., Lemma 1.3.3
in [4]):

Lemma 5.6. Let A be an algebraic lattice and let B be a closure system
in A, i.e., a complete meet-subsemilattice of A that is closed under nonempty

directed joins. Then B is an algebraic lattice.

Proof. Let g : B →֒ A be the inclusion map. By assumption and by
Lemma 5.5(i), the dual map f = g† preserves compactness. Let b ∈ B. For
any x ∈ K(B) such that x ≤ b, the inequalities x ≤ f(x) ≤ f(b) = b hold,
whence

b =
∨

{x ∈ K(A) | x ≤ b} =
∨

{f(x) | x ∈ K(A), x ≤ b}.

The conclusion follows from the fact that f [K(A)] ⊆ K(B).

6. Conditionally co-Brouwerian semilattices

Definition 6.1. Let S be a 〈∨, 0〉-semilattice. We say that S is

• co-Brouwerian if S is a complete lattice and it satisfies the infinite
meet distributivity law (MID), that is, the infinitary identity

(MID) a ∨
∧

i∈I

xi =
∧

i∈I

(a ∨ xi),

where a and the xi’s range over the elements of S;
• conditionally co-Brouwerian if every principal ideal of S is co-Brou-

werian.
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Equivalently, S is co-Brouwerian iff S is a dually relatively pseudo-com-
plemented complete lattice (see [5] for the latter terminology).

We observe that every conditionally co-Brouwerian lattice is, of course,
distributive.

The crucial point that we shall use about conditionally co-Brouwerian
lattices is the following:

Lemma 6.2. Let S be a conditionally co-Brouwerian lattice and let A be

a cofinal 〈∨, 0〉-subsemilattice of a 〈∨, 0〉-semilattice B. Then every 〈∨, 0〉-
homomorphism from A to S extends to some 〈∨, 0〉-homomorphism from B
to S.

Proof. The conclusion follows immediately from Theorem 3.11 of [13].
However, it is worth observing that since we are dealing with semilattices,
there is also a direct proof. Namely, if f : A → S is any 〈∨, 0〉-homomor-
phism, the completeness assumption on S and the fact that f has cofinal
range make it possible to define a map g : B → S by the rule

g(b) =
∧

{f(x) | x ∈ A and b ≤ x}.

It then follows from (MID) that g is a join-homomorphism. It is obvious
that g extends f .

Remark 6.3. By using some of the techniques of the proof of Theo-
rem 3.11 of [13], it is not hard to prove that, in fact, Lemma 6.2 characterizes

conditionally co-Brouwerian lattices.

Now we can provide the proofs of Theorems 4 and 5 stated in the Intro-
duction.

Proof of Theorem 4. By Corollary 4.6 and Lemma 6.2, there exists a
〈∨, 0〉-homomorphism ψ : Conc FL(P ) → S such that ψ ◦Conc jP = ϕ. Then
it suffices to apply Theorem 2 to ψ.

Proof of Theorem 5. Let D be described by homomorphisms f : K → P
and g : K → Q of partial lattices, with K a lattice, and let ϕ be described
by 〈∨, 0〉-homomorphisms µ : Conc P → S and ν : ConcQ → S such that
µ◦Conc f = ν ◦Conc g. We shall construct a relatively complemented lattice
L, homomorphisms f : P → L and g : Q → L of partial lattices, and an
isomorphism ε : Conc L → S such that f ◦ f = g ◦ g, µ = ε ◦ Conc f ,
ν = ε ◦ Conc g, L is relatively complemented, f [P ] ∪ g[Q] generates L as an
ideal (resp., filter), and if S is generated as an ideal by rngµ ∪ rng ν, then
L is generated by f [P ]∪ g[Q] as a convex sublattice (where rng µ stands for
the range of µ).

We first reduce the problem to the case where both f and g are embed-

dings, as follows (see also the end of the proof of Proposition 18.5 of [15]).
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We put λ = µ ◦Conc f = ν ◦Conc g, and we define congruences d ∈ ConK,
a ∈ ConP , and b ∈ ConQ as follows:

d = {〈x, y〉 ∈ K ×K | λΘ+
K(x, y) = 0},

a = {〈x, y〉 ∈ P × P | µΘ+
P (x, y) = 0},

b = {〈x, y〉 ∈ Q×Q | νΘ+
Q(x, y) = 0}.

We denote by pd : K ։ K/d, pa : P ։ P/a, pb : Q ։ Q/b the canonical
projections. Then there are unique homomorphisms of partial lattices f ′ :
K/d →֒ P/a and g′ : K/d →֒ Q/b such that f ′◦pd = pa◦f and g′◦pd = pb◦g,
and both f ′ and g′ are embeddings. Furthermore, we can define 〈∨, 0〉-ho-
momorphisms µ′ : Conc(P/a) → S and ν ′ : Conc(Q/b) → S by the rules
µ′(x ∨ a/a) = µ(x) for all x ∈ Conc P , and ν ′(x ∨ b/b) = ν(x) for all
x ∈ ConcQ.

Since µ′ ◦Conc f
′ = ν ′ ◦Conc g

′ and both f ′ and g′ are embeddings, there
are, by assumption, a relatively complemented lattice L, homomorphisms
f ′ : P/a → L and g′ : Q/b → L of partial lattices, and an isomorphism
ε : Conc L→ S such that f ′ ◦ f ′ = g′ ◦ g′, µ′ = ε ◦ Conc f ′, ν

′ = ε ◦ Conc g′,
L is relatively complemented, f ′[P/a]∪g′[Q/b] generates L as an ideal (resp.,
filter), and if S is generated as an ideal by rngµ′∪rng ν ′, then L is generated
by f ′[P/a]∪g′[Q/b] as a convex sublattice. Then f ′ = f ′◦pa and g′ = g′◦pb,
together with ε and L, solve the amalgamation problem for f and g.

Hence we can reduce the problem to the case where both f and g are
embeddings. Without loss of generality, f and g are the set-theoretical in-
clusions from K into P and Q respectively, and K = P ∩Q.

Then we define a partial lattice R as follows (this classical construction
is also recalled in the statement of Proposition 3.4 in [15]). The underlying
set of R is P ∪ Q, and the partial ordering of R is defined as follows. For
x, y ∈ R, the inequality x ≤ y holds iff one of the following cases holds:

(i) x, y ∈ P and x ≤ y in P ;

(ii) x, y ∈ Q and x ≤ y in Q;

(iii) x ∈ P , y ∈ Q, and there exists z ∈ K such that x ≤ z in P and
z ≤ y in Q.

(iv) x ∈ Q, y ∈ P , and there exists z ∈ K such that x ≤ z in Q and
z ≤ y in P .

The partially ordered set R can be given a structure of partial lattice,
as follows. For a ∈ R and X ∈ [R]<ω∗ , we have a =

∨

X in R if either
X ∪ {a} ⊆ P and a =

∨

X in P , or X ∪ {a} ⊆ Q and a =
∨

X in Q. The
meet operation on R is defined dually.

Let u (resp., v) be the inclusion map from P (resp., Q) into R. It is stated
in [15], and very easy to prove, that 〈R, u, v〉 is a pushout of the diagram
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〈K,P,Q, f, g〉 in the category of partial lattices and their homomorphisms.
We shall abuse the notation by stating this as R = P ∐K Q, the maps f
and g then being understood.

Now we put C = {〈a, b〉 ∈ ConP × ConQ | a↾K = b↾K}. It is obvious
that C is a complete meet-subsemilattice of ConP × ConQ, closed under
nonempty directed suprema. Hence, by Lemma 5.6, C is an algebraic lattice.
Observe that 〈0P ,0Q〉 ∈ C.

Let ϕ : ConR → C, c 7→ 〈c↾P , c↾Q〉. Then ϕ is a complete meet-ho-
momorphism, and it preserves nonempty directed joins. Hence, by Lem-
ma 5.5(i), the dual map ψ = ϕ† of ϕ is a compactness preserving complete
join-homomorphism from C to ConR.

Claim 1. The map ϕ is surjective, while ψ is an embedding.

Proof. By Lemma 5.4, it suffices to prove that ϕ is surjective. Let 〈a, b〉 ∈
C, put d = a↾K = b↾K . Then the natural homomorphism from K/d into
P/a (resp., Q/b) is an embedding, therefore, by using the universal property
of R = P ∐K Q, there exists a homomorphism r : P ∐K Q ։ (P/a) ∐K/d
(Q/b) such that the following diagram commutes (pa and qb denote the
canonical projections):

(P/a) ∐K/d (Q/b)

P/a
�+

88rrrrrrrrrr
P ∐K Q

r

OOOO

Q/b
S3

ffLLLLLLLLLL

P

pa

OOOO

�+

u

88qqqqqqqqqqqq
K/d

3 S

ffMMMMMMMMMMM + �

88qqqqqqqqqqq

Q

qb

OOOO

S3

v

ffMMMMMMMMMMMM

K
4 T

f

ffNNNNNNNNNNNNN

OOOO

+ �
g

88qqqqqqqqqqqqq

Put c = ker r. Then c is a congruence of R. Moreover, for any x, y ∈ P ,
x ≤c y iff r(x) ≤ r(y), that is, pa(x) ≤ pa(y), or x ≤a y. Hence c↾P = a.
Similarly, c↾Q = b, hence ϕ(c) = 〈a, b〉. Claim1

Claim 2. The map K(ψ) is cofinal from K(C) to ConcR.

Proof. Put c = ψ(〈1P ,1Q〉). It follows from the definition of ψ that
c↾P = 1P and c↾Q = 1Q. Pick z ∈ K (we have supposed that K 6= ∅). For
any x ∈ P and y ∈ Q, x ≤c z (because c↾P = 1P ) and z ≤c y (because
c↾Q = 1Q), hence x ≤c y. Similarly, y ≤c x. Therefore, ψ(〈1P ,1Q〉) = c =
1R. Claim2
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Claim 3. K(C) is a pushout of Conc P and ConcQ above Conc f and

Conc g in the category of all 〈∨, 0〉-semilattices.

Proof. Let ξ : C → ConP and η : C → ConQ be the canonical projec-
tions. By the definition of C, the diagram

C

ξ

||xx
xx

xx
xx

x
η

""FFFFFFFF

ConP

Res f ""FF
FF

FF
FF

F ConQ

Res g||xxx
xx

xx
x

ConK

is a pullback in the category of all algebraic lattices with complete meet-
homomorphisms that preserve nonempty directed joins. By dualizing this
diagram (see Lemmas 5.2, 5.3, and 5.5), then by taking the image of the
new diagram under the functor K, and then by using Proposition 2.1, we
obtain successively the two diagrams below; the left hand side is a pushout
in the category of all algebraic lattices and compactness preserving com-
plete join-homomorphisms, the right hand side is a pushout in the category
of 〈∨, 0〉-semilattices with 〈∨, 0〉-homomorphisms:

C K(C)

ConP

ξ†
<<zzzzzzzzz

ConQ

η†
bbEEEEEEEEE

Conc P

α=K(ξ†)
;;wwwwwwww

ConcQ

β=K(η†)
ccGGGGGGGG

ConK

Con f

bbEEEEEEEEE Con g

<<yyyyyyyy
ConcK

Conc f

ccGGGGGGGGG Conc g

;;wwwwwwwww

This completes the proof of Claim 3. Claim3

By applying the sequence of two functors used in the proof of Claim 3
to the commutative diagram

ConR

Resu





Res v

��

ϕ
����
C

ξ

||xx
xx

xx
xx

x
η

""FFFFFFFF

ConP

Res f ""FF
FF

FF
FF

F ConQ

Res g||xxx
xx

xx
x

ConK
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we obtain, successively, the following two commutative diagrams:

ConR ConcR

C

� ?

ψ

OO

K(C)
� ?

K(ψ)

OO

ConP

ξ†
<<zzzzzzzzz

Conu

;;

ConQ

η†
bbEEEEEEEEE

Con v

cc

Conc P

α
;;wwwwwwww

Conc u

;;

ConcQ

β
ccGGGGGGGG

Conc v

cc

ConK

Con f

bbEEEEEEEEE Con g

<<yyyyyyyy
ConcK

Conc f

ccGGGGGGGGG Conc g

;;wwwwwwwww

Since µ ◦ Conc f = ν ◦ Conc g and by Claim 3, there exists a 〈∨, 0〉-homo-
morphism γ : K(C) → S such that the diagram

S

K(C)

γ

OO

Conc P

α
;;wwwwwwww

µ

99

ConcQ

β
ccGGGGGGGG

ν

ee

ConcK

Conc f

ccGGGGGGGGG Conc g

;;wwwwwwwww

is commutative. Furthermore, by Claims 1 and 2, K(ψ) is a cofinal embed-
ding from K(C) into ConcR, while, by Corollary 4.6, Conc jR is a cofinal em-
bedding from ConcR into Conc FL(R). Therefore, the map (Conc jR)◦K(ψ)
is a cofinal embedding from K(C) into Conc FL(R). By Lemma 6.2, there
exists a 〈∨, 0〉-homomorphism π : Conc FL(R) → S such that π ◦ (Conc jR)◦
K(ψ) = γ. By Theorem 2, there are a relatively complemented lattice L, a
lattice homomorphism h : FL(R) → L, and an isomorphism ε : Conc L→ S
such that π = ε◦Conc h, the range of h generates L as an ideal (resp., filter),
and, if the range of π is cofinal in S, then the range of h generates L as a
convex sublattice. The latter condition is certainly satisfied if rngµ∪rng ν is
cofinal in S (because rng γ contains rngµ∪ rng ν). Some of this information
is summarized in the following commutative diagram:

S

K(C) � �

K(ψ)
//

γ

OO

ConcR
� �

Conc jR
// Conc FL(R)

Conc h
//

π

kkWWWWWWWWWWWWWWWWWWWWWWWW

Conc L

ε
oo
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Now we consider the commutative diagram

FL(R)

P

f ′=jR◦u
@@�������

Q

g′=jR◦v
^^=======

K

f

__>>>>>>> g

??�������

We further compute:

π ◦ Conc f
′ = π ◦ Conc jR ◦ Conc u = π ◦ Conc jR ◦ K(ψ) ◦ α = γ ◦ α = µ.

A similar argument proves the equality π ◦Conc g
′ = ν. The fact that FL(R)

is generated, as a lattice, by f ′[P ]∪ g′[Q], trivially follows from R = P ∪Q.
Therefore, the maps f = h ◦ f ′ and g = h ◦ g′, together with the isomor-
phism ε, satisfy the required conditions.

The following corollary generalizes Theorem 2 of [6]:

Corollary 6.4. Let S be a distributive 〈∨, 0〉-semilattice that can be

expressed as a 〈∨, 0〉-direct limit of at most ℵ1 conditionally co-Brouwerian

lattices. Then there exists a relatively complemented lattice L with zero such

that Conc L ∼= S. Furthermore, if S has a largest element , then L can be

taken bounded.

Proof. Write S = lim−→(Si)i∈I with transition 〈∨, 0〉-homomorphisms fi,j :
Si → Sj and limiting maps fi : Si → S, where I is an upward directed
partially ordered set of size at most ℵ1 and all the Si’s are conditionally
co-Brouwerian lattices. As at the beginning of the proof of Theorem 2 of
[6], we may assume without loss of generality that I is a 2-ladder, that is,
a lattice with zero in which every principal ideal is finite and every element
has at most two immediate predecessors. The rest of the proof goes as the
proof of Theorem 2 of [6], by using Theorem 5 for the amalgamation step.

The following corollary generalizes Theorem 3 of [6]. Its proof is similar,
again by using Theorem 5.

Corollary 6.5. Let K be a lattice that can be expressed as a direct

union of countably many lattices whose congruence semilattices are condi-

tionally co-Brouwerian. Then K embeds congruence-preservingly into some

relatively complemented lattice L, which it generates as a convex sublattice.

7. Conditionally κ-co-Brouwerian semilattices

Definition 7.1. Let S be a 〈∨, 0〉-semilattice and let κ be an infinite
cardinal. We say that S is conditionally κ-co-Brouwerian if it satisfies the
following conditions:
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(i) <κ-interpolation property : for all nonempty X,Y ⊆ S such that
|X|, |Y | < κ and X ≤ Y (that is, x ≤ y for all 〈x, y〉 ∈ X × Y ), there exists
z ∈ S such that X ≤ z ≤ Y .

(ii) <κ-interval axiom: for all X ⊆ S such that |X| < κ and all a, b ∈ S
such that a ≤ b∨ x for all x ∈ X, there exists c ∈ S such that a ≤ b∨ c and
c ≤ X.

Observe that every conditionally κ-co-Brouwerian 〈∨, 0〉-semilattice is
obviously distributive (take X a pair in (ii)).

Now we prove the following analogue of Lemma 6.2:

Lemma 7.2. Let κ be an infinite cardinal , let S be a conditionally κ-co-
Brouwerian 〈∨, 0〉-semilattice, and let A be a cofinal 〈∨, 0〉-subsemilattice of

a 〈∨, 0〉-semilattice B such that |B| < κ. Then every 〈∨, 0〉-homomorphism

from A to S extends to some 〈∨, 0〉-homomorphism from B to S.

Proof. It suffices to consider the case where B is a monogenic extension
of A, i.e., B = A[b] = A ∪ {x ∨ b | x ∈ A}, where b is an element of B. Let
f : A → S be a 〈∨, 0〉-homomorphism. Let {〈xi, yi〉 | i ∈ I} enumerate all
elements 〈x, y〉 of A×A such that x ≤ y ∨ b, and let {zj | j ∈ J} enumerate
all elements z of A such that b ≤ z, with |I|, |J | < κ. Observe that I 6= ∅,
and, since A is cofinal in B, J 6= ∅. For all 〈i, j〉 ∈ I × J , the inequality
xi ≤ yi ∨ zj holds, thus f(xi) ≤ f(yi)∨ f(zj). By the <κ-interval axiom, for
all i ∈ I, there exists bi ∈ S such that f(xi) ≤ f(yi) ∨ bi and bi ≤ f(zj) for
all j ∈ J . By the <κ-interpolation property, there exists b ∈ S such that
bi ≤ b ≤ f(zj) for all 〈i, j〉 ∈ I×J . Hence, f(xi) ≤ f(yi)∨b for all i ∈ I, and
b ≤ f(zj) for all j ∈ J , so that there exists a unique 〈∨, 0〉-homomorphism
g : B → S extending f such that g(b) = b.

We shall now outline a proof of the following analogue of Proposition 18.5
of [15].

Lemma 7.3. Let κ be an uncountable cardinal , let D be a truncated

square of partial lattices, with lattice bottom, of size less than κ, and let

S be a conditionally κ-co-Brouwerian 〈∨, 0〉-semilattice. Then every homo-

morphism ϕ : Conc D → S has a factor of the form f : D → L, where L is

a lattice generated by the range of f (thus, |L| < κ).

Proof. We use the same notation as in the proof of Theorem 5 in Sec-
tion 6. In particular, |K|, |P |, |Q| < κ. Then the proof of Theorem 5 ap-
plies mutatis mutandis, by using Lemma 7.2 instead of Lemma 6.2, to es-
tablish that the canonical pushout homomorphism f : D → FL(R), with
R = P ∐K Q, is a factor of ϕ: all semilattices that need to be of size less
than κ are indeed of size less than κ, moreover, the last extension step from
FL(R) to L made in the proof of Theorem 5 is no longer necessary since we
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require only “factor” instead of “lift”. Observe that since κ is uncountable,
L = FL(R) still has size less than κ.

Our next definitions are borrowed from [15]:

Definition 7.4. Let S be a 〈∨, 0〉-semilattice. An S-measured partial

lattice is a pair 〈P, µ〉, where P is a partial lattice and µ : Conc P → S is
a 〈∨, 0〉-homomorphism. If, in addition, P is a lattice, we say that 〈P, µ〉 is
an S-measured lattice.

An S-measured partial lattice 〈P, µ〉 is proper if µ isolates zero, that is,
µ−1{0} = {0P }.

Definition 7.5. Let S be a 〈∨, 0〉-semilattice, and let 〈P, µ〉 and 〈Q, ν〉
be S-measured partial lattices. A homomorphism from 〈P, µ〉 to 〈Q, ν〉 is a
homomorphism f : P → Q of partial lattices such that ν ◦Conc f = µ. If, in
addition, f is an embedding of partial lattices, we say that f is an embedding

of S-measured partial lattices.

Definition 7.6. Let S be a 〈∨, 0〉-semilattice, and let 〈P, µ〉 and 〈L,ϕ〉
be S-measured partial lattices, with L a lattice. We say that an embedding
f : 〈P, µ〉 →֒ 〈L,ϕ〉 is a lower embedding (resp., upper embedding , inter-

nal embedding) if the filter (resp., ideal, convex sublattice) of L generated
by P equals L.

Definition 7.7. Let S be a 〈∨, 0〉-semilattice and letX be a subset of S.
A proper S-measured lattice 〈L,ϕ〉 is X-saturated (resp., lower X-saturated ,
upper X-saturated , internally X-saturated) if for every embedding (resp.,
lower embedding, upper embedding, internal embedding) e : 〈K,λ〉 →֒ 〈P, µ〉
of finite proper S-measured partial lattices such that rngµ ⊆ X∪rngϕ, with
K a lattice, and every homomorphism f : 〈K,λ〉 → 〈L,ϕ〉, there exists a
homomorphism g : 〈P, µ〉 → 〈L,ϕ〉 such that g ◦ e = f .

Now a standard increasing chain argument makes it possible to prove
the following result.

Proposition 7.8. Let κ be an uncountable cardinal , let S be a con-

ditionally κ-co-Brouwerian 〈∨, 0〉-semilattice, and let X ⊆ S be such that

|X| < κ. Every proper S-measured partial lattice 〈P, ϕ〉 such that |P | < κ
admits an embedding (resp., a lower embedding , an upper embedding , an

internal embedding) into an X-saturated (resp., lower X-saturated , upper

X-saturated , internally X-saturated) S-measured lattice 〈L,ψ〉 such that

|L| = |P | + |X| + ℵ0.

Proof. We proceed as in the proof of Proposition 19.3 of [15]. We first
use Corollary 4.6 and Lemma 7.2 to extend 〈P, ϕ〉 by 〈FL(P ), ψ〉 for some
ψ. Then the S-measured partial lattice 〈FL(P ), ψ〉 may not be proper, so we



JOIN-SEMILATTICES 227

need to replace it by its quotient under the congruence of FL(P ) that consists
of all pairs 〈x, y〉 such that ψΘ+(x, y) = 0 (called the kernel projection in
[15]).

This way, we deduce that P may be assumed to be a lattice from the
start. Furthermore, there are at most |P |+ |X|+ℵ0 pairs of the form 〈e, f〉
where e : 〈K,λ〉 → 〈Q, ν〉 and f : 〈K,λ〉 → 〈P, ϕ〉 are homomorphisms
of S-measured partial lattices with K a lattice, both K and Q finite, e
an embedding, and rng ν contained in X ∪ rngϕ. We increase 〈P, ϕ〉 by a
transfinite sequence of length |P |+ |X|+ℵ0 of S-measured lattices. At each
stage 〈L,ψ〉 of the construction, we pick the corresponding pair 〈e, f〉 of ho-
momorphisms. The amalgamation result of Lemma 7.3 makes it possible to
find an S-measured lattice 〈L′, ψ′〉, together with homomorphisms e′ and f ′,
such that the following diagram commutes:

〈Q, ν〉
f ′ // 〈L′, ψ′〉

〈K,λ〉

e

OO

f
// 〈L,ψ〉

e′

OO

Again, by replacing 〈L′, ψ′〉 by its quotient under its kernel projection, we
may assume that 〈L′, ψ′〉 is proper; let, then, 〈L′, ψ′〉 be the next step of the
construction.

We denote by 〈P, ϕ〉∗ the direct limit of that construction. Iterating ω
times the operation 〈P, ϕ〉 →֒ 〈P, ϕ〉∗ and taking again the direct limit yields
the desired result.

Now, by using Proposition 7.8, we argue as in Section 20 of [15] to ob-
tain the following analogue of Proposition 20.8 of [15]. Observe that the
proof is, in fact, much simpler than that of Proposition 20.8 of [15]. The
reason for this is that we no longer need to check that the corresponding
S-measured partial lattices are “balanced”, which removes lots of technical
complexity.

Proposition 7.9. Let κ be an uncountable cardinal , let S be a condi-

tionally κ-co-Brouwerian 〈∨, 0〉-semilattice, and let 〈L,ϕ〉 be an internally

X-saturated S-measured partial lattice. Then:

(i) L is relatively complemented.

(ii) The map ϕ is an embedding from Conc L into S, and X ∩ ↓rngϕ ⊆
rngϕ. (For a subset Y of S, ↓Y denotes the lower subset of S
generated by Y .)

(iii) For o, a, b, i ∈ L such that o ≤ {a, b} ≤ i, we have ΘL(o, a) =
ΘL(o, b) iff there are a0, a1, b0, b1 ∈ [o, i] such that :
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(a) a = a0 ∨ a1, b = b0 ∨ b1, and a0 ∧ a1 = b0 ∧ b1 = o.

(b) a0 and b0 (resp., a1 and b1) are perspective in [o, i], i.e., for all

l < 2, there exists x ∈ [o, i] such that al ∧ x = bl ∧ x = o and

al ∨ x = bl ∨ x = i.

(iv) If , in addition, 〈L,ϕ〉 is either lower X-saturated or upper X-satu-

rated , then X ⊆ rngϕ.

Outline of proof. We imitate the proof of Proposition 20.8 of [15]. We
first show, for example, that L is relatively complemented. For a < b < c
in L, let K = {a, b, c} be the three-element chain, let f : K →֒ L be the
natural embedding, and put λ = ϕ ◦ Conc f . Then 〈K,λ〉 is a finite, proper
S-measured lattice and f is an embedding from 〈K,λ〉 into 〈L,ϕ〉. Next, we
put P = {a, b, c, t}, the Boolean lattice with bottom a, top c, and atoms b
and t, endowed with the homomorphism µ : Conc P → S defined by

µΘP (a, b) = µΘP (t, c) = ϕΘL(a, b),

µΘP (a, t) = µΘP (b, c) = ϕΘL(b, c).

Then 〈P, µ〉 is a proper S-measured lattice, with rng µ ⊆ rngϕ ⊆ X ∪ rngϕ,
and the inclusion map j : K →֒ P is an embedding from 〈K,λ〉 into 〈P, µ〉.
By assumption on 〈L,ϕ〉, there exists a homomorphism g : 〈P, µ〉 → 〈L,ϕ〉
such that g ◦ j = f . Put x = g(t). Then a = b ∧ x and c = b ∨ x.

The proofs of (ii)–(iv) proceed in the same way, as shown in 20.2–20.7 in
[15]. For proving the containmentX∩ ↓rngϕ ⊆ rngϕ, we need to imitate the
second part of the proof of Lemma 20.7 in [15]. More specifically, let α ∈ X,
let o < i in L be such that 0 < α < ϕΘL(o, i), put K = {o, i}, let f : K →֒ L
be the inclusion map, and let λ = ϕ ◦Conc f . Furthermore, let P = {o, x, i}
be the three-element chain, with o < x < i, and let j : K →֒ P be the
inclusion map. Endow P with the 〈∨, 0〉-homomorphism µ : Conc P → S
defined by µΘP (o, x) = α and µΘP (x, i) = ϕΘL(o, i). Observe that the
range of µ is contained in X ∪ rngϕ. By assumption on 〈L,ϕ〉, there exists
a homomorphism g : 〈P, µ〉 → 〈L,ϕ〉 such that g ◦ j = f . Hence the element
α = µΘP (o, x) = (ϕ ◦ Conc g)ΘP (o, x) belongs to the range of ϕ.

The proof of (iii) goes along similar lines, although the relevant lattice
K and partial lattice P are much more complicated (see 20.2–20.6 in [15]
for details).

Now we come to the main result (stated in the Introduction) of Section 7:

Proof of Theorem 6. We first deal separately with the case where κ = ℵ0,
i.e., S is countable. Then, by Bergman’s Theorem [1, 3] and Corollary 7.5 in
[3], there exists a relatively complemented modular lattice L with zero such
that Conc L ∼= S; moreover, if S is bounded, then L is bounded.
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Suppose now that κ > ℵ0. We can decompose S as S =
⋃

ξ<κ Sξ, for
an increasing family (Sξ)ξ<κ of infinite 〈∨, 0〉-subsemilattices of S such that
|ξ| ≤ |Sξ| < κ for all ξ < κ. Furthermore, if S is bounded, then we may
assume that 1 ∈ Sξ for all ξ < κ.

Now we construct S-measured lattices 〈Lξ, ϕξ〉, for ξ < κ, as follows.
For ξ < κ, suppose that 〈Lη, ϕη〉 has been constructed for all η < ξ, such
that 〈Lζ , ϕζ〉 is an extension of 〈Lη, ϕη〉, |Lη| ≤ |Sη|, and 〈Lη, ϕη〉 is lower
Sη-saturated, for η ≤ ζ < ξ. Put L′

ξ =
⋃

η<ξ Lη and ϕ′
ξ =

⋃

η<ξ ϕη. Observe
that |L′

ξ| ≤ |Sξ|. Hence, by Proposition 7.8 applied to 〈L′
ξ, ϕ

′
ξ〉, there exists

a lower Sξ-saturated 〈Lξ, ϕξ〉 with |Lξ| ≤ |Sξ| such that 〈L′
ξ, ϕ

′
ξ〉 admits

a 0-lattice embedding into 〈Lξ, ϕξ〉 (the embedding condition is vacuously
satisfied for ξ = 0). In particular, Lξ is a lattice with zero. Furthermore, if
S is bounded, then this embedding may be taken internal, with L0 bounded
and 1 ∈ rngϕ0.

Take L =
⋃

ξ<κ Lξ, a lattice with zero. Then ϕ =
⋃

ξ<κ ϕξ is, by Proposi-
tion 7.9, an isomorphism from Conc L onto S. If S is bounded, then so is L.
Furthermore, by Proposition 7.9, L is relatively complemented.

We observe that the lattice L constructed in the proof of Theorem 6 has
many other properties besides being relatively complemented, such as item
(iii) in the statement of Proposition 7.9.

8. The spaces P ∗
κ,λ, Pκ,λ, Aκ,λ, Uκ,λ, Vκ,λ. For a partially ordered

set P , we denote by IntP the Boolean subalgebra of the powerset algebra
of P generated by all lower subsets of P . For a limit ordinal λ, we define a
subset x of λ to be bounded if x ⊆ α for some α < λ, and then we define a
map χλ : Intλ→ 2 by the rule

χλ(x) =

{

0 if x is bounded,
1 otherwise.

We leave to the reader the easy proof of the following lemma:

Lemma 8.1. The map χλ is a 〈∨,∧, 0, 1〉-homomorphism from Intλ
onto 2, for any limit ordinal λ.

For the remainder of this section, we fix infinite cardinals κ and λ. Then
we put

Aκ,λ = Intκ× Intλ× Intλ,

Uκ,λ = {〈x0, x1, x2〉 ∈ Aκ,λ | χκ(x0) = χλ(x1) = χλ(x2)},

Vκ,λ = {〈x0, x1, x2〉 ∈ Aκ,λ | χκ(x0) = χλ(x1)},

P ∗
κ,λ = {〈x0, x1, x2〉 ∈ Aκ,λ | either χκ(x0) = 0 or x1 ∪ x2 6= ∅},

Pκ,λ = {〈x0, x1, x2〉 ∈ Aκ,λ | χκ(x0) = χλ(x1) ∨ χλ(x2)}.

We endow each of the sets Aκ,λ, Uκ,λ, Vκ,λ, P
∗
κ,λ, Pκ,λ with the structure of
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partial lattice inherited from the (Boolean) lattice structure of Aκ,λ, i.e., for
a nonempty finite subset X of Pκ,λ and a ∈ Pκ,λ, a =

∨

X if a is the join
of X in Aκ,λ, and similarly for the meet.

The following easy lemma summarizes the elementary properties of these
objects:

Lemma 8.2. (i) Aκ,λ, Uκ,λ, and Vκ,λ are Boolean algebras such that

Uκ,λ ⊂ Vκ,λ ⊂ Aκ,λ.
(ii) P ∗

κ,λ is a 〈∨, 0, 1〉-subsemilattice of Aκ,λ and contains Vκ,λ.
(iii) For all x, y ∈ Pκ,λ, xr y belongs to P ∗

κ,λ.

Of course, xr y is an abbreviation for x ∧ ¬y.
Now let S be a 〈∨, 0〉-semilattice, and let ~a = (aξ)ξ<κ (resp., ~b =

(bη)η<λ) be an increasing (resp., decreasing) κ-sequence (resp., λ-sequence)

of elements of S such that ~a ≤ ~b, i.e., aξ ≤ bη for all ξ < κ and all η < λ.
We suppose, in addition, that a0 = 0.

We define a map σ~a,~b : P ∗
κ,λ → S by the rule

σ~a,~b(〈x0, x1, x2〉) =

{

asupx0
if x1 ∪ x2 = ∅,

bmin(x1∪x2) otherwise.

Lemma 8.3. The map σ~a,~b is a 〈∨, 0〉-homomorphism from P ∗
κ,λ to S.

Now we define a map µ~a,~b : Pκ,λ × Pκ,λ → S by the rule

µ~a,~b(x, y) = σ~a,~b(xr y) for all x, y ∈ Pκ,λ.

This definition is consistent, by Lemma 8.2(iii).

Lemma 8.4. The map µ~a,~b is a measure (see Definition 3.3) on Pκ,λ.

Proof. This follows immediately from Lemma 8.3.

By Lemma 3.4, there exists a unique 〈∨, 0〉-homomorphism ϕ~a,~b :

Conc Pκ,λ → S such that ϕ~a,~bΘ
+
Pκ,λ

(x, y) = µ~a,~b(x, y) for all x, y ∈ Pκ,λ.

Now we come to the main result of this section.

Proposition 8.5. Suppose that the map ϕ~a,~b : Conc Pκ,λ → S can be

factored through a lattice. Then there exists c ∈ S such that aξ ≤ c ≤ bη
for all ξ < κ and all η < λ.

Proof. Suppose that there are a lattice L, a homomorphism f : Pκ,λ → L
of partial lattices, and a 〈∨, 0〉-homomorphism ψ : Conc L → S such that
ϕ~a,~b = ψ ◦ Conc f . We put

c = ψΘL(f(〈∅,∅,∅〉), f(〈κ, λ,∅〉) ∧ f(〈κ,∅, λ〉)).

We prove that c satisfies the required inequalities.
Let ξ < κ. From the inequality

f(〈κ, λ,∅〉) ∧ f(〈κ,∅, λ〉) ≥ f(〈ξ + 1,∅,∅〉)
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it follows that

c ≥ ψΘL(f(〈∅,∅,∅〉), f(〈ξ + 1,∅,∅〉))

= ϕ~a,~bΘP (〈∅,∅,∅〉, 〈ξ + 1,∅,∅〉)

= µ~a,~b(〈ξ + 1,∅,∅〉, 〈∅,∅,∅〉) = σ~a,~b(〈ξ + 1,∅,∅〉) = aξ.

Now let η < λ. We first observe that f(〈κ,∅, λ〉) ≤ f(〈κ, λr η, λ〉) and that
〈κ, λ,∅〉 ∧ 〈κ, λr η, λ〉 is defined in Pκ,λ, with value 〈κ, λr η,∅〉. It follows
that

c ≤ ψΘL(f(〈∅,∅,∅〉), f(〈κ, λr η,∅〉))

= σ~a,~b(〈κ, λr η,∅〉) = bmin(λrη) = bη.

Definition 8.6. Let P be a partially ordered set, and let κ and λ be
infinite cardinals. We say that P has the 〈κ, λ〉-interpolation property if for

every increasing κ-chain ~a and every decreasing λ-chain ~b of P such that
~a ≤ ~b, there exists c ∈ P such that ~a ≤ c ≤ ~b.

Observe that if κ = λ = ℵ0, then Pκ,λ = Pω,ω is countable, and we obtain
the following result:

Proposition 8.7. Let S be a 〈∨, 0〉-semilattice that does not have the

〈ω, ω〉-interpolation property. Then there exists a 〈∨, 0〉-homomorphism ϕ :
Conc Pω,ω → S that cannot be factored through a lattice.

9. Necessity of the conditional completeness

Definition 9.1. Let P be a partially ordered set. We say that P is
conditionally complete if every nonempty majorized subset of P has a least
upper bound.

We recall the following elementary fact about conditional completeness:

Lemma 9.2. For any lattice S, if S has the 〈κ, λ〉-interpolation property

for all infinite cardinals κ and λ, then S is conditionally complete.

Then we immediately get the following result:

Proposition 9.3. Let S be a 〈∨, 0〉-semilattice such that for every par-

tial lattice P , every 〈∨, 0〉-homomorphism ϕ : Conc P → S can be lifted.

Then S is a conditionally complete lattice.

Proof. By [12], the condition above, even restricted to Boolean lat-
tices P , is sufficient to imply that S is a lattice. The conclusion then follows
from Lemma 9.2 and Proposition 8.5.

In order to be able to formulate the forthcoming Proposition 9.4, we
introduce some additional notation. For infinite cardinals κ and λ, let eκ,λ :
Uκ,λ →֒ Vκ,λ be the inclusion map, let sκ,λ : Uκ,λ → Uκ,λ, 〈x0, x1, x2〉 7→
〈x0, x2, x1〉, be the natural symmetry, and put e′κ,λ = eκ,λ ◦ sκ,λ.
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Proposition 9.4. Let S be a 〈∨, 0〉-semilattice, let κ and λ be infinite

cardinal numbers, and let ~a (resp., ~b) be an increasing (resp., decreasing) κ-

sequence (resp., λ-sequence) of elements of S such that ~a ≤ ~b. Denote by µ
(resp., ν) the restriction of σ~a,~b to Uκ,λ (resp., Vκ,λ). Suppose that there are

a meet-semilattice L, meet-homomorphisms f, f ′ : Vκ,λ → L, and an order-

preserving map ̺ : L→ S such that f ◦eκ,λ = f ′◦e′κ,λ and ̺◦f = ̺◦f ′ = ν.
Then there exists c ∈ S such that aξ ≤ c ≤ bη for all ξ < κ and all η < λ.

The statement of Proposition 9.4 means that if the amalgamation prob-
lem described by the diagram

〈L, ̺〉

〈Vκ,λ, ν〉

f
;;v

v
v

v
v

〈Vκ,λ, ν〉

f ′
ddH

H
H

H
H

〈Uκ,λ, µ〉
2 R

eκ,λ

ccHHHHHHHHH , � e′κ,λ

;;vvvvvvvvv

can be solved for a meet-semilattice L, meet-homomorphisms f, f ′ : V → L,
and an order preserving ̺ : L → S, then there exists c ∈ S such that
~a ≤ c ≤ ~b.

Proof. Suppose that L, ̺, f , and f ′ are as required. We define c ∈ S by

c = ̺(f(〈κ, λ,∅〉) ∧ f ′(〈κ, λ,∅〉)).

Now we prove that aξ ≤ c for all ξ < κ. Indeed, from the inequalities

f(〈κ, λ,∅〉) ≥ f(〈ξ + 1,∅,∅〉),

f ′(〈κ, λ,∅〉) ≥ f ′(〈ξ + 1,∅,∅〉) = f(〈ξ + 1,∅,∅〉)

it follows that

c ≥ ̺(f(〈ξ + 1,∅,∅〉)) = ν(〈ξ + 1,∅,∅〉) = aξ.

Next, we prove that c ≤ bη for all η < λ. Indeed, put g = f ◦ e = f ′ ◦ e′. We
compute:

f ′(〈κ, λ,∅〉) ≤ f ′(〈κ, λ, λr η〉) (observe that 〈κ, λ, λr η〉 ∈ Uκ,λ)

= f ′ ◦ sκ,λ(〈κ, λr η, λ〉) = f(〈κ, λr η, λ〉),

thus, since f is a meet-homomorphism,

f(〈κ, λ,∅〉) ∧ f ′(〈κ, λ,∅〉) ≤ f(〈κ, λ,∅〉 ∧ 〈κ, λr η, λ〉) = f(〈κ, λr η,∅〉).

Therefore,

c ≤ ̺(f(〈κ, λr η,∅〉)) = ν(〈κ, λr η,∅〉) = bη.
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As a corollary, even a weak version of Theorem 5 requires the assumption
that S is a conditionally complete distributive lattice:

Corollary 9.5. Let S be a 〈∨, 0〉-semilattice such that for every trun-

cated square D of Boolean lattices and homomorphisms of Boolean lattices,
every homomorphism ϕ : Conc D → S can be lifted through a lattice. Then

S is a conditionally complete distributive lattice.

Proof. The one-dimensional version of Theorem 5 states that every
〈∨, 0〉-homomorphism from ConcK to S can be lifted, for any lattice K.
By [12], even the restriction of this result to the case where K is Boolean is
already sufficient to imply that S is a distributive lattice. Of course, the two-
dimensional amalgamation property above is stronger (take B0 = B1 = B2

and e1 = e2 = idB0
).

Now, if S is not conditionally complete, then, by Lemma 9.2, there are
infinite cardinals κ and λ, an increasing κ-chain ~a of S, and a decreasing λ-
chain ~b of S such that ~a ≤ ~b but there exists no c ∈ S such that ~a ≤ c ≤ ~b.
Let µ and ν be the restrictions of σ~a,~b to Uκ,λ and Vκ,λ, respectively, let ϕ

denote the canonical isomorphism from Conc Vκ,λ onto Vκ,λ, and put ν =
ν◦ϕ. Hence ν is a 〈∨, 0〉-homomorphism from Conc Vκ,λ to S. By assumption
on S, there are a lattice L, lattice homomorphisms f, f ′ : Vκ,λ → L, and an
isomorphism ε : Conc L→ S such that f ◦ eκ,λ = f ′ ◦ e′κ,λ (denote this map
by h) and ν = ε ◦ Conc f = ε ◦ Conc f

′. Define a map ̺ : L→ S by the rule

̺(x) = εΘL(h(0Uκ,λ
), x) for all x ∈ L.

Then ̺ is order preserving and ̺ ◦ f = ̺ ◦ f ′ = ν, a contradiction.

10. Lifting truncated cubes. The question whether the results of this
paper can be extended from truncated squares to truncated cubes of lattices
has a trivial, negative answer. Indeed, consider the following diagram D of
lattices and 0-preserving lattice embeddings:

2 M3 2

2

OOOO

� 1
f

CC�����

2
- M

[[7777777
1�

CC�������
2

OOOO

M-
g77

[[7777

1
- M

[[8888888

OOOO

1�

CC�������

where 1 = {0}, M3 = {0, a, b, c, 1} is the five-element modular nondistribu-
tive lattice (with atoms a, b, c), the unlabelled arrows are uniquely deter-
mined, f(1) = a, and g(1) = c. Then the image of D under the Conc functor
is obtained by truncating the top 2 from the following commutative diagram
of 〈∨, 0〉-semilattices and 〈∨, 0〉-embeddings:
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2

2

??����
2

OO

2

__>>>>

2

OO ??����
2

__>>>>
??����
2

OO__>>>>

1

__>>>>
OO ??����

that defines a homomorphism ϕ : Conc D → 2. Suppose that ϕ can be lifted
to a homomorphism from D to some partial lattice P , in particular, P is
simple. Let u : 2 → P , w : M3 → P , and v : 2 → P be the homomorphisms
of partial lattices that correspond to the top part of such a lifting. Travelling
through the diagram D, we obtain

w(a) = wf(1) = u(1) = v(1) = wg(1) = w(c),

but Concw isolates zero, i.e., w is an embedding, hence a = c, a contradic-
tion.

Therefore, even the simplest nontrivial lattice 2 does not satisfy what
could be called the “three-dimensional amalgamation property”.

11. Open problems. The first two open problems ask whether the
sufficient conditions underlying Theorems 4 and 5 are also necessary (we
conjecture that yes). Possible formulations are the following:

Problem 1. Let S be a distributive 〈∨, 0〉-semilattice. If , for every par-

tial lattice P , every 〈∨, 0〉-homomorphism from Conc P to S can be factored

through a lattice, is S conditionally co-Brouwerian?

By Proposition 8.5, S has the 〈κ, λ〉-interpolation property for all infinite
cardinals κ and λ.

Problem 2. Let S be a distributive 〈∨, 0〉-semilattice. If , for every trun-

cated square D of lattices, every homomorphism from Conc D to S can be

factored through a partial lattice, is S conditionally co-Brouwerian?

The proof of Corollary 9.5 shows that if, for every truncated square D of
lattices, every homomorphism from Conc D to S can be factored through a
lattice, then S has the 〈κ, λ〉-interpolation property for all infinite cardinals
κ and λ.

On the positive side, we formulate the following question, related to
Theorem 6:

Problem 3. Let κ be an infinite cardinal and let S be a conditionally κ-
co-Brouwerian 〈∨, 0〉-semilattice. Does there exist a relatively complemented

modular lattice L with zero such that Conc L ∼= S?
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By Bergman’s Theorem and the main result of [14], the answer to Prob-
lem 3 is known to be affirmative for κ = ℵ0 and for κ = ℵ1.
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