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Abstract. We apply van den Dries’s test to the class of algebras (over algebraically
closed fields) which are not representation-directed and prove that this class is axiom-
atizable by a positive quantifier-free formula. It follows that the representation-directed
algebras form an open Z-scheme.

1. Introduction. The well-known result of Gabriel [5] asserts that the
representation finite algebras induce a Zariski-open subset in the variety of
all associative algebras of fixed dimension over a fixed algebraically closed
field. This fact is connected with finite axiomatizability of the class of all
representation finite algebras of fixed dimension over algebraically closed
fields [6]. Standard model-theoretical techniques applied to the axioms for
representation finite algebras allow one to prove that these algebras form a
constructible Z-scheme (see [7, Remark 12.60]). In the context of the latter
result the following question arises:

Question 1.1. Do the representation finite algebras form an open Z-

scheme?

Following [7] we say that a class C of algebras forms an open Z-scheme if
given a natural number d there exist finitely many polynomials H1, . . . , Hr
with integral coefficients such that for every algebraically closed field K the
set induced by C in the variety of d-dimensional K-algebras is defined by
non-vanishing of at least one of Hi (see Corollary 1.4 below). The answer
to Question 1.1 is still not known. The natural way to solve the problem
is to apply van den Dries’s test (see Theorem 3.1, [7, Theorem 12.6, Corol-
lary 12.8]).
In this paper we give an answer to an analogous, easier question. Namely,

we restrict our attention to the class of representation-directed algebras and
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solve the corresponding problem in Corollary 1.4. Recall that an algebra
is representation finite if it has finitely many isomorphism classes of in-
decomposable modules, and it is representation-directed if in addition the
associated Auslander–Reiten quiver [1, Chapter VII] has no oriented cycles.
Equivalently, there is no cycle of non-isomorphisms between indecomposable
modules, or: every indecomposable module is directing.
To apply van den Dries’s test we need to deal with lattices over orders.
Let v : K → G ∪ {∞} be a valuation of an algebraically closed field

K with values in an ordered group G and V the corresponding valuation
ring with the maximal ideal p. Recall that for every non-zero x ∈ K either
x ∈ V or x−1 ∈ V . Every finitely generated ideal in V is principal [2].
Every torsion-free V module is flat and every finitely generated torsion-free
V -module is free.
Denote the residue field V/p of V by k.
Assume that A is a V -order , that is, A is a V -algebra which is finitely

generated and free as a V -module. Let d be the V -rank of A. We denote
by A(K) and A the K-algebras A ⊗V K and A ⊗V k respectively. There is
a canonical ring homomorphism A → A with kernel pA. The value of this
homomorphism on an element a ∈ A will be denoted by a.
A finitely generated A-module X is a lattice over A if X is free as a

V -module. Let rkV (X) denote the V -rank of a V -module X. The right A-
lattices form a full subcategory latt(A) in the category mod(A) of finitely
generated right A-modules.
There are canonical functors

(1.2) (−) : mod(V ) → mod(k), (−)(K) : mod(V ) → mod(K)

defined by X = X ⊗V k and X
(K) = X ⊗V K. They are right exact and

the latter one is exact. If X is endowed with a structure of a V -algebra
(or a module over a V -algebra A) then X (resp. X(K)) has the induced

structure of a k-algebra (resp. K-algebra), or a module over the algebra A

(resp. A(K)). Note that X ∼= X/pX; we identify the two k-modules.
We investigate the relationships between the categories mod(A(K)) and

mod(A) to support the opinion that the latter is at least as complicated as
the former. The proof of the following theorem is given in the next section.

Theorem 1.3. Assume that V is a valuation ring in an algebraically
closed field K with residue field k. Let A be a V -order. If the algebra A =
A⊗V k is representation-directed then so is A

(K) = A⊗V K.

In Section 4 we show that in the above setting the Auslander–Reiten
quivers of A(K) and A are isomorphic.
Together with finite axiomatizability of the class of representation-

directed algebras (Lemma 3.3) the above theorem allows one to apply van
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den Dries’s test to the class of algebras of fixed dimension over algebraically
closed fields which are not representation-directed. We shall prove that this
class admits a set of axioms which are equivalent to positive quantifier-free
formulas. Such formulas express vanishing of polynomials with integral co-
efficients. The proof of the following result is given in Section 3.

Corollary 1.4. There is an open Z-scheme of representation-directed

algebras of dimension d, that is, there exist polynomials

H1, . . . , Hr ∈ Z[Xijl; i, j, l = 1, . . . , d]

such that for every algebraically closed field L, a d-dimensional L-algebra
R defined by a system γ = (γijl)i,j,l=1,...,d ∈ Ld

3
of structure constants is

representation-directed if and only if Hi(γ) 6= 0 for some i = 1, . . . , r.

The main results of this paper were presented at the 5th Budapest–
Chemnitz–Praha–Toruń Conference in Algebra, Budapest, 2001.

2. Proof of Theorem 1.3

Lemma 2.1. If R is a finite-dimensional algebra over an algebraically
closed field K and K ⊆ L is a field extension then R is representation-
directed if and only if R⊗K L is representation-directed.

Proof. Since the extension K ⊆ L is MacLane separable, it follows that
R is representation finite if and only if R⊗K L is (by [6]). Moreover if this
is the case every indecomposable R ⊗K L module is a direct summand of
X⊗KL for some R-moduleX. But sinceK is algebraically closed the module
X⊗KL is indecomposable if X is indecomposable. Now the assertion follows
easily.

Observe first that without loss of generality we can assume that V is
maximally complete (see [7]), which guarantees the possibility of lifting
idempotents from A to A ([7, Theorem 12.28]). Recall that a valued field
(K, v : K → G ∪ {∞}), or the corresponding valuation ring V , is maxi-
mally complete if there is no proper extension of v to a field extension of K
with the same residue field and value group. Indeed, by [8], [12, Corollary 6]

there exists a field K̃ containing K and a valuation ṽ : K̃ → G ∪ {∞} ex-

tending v such that (K̃, ṽ) is maximally complete with same residue field k.

More precisely, if Ṽ is the corresponding valuation ring then the embedding

V → Ṽ induces an isomorphism of residue fields. Since K is algebraically
closed the residue field is also algebraically closed and the value group of v
is divisible. Therefore K̃ is also algebraically closed by [12, Proposition 6].

Let Ã = A⊗V Ṽ .
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Lemma 2.2. (a) The k-algebras Ã⊗
Ṽ
k and A are isomorphic.

(b) If the K̃-algebra Ã⊗
Ṽ
K̃ is representation-directed (resp. represen-

tation finite) then the algebra A(K) has the same property.

Proof. The assertion (a) is trivial; in order to prove (b) observe that

Ã⊗
Ṽ
K̃ ∼= A⊗V Ṽ ⊗Ṽ K̃

∼= A⊗V K ⊗K K̃.

The assertion follows from Lemma 2.1.

Assumption. From now on we assume that V is a maximally complete
valuation ring in an algebraically closed field K and A is representation-
directed.

Thanks to Lemma 2.2, to prove Theorem 1.3 it is enough to prove that
A(K) is representation-directed under the above assumption. We collect some
preparatory facts.
If Q is a finite quiver and T is a commutative ring then TQ denotes

the path T -algebra of Q. In this paper we consider only directed quivers Q.
Given a number n let TQn denote the ideal generated by all paths of length
at least n. A two-sided ideal I of TQ is admissible provided I ⊆ TQ2. Given
a vertex x we denote by ex the idempotent of TQ corresponding to x. We use
the same notation for cosets of the idempotents in quotients of TQ. Given
an arrow α of Q let s(α) and t(α) be the source and sink of α respectively.

Lemma 2.3. Assume that R = LQ/I is a bound quiver L-algebra over
an algebraically closed field L, where Q is directed and R is schurian, that
is, dimL(exRey) ≤ 1 for all vertices x, y of Q. (We do not assume that I
is admissible.) If there exist paths u, v with a common starting vertex and
a common ending vertex in Q such that u 6∈ I and v ∈ I then there exists
an indecomposable non-directing R-module.

Proof (cf. [17]). Let v be the path y0
β1
−→ y1

β2
−→ . . .

βs
−→ ys. Let e = ey0 +

. . .+ eys and S = eRe. Let Q
′ be the ordinary Gabriel quiver of S and I ′ an

admissible ideal in LQ′ such that S ∼= LQ′/I ′. The quiver Q′ contains the
arrows β1, . . . , βs and, since ey0Seys 6= 0, at least one “new” arrow γ from yi
to yj , where 0 ≤ i < j ≤ s. Chose γ in such a way that j− i is minimal (it is
at least 2 as S is schurian and I ′ admissible). Let e′ = eyi + eyi+1 + . . .+ eyj
and S′ = e′Se′. Then the ordinary Gabriel quiver Q′′ of S′ is isomorphic to

◦ −→ ◦yβi+1
xβj

◦
βi+2
−→ · · ·

βj−1
−→ ◦

and since S′ is schurian we have S′ ∼= LQ′′/I ′′, where I ′′ contains the path
βi+1 . . . βj .
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It is easy to construct a non-directing indecomposable S′-module X and
then induce a non-directing indecomposable R-module X ⊗S′ e

′R.

Since V is maximally complete there exist pairwise orthogonal idem-
potents ε1, . . . , εn of A such that ε1A⊕ . . .⊕ εnA and ε1A ⊕ . . .⊕ εnA are
decompositions of A and A respectively into a direct sum of indecomposable
modules [7, Theorem 12.28]. Without loss of generality we can assume there
exists a number m such that ε1A, . . . , εmA are pairwise non-isomorphic and
ifm < j ≤ n then εjA ∼= εiA for some i ≤ m. It follows by [7, Theorem 12.28]
that also ε1A, . . . , εmA are pairwise non-isomorphic and if m < j ≤ n then
εjA ∼= εiA for some i ≤ m. Let ε = ε1 + . . . + εm and B = εAε. The alge-
bra B ∼= εAε is basic and Morita equivalent to A. Note that B is finitely
generated and free as a V -module. Let Q be the ordinary quiver of B with
vertices 1, . . . , n. Let

π : kQ→ B

be the canonical surjection such that π(ei) = εi for i = 1, . . . , n with an
admissible kernel I. Since B is representation-directed the quiver Q is di-
rected.
For every arrow α of Q let b′α be an element of B such that b

′
α = π(α)

and bα = εs(α)b
′

αεt(α). Then there exists a V -algebra homomorphism

(2.4) π̃ : V Q→ B

defined by π̃(ex) = εx and π̃(α) = bα for every vertex x and arrow α of Q.
Observe that Im(π̃)+pB = B and π̃ is surjective by the Nakayama Lemma.
Let J be the kernel of π̃. This homomorphism induces a surjectiveK-algebra
homomorphism

π̃(K) : KQ→ B(K)

whose kernel is J (K), since B is a torsion-free V -module. It is easy to prove
that B(K) is Morita equivalent to A(K). Note also that J = I.

Lemma 2.5. The kernel J of π̃ is an admissible ideal of V Q and there-
fore J (K) is an admissible ideal of KQ.

Proof. First we prove that J ⊆ V Q1. Otherwise, since Q has no oriented
cycles, ̺ei ∈ Ker π̃ for some ̺ ∈ V and i, 1 ≤ i ≤ m. Since εi 6= 0 in
B it follows that ei 6∈ Ker π̃, which contradicts the fact that B is torsion-
free. (Observe that till now we have not used the assumption that B is
representation-directed, only that Q is a directed quiver.)

Now suppose that J is not contained in V Q2. Since B is representation
finite, for every i, j the V -module εiBεj has rank at most 1. The quiver
Q has no multiple arrows. Then there exist an arrow α and a path u in
Q with common sink and common source and such that ̺1u + ̺2α ∈ J
for some non-zero ̺1, ̺2 ∈ K. Again since B is torsion-free we can assume
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without loss of generality that ̺1, ̺2 ∈ V and one of them equals 1. Clearly
̺1u+̺2α ∈ Kerπ and since Kerπ is admissible in kQ it follows that ̺2 = 0.
But then B is not representation-directed by Lemma 2.3.

Let us remark that our way of presenting a V -lattice by a quiver and an
admissible ideal of the path algebra, as well as the notion of an admissible
ideal, differs from the construction in [13].
Thanks to Morita equivalences mentioned above and Lemma 2.5 we can

reduce our problem to the following situation: having a V -order A of the
form V Q/J with directed quiver Q and an admissible ideal J of V Q prove
that A(K) ∼= KQ/J (K) is representation-directed if so is A ∼= kQ/J .
Let us introduce the following notation. For a vertex i of Q let

di = dim eiA = dim eiA
(K).

Here dim denotes the dimension vector. If rad eiA ∼= Ri,1 ⊕ . . . ⊕ Ri,ni
with Ri,j indecomposable for j = 1, . . . , ni (and pairwise non-isomorphic
since A is representation finite) then denote by rij the vector dimRi,j for

j = 1, . . . , ni. We refer to the system ((di, {r
i
j}j=1,...,ni)i=1,...,m) as the com-

binatorial data of A.
Similarly let rad eiA

(K) ∼= Ti,1⊕ . . .⊕Ti,mi with Ti,j indecomposable and
tij = dimTi,j for j = 1, . . . ,mi for i = 1, . . . , n.

Lemma 2.6. If A is representation-directed then ni = mi and

{ri1, . . . , r
i
ni
} = {ti1, . . . , t

i
mi
}

for every vertex i of Q.

Proof. Since R is representation finite the module rad eiA (and hence
rad eiA

(K)) is a thin module, that is, dimk(rad eiAex) ≤ 1 (respectively:
dimK(rad eiA

(K)ex) ≤ 1) for every vertex x of Q. Therefore the decomposi-
tion data {ri1, . . . , r

i
ni
} of rad eiA depend only on the set Zi of arrows α ∈ Q1

such that the associated map

(−) · α : rad eiA→ rad eiA

is zero. The same is true for the A(K)-module rad eiA
(K); denote the corre-

sponding set of arrows by Zi. Observe that Zi ⊆ Zi, assume that the sets
are not equal and let α ∈ Zi \ Zi. It follows that there exist in Q paths of
positive length: u from i to s(α) and w from i to t(α) such that w 6∈ J and
̺w − uα ∈ J for some ̺ ∈ p. But since A is representation-directed this
leads to a contradiction with Lemma 2.3.

Given an algebra T let ΓT denote its Auslander–Reiten quiver.

Theorem 2.7. Suppose that (K,R), (L, S) ∈ Alg(d) are basic, schurian
and have the same ordinary quiver Q which is directed. Assume that the
combinatorial data of (K,R) and (L, S) coincide. Let PR(1), . . . ,PR(l) be
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all preprojective components in the Auslander–Reiten quiver ΓR of R. Then
ΓS has l preprojective components PS(1), . . . ,PS(l) and for i = 1, . . . , l the
components PR(i) and PS(i) are isomorphic as translation quivers and the
isomorphism maps each vertex of PR(i) to the vertex of PS(i) corresponding
to the same dimension vector.

Proof. Let us remark that the algorithm for constructing the preprojec-
tive components [9] has as input data the combinatorial data only (note that
they determine the dimension vectors of indecomposable injective modules).
This is in fact enough to prove the theorem.
However let us present a more detailed proof by induction on the number

of vertices of Q. If this number is 1 the assertion is clear. Assume that Q is a
quiver with at least 2 vertices and let x be a source in Q, that is, there is no
arrow ending at x. Denote the algebra R/RexR by Rx and similarly S/SexS
by Sx. In what follows we use the name “dimension-preserving isomorphism”
for an isomorphism of Auslander–Reiten components which preserves dimen-
sion vectors, as in the formulation of the theorem. Let PRx(1), . . . ,PRx(n)
be all preprojective components of the Auslander–Reiten quiver ΓRx of Rx
and assume that a direct summand of the radical rad exR of exR belongs to
PRx(i) if and only if m < i ≤ n for some m ≤ n. Then PRx(1), . . . ,PRx(m)
are preprojective components of ΓR as well. By the inductive hypothesis
there are preprojective components PSx(1), . . . ,PSx(m) of ΓSx such that
there exists a dimension-preserving isomorphism between PRx(i) and PSx(i)
for i = 1, . . . ,m. Since the combinatorial data of (K,R) and (L, S) coincide
the components PSx(i), i ≤ m, do not contain summands of rad exS and
therefore they are preprojective components in the Auslander–Reiten quiver
ΓS of S.
Assume that exR is not preprojective. Then PRx(1), . . . ,PRx(m) are all

preprojective components of ΓR by [4, Theorem 1.3]. Moreover this happens
if and only if one of the following conditions holds.

1. There exists a direct summand of rad exR which is not preprojective
as an Rx-module.
2. There exist direct summands M1 and M2 of rad exR and a path

of irreducible morphisms from M1 to M2 containing a path of the form
τY → X → Y for some indecomposable Rx-modules Y,X, where τ is the
Auslander–Reiten translate in mod(Rx).

It is easy to observe that if 1 or 2 holds then the analogous condition
with respect to exS is also satisfied and therefore exS is not preprojective
and PSx(1), . . . ,PSx(m) are all preprojective components of ΓS .
Otherwise the components PRx(m + 1), . . . ,PRx(n) together with exR

form a part of the preprojective component PR(x) containing exR and it is
easy to construct inductively a dimension-preserving isomorphism between
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PR(x) and the corresponding component PS(x) of ΓS . In this case the com-
ponents PRx(1), . . . ,PRx(m),PR(x) (resp. PSx(1), . . . ,PSx(m),PS(x)) are
all preprojective components of ΓR (resp. ΓS).

Remark 2.8. With a suitably modified notion of combinatorial data the
theorem can be extended to the non-schurian case.

Proof of Theorem 1.3. The theorem follows from Lemma 2.6 and Theo-
rem 2.7.

3. Application of van den Dries’s test. Let L be the language of
the first order theory of fields or rings having countably many variables, two
two-argument function symbols + and · and two constants 0, 1. Let A be
the two-sorted first order language of algebras over fields (see [7]), that is,
the disjoint union L1∐L2 of two copies of L equipped with another function
symbol · which associates to a pair of variables from L1 and L2 a variable
from L2. The language A has the usual logical connectives: ∧, ∨, ¬, → and
allows quantification on both sorts of variables.
By a model for this language we mean a pair (K,R), where K and R are

models for L1 and L2 respectively and the new function symbol is interpreted
as a function

· : K ×R→ R.

It is clear that if K is a field and R is a K-algebra with identity then the
obvious interpretation of the symbols of the language A allows us to treat
the pair (K,R) as a model for A.
Fix a natural number d and denote by Alg(d) the class of models (K,R)

for A such that K is an algebraically closed field and R is a d-dimensional
associative K-algebra with identity.
Let Σ be the first order theory of algebraically closed fields. First or-

der formulas φ(x1, . . . , xr), ψ(x1, . . . , xr) are called Σ-equivalent provided
K |= φ ⇔ ψ for every algebraically closed field K. The following theorem
is a consequence of Tarski’s quantifier elimination theorem for algebraically
closed fields and van den Dries’s test [7, Theorem 12.7, Corollary 12.8].

Theorem 3.1. A first order formula φ(x1, . . . , xr) is Σ-equivalent to a
positive quantifier-free formula if and only if the following is satisfied :
For any algebraically closed fields K, L and every homomorphism

f : V → L from a valuation subring V of K to L and for any tuple
(a1, . . . , ar) ∈ V r that satisfies φ in K the tuple (f(a1), . . . , f(ar)) satis-
fies φ in L.

Recall that by a positive quantifier-free formula we mean a formula built
without quantifiers and negation.
For the proof of the following fact we refer to [7, 12.56].
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Lemma 3.2. The class of representation finite algebras is finitely axiom-
atizable as a subclass of Alg(d). There exist functions ν, µ : N → N such

that for every (L,R) ∈ Alg(d) if R is representation finite then the number
of isomorphism classes and the dimensions of indecomposable R-modules
are bounded by ν(d) and µ(d) respectively.

We say that a class C ⊆ Alg(d) is finitely axiomatizable as a subclass
of Alg(d) if there exists a sentence α such that (K,R) ∈ C if and only if
(K,R) |= α for every (K,R) ∈ Alg(d).

Lemma 3.3. The class of representation-directed d-dimensional algebras
over algebraically closed fields is finitely axiomatizable as a subclass ofAlg(d).

Proof. Let ψ be an axiom for the class of representation finite algebras
as a subclass ofAlg(d). Now let ξ be the first order sequence in the language
A expressing:
“For every sequence M1, . . . ,Mn,Mn+1 =M1, n ≤ ν(d), of indecompos-

able R-modules of dimension less than or equal to µ(d) and any collection
(fi : Mi → Mi+1), i = 1, . . . , n, of non-isomorphisms one of the homomor-
phisms fi is zero.”
It is easy to observe that η = ψ ∧ ξ is an axiom for the class of repre-

sentation-directed algebras as a subclass of Alg(d).

3.4. Proof of Corollary 1.4. Let φ be a first order formula expressing the
axiom for the class of algebras which are not representation-directed in terms
of their structure constants, as in [7, Corollary 12.57]. Let V be a valuation
subring of a fieldK and f : V → L be a homomorphism into an algebraically
closed field L. After replacing V by its localization with respect to the ideal
Ker f we can assume that L is an extension of the residue field k of V .
Let a = (aijl) ∈ V

d3 be a system of structure constants of a V -order

A and assume that φ(a) is satisfied in K. Then A(K) is not representation-
directed. Assume that φ(f(aijl)) is not satisfied in L, that is, the algebra
A⊗V L is representation-directed (L has a V -module structure defined by f).
Then, by Lemma 2.1, the algebra A is representation-directed and thus A(K)

is representation-directed by Theorem 1.3, a contradiction.
It follows by Theorem 3.1 that φ is equivalent to a positive quantifier-free

formula. Thus it defines a closed Z-scheme.

4. Remarks and comments. The following example shows that the
algebra A may not be representation-directed although A(K) is.

Example 4.1. Let

A =



V p p

0 V p

0 0 V


 .
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Then A(K) is isomorphic to the path algebra of the quiver

◦ → ◦ → ◦

over K whereas A is isomorphic to the path k-algebra of the quiver

◦
α
−→ ◦

ց
yβ
◦

bounded by the relation αβ = 0.

Note that since we do not assume that the algebra A(K) is separable
(see [14], [16]) the category latt(A) usually does not have Auslander–Reiten
sequences, even if V is a complete discrete valuation domain, as the following
simple example shows.

Example 4.2. Let A =
(
V
0
V
V

)
where V is a discrete valuation ring with

p = (p). We treat A as the path algebra of the quiver ◦ → ◦ with coefficients
in V and identify A-lattices with V -representations of this quiver. Observe
that there does not exist a minimal right almost split map [1, Chapter V]
ending at the lattice I = (V → 0) although I is not projective. To see this
assume that

φ : X → I

is a minimal right almost split map in latt(A) and let g : X1 → X2 be the
representation corresponding to X. Given a number m denote by Ym the
lattice defined by pm : V → V .
Every projection from Ym to I factorizes through φ for every m. We

are going to show that this is impossible. Since there is no non-zero homo-
morphism from Ym to the projective lattice P = (0 → V ), with no loss of
generality we can assume that X has no direct summands isomorphic to P .
Let X ∼= X ′ ⊕ U , where U = In for some n and X ′ has no direct

summands I. Since φ is not splitting it follows that φ(U) ⊆ pI. It follows
that for every m ≥ 0 any epimorphism π : Ym → I factorizes through X ′.

Let X ′ correspond to a representation X ′1
g′

→ X ′2; under our assumptions

Ker g′ ⊆ pX ′1 andX
′

2/Im g
′ is a finitely generated torsion V -module. Assume

that plX ′2 ⊆ Im g
′.

Let u = (u1, u2) : Yl+1 → X ′ be a homomorphism such that φ ◦ u is an
epimorphism onto I. It follows that φ(u1(1)) 6∈ pI and hence u1(1) 6∈ pX1.
Observe that g′(u1(1)) = pl+1u2(1) ∈ p Im g′. Let g′(u1(1)) = pg′(x).
It follows that u1(1) − px ∈ Ker g′, contrary to the assumption that
Ker g′ ⊆ pX ′1.

However in the case when A = V Q/I for some admissible ideal I of V Q
andA is representation-directed the Auslander–Reiten quivers ofA andA(K)
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are isomorphic and induced by a common system of A-lattices. Let us pre-
cede the precise formulation of this fact (Proposition 4.4) by some lemmas.
From now on by an irreducible morphism we always mean an irreducible
morphism between indecomposable modules.

Lemma 4.3. Assume that A is a V -lattice of the form V Q/I and A is

representation-directed. There exist A-lattices X1, . . . , Xr such that {X
(K)
i :

i = 1, . . . , r} (resp. {X i : i = 1, . . . , r}) is a full set of representatives
of isomorphism classes of indecomposable A(K)-modules (resp. A-modules).
Moreover , there exists a set W ⊆ {1, . . . , r}2 and a system (fij :

Xi → Xj)(i,j)∈W of A-homomorphisms such that {f
(K)
ij : X

(K)
i → X

(K)
j ;

(i, j) ∈ W} and {f ij : X i → Xj ; (i, j) ∈ W} are the sets of all (up to
composition with isomorphisms) irreducible morphisms in mod(A(K)) and
mod(A) respectively.

Proof. Given an indecomposable A(K)-module X ′ let s(X ′) denote the
number of proper successors of X ′ in the Auslander–Reiten quiver of A(K).

Let us enumerate the representatives of isomorphism classes of inde-
composable A(K)-modules: X ′1, . . . , X

′

r, in such a way that i ≥ j implies
s(X ′i) ≥ s(X ′j) for i, j ∈ {1, . . . , r}. By induction on m we construct A-lat-
tices Xm and homomorphisms fmj satisfying the conditions in the lemma

and such that X
(K)
m
∼= X ′m.

Let us agree that “all irreducible morphisms” means “all (up to compo-
sition with isomorphisms) irreducible morphisms”.

The construction is obvious when m = 1 (then X ′m is simple injective).
Assume that m > 1 and we have constructed Xi and fij with the required
properties for i < m.

First consider the case when X ′m is injective. It is easy to construct a

latticeXm and A-homomorphisms fmj : Xm → Yj in latt(A) such that Y
(K)
j ,

Y j are indecomposable for j = 1, . . . , s and f
(K)
mj (resp. fmj) for j = 1, . . . , s

are all irreducible morphisms starting at X
(K)
m (resp. Xm).

Assume that Y
(K)
j
∼= X ′ij , j = 1, . . . , s. Then ij < m and Y j ∼= X ij for

j = 1, . . . , s. Here we use Lemma 2.6 asserting that the combinatorial data of
A(K) and A coincide. Observe that since the dimensions of homomorphism
spaces between indecomposable modules over a representation-directed al-
gebra are determined by their positions in the Auslander–Reiten quiver we

have dimK HomA(K)(X
(K)
ij

, Y
(K)
j ) = dimk HomA(X ij , Y j) = 1 for each j ≤ s.

It follows by Lemma 4.5 below (see also Corollary 4.6) that the V -modules
Ext1A(Xij , Yj) are torsion-free and Yj

∼= Xij for j = 1, . . . , s thanks to
[7, Corollary 12.26]. We can finish the construction in this case.
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Now assume that X ′m is not injective and let

0→ X ′m →

q⊕

i=1

X
(K)
ji

f (K)

−→ X(K)s → 0,

where f (K)= (f
(K)
jis
)i=1,...,q, be the Auslander–Reiten sequence in mod(A

(K)).
Such a sequence exists by the inductive hypothesis, we also use the fact that
all arrows in the Auslander–Reiten quiver of A(K) have trivial valuation
[1, VII.2.3]. Let Xm = Ker f . Since Xs is free as a V -module, Xm is an
A-lattice and both induced sequences

0→ X(K)m →

q⊕

i=1

X
(K)
ji

f (K)

−→ X(K)s → 0,

0→ Xm →

q⊕

i=1

Xji
f
→ Xs → 0

are exact. It follows that X
(K)
m
∼= X ′m. By Theorem 2.7 we know that the

dimensions of the middle terms of the Auslander–Reiten sequences ending

at X
(K)
s and Xs are equal, hence f jis, i = 1, . . . , q, are all the irreducible

morphisms ending atXs. It follows that the latter sequence is an Auslander–
Reiten sequence in mod(A). Then Xm is indecomposable as the Auslander–
Reiten translate of Xs.

Let u : Xm →
⊕q
i=1Xji , u = (ui)i=1,...,q, be the natural embedding.

Then we see that u
(K)
i and ui, i = 1, . . . , q, are all the irreducible morphisms

starting at X
(K)
m and Xm respectively.

The following proposition is a direct consequence of Lemma 4.3.

Proposition 4.4. Assume that A = V Q/I for some quiver Q and a
two-sided ideal I of V Q, and A = A⊗V k is representation-directed. Then
there is an isomorphism of the Auslander–Reiten quivers of A and A(K)

preserving dimension vectors.

Proof. Let X1, . . . , Xr be A-lattices as in Lemma 4.3. The required iso-

morphism of quivers is uniquely determined byX i 7→ X
(K)
i for i = 1, . . . , r.

Lemma 4.5. (a) For all A-lattices X, Y ,

HomA(K)(X
(K), Y (K)) = K HomA(X,Y ).

(b) The following conditions are equivalent :

(1) the group Ext1A(X,Y ) is torsion-free,
(2) the canonical map HomA(X,Y ) → HomA(X,Y ) given by f 7→

f ⊗ k is surjective,
(3) the V -rank of the module HomA(X,Y ) equals the k-dimension
of HomA(X,Y ).
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Proof. Assertion (a) is Lemma 12.21 of [7]. A simple refinement of the
proof of Proposition 12.25 in [7] proves (b). For the convenience of the reader
we sketch the argument. Let

P1
d
→ P0 → X → 0

be a projective presentation of X in mod(A). Application of HomA(−, Y )
yields two exact sequences

0→ HomA(X,Y )→ HomA(P0, Y )
q
→ N → 0

and

0→ N
u
→ HomA(P1, Y )→ Ext

1
A(X,Y )→ 0

where uq = d∗, d∗ = HomA(d, Y ), N = Im d
∗ and u is the identity embed-

ding. Now apply the functor (−) to get the exact sequences

0→ HomA(X,Y )→ HomA(P0, Y )
q
→ N → 0

(N is torsion-free) and

0→ TorV1 (Ext
1
A(X,Y ), k)

∂
→ N

u
→ HomA(P1, Y )→ Ext

1
A(X,Y )→ 0

Let M = q−1(∂(TorV1 (Ext
1
A(X,Y ), k))). There is a commutative diagram of

k-spaces with exact rows:

0→ M → HomA(P0, Y )
d∗
−→ HomA(P1, Y )

↓ ↓

0→ HomA(X,Y )→ HomA(P 0, Y )
(d)∗

−→ HomA(P 1, Y )

where the vertical homomorphisms are the canonical isomorphisms (P0 and
P1 are projective). Observe that M and HomA(X,Y ) are isomorphic if and
only if TorV1 (Ext

1
A(X,Y ), k) = 0. Now the equivalence of the conditions

in (b) follows.

Corollary 4.6. Let X1, . . . , Xr be A-lattices as in Lemma 4.3, and
assume that A is representation-directed. Then the group Ext1A(Xi, Xj) is
torsion-free as a V -module and there is a natural isomorphism

HomA(Xi, Xj) ∼= HomA(X i,Xj) for all i, j = 1, . . . , r.

Proof. Note that the dimension of the homomorphism space between in-
decomposable modules over a representation-directed algebra depends only
on their position in the Auslander–Reiten quiver. It follows that

dimK HomA(K)(X
(K)
i , X

(K)
j ) = dimk HomA(X i,Xj) for i, j = 1, . . . , r.

Thus the corollary follows from Lemma 4.5.
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