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POSSIBLY THERE IS NO UNIFORMLY
COMPLETELY RAMSEY NULL SET OF SIZE 2%

BY

ANDRZEJ NOWIK (Gdarisk)

Abstract. We show that under the axiom CPA_ e there is no uniformly completely
Ramsey null set of size 2. In particular, this holds in the iterated perfect set model. This
answers a question of U. Darji.

1. Introduction. The class of uniformly completely Ramsey null sets
(UCRy sets) was defined and investigated in [Da], and also in [N1] and [N2].
In this paper we continue the investigation of this class and other kinds of
small sets defined analogously. The main purpose of this paper is to give a
full answer to the problem of U. Darji (see [Da, Question 1]) whether there
is always an UCRy set of size continuum. We show that under the axiom
CPA.upe there is no such set. In particular, since by Theorem 7.0.4 of [CP],
CPA_upe holds in the iterated perfect set model, there is no such set in this
model. Thus the answer to Darji’s question is negative.

2. Definitions. We identify [w]* with a subset of 2. We often identify
[w]<¥ with the space 2¥ via the standard isomorphism. For example, if
z,y € 2¢, then  C y means that V,,c, z(n) < y(n). If s € [w]<¥, A € [w]*
and maxs < min A then we define [s,A] = {z € [w]* : s C o C sU A}
These sets are called the Ellentuck neighborhoods. Moreover let [s, A|S% =
{rCw:sCxCsUA}.

We denote by s 4 the standard homeomorphism 1 : 2¢ — [s, A]<%
defined by ¥(z) = sU {a, : z(n) = 1}, where A = {agp,a1,a2,...} with
ag < ay <ag<...

Recall that X C [w]¥ is completely Ramsey null (for short, X is CRg)
if for every Ellentuck neighborhood [s, A] there exists B € [A]“ such that
[s, BN X = 0, and X is completely Ramsey (X is CR) if for every [s, A]
there exists B € [A]“ such that [s,BjN X =0V [s,B] C X. A set X C
2¥ is wuniformly completely Ramsey null if for every continuous function
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F :2¥ — 2% and for every Y C X, F~![Y] is completely Ramsey. We
then write X € UCRy. We will use the following characterization of UCRq
sets given in [N1]: A set X C 2¢ is UCRy if for each continuous function
F : 2% — 2% there exists A € [w]¥ such that |F[P(A)]NX| < w.

We will use the following definitions from [CP]:

e A subset C of the product [, ., 2* of Cantor sets is said to be a perfect
cube if C' =], c,, Cn, where C,, € Perf(2*) for each n.

o Let Feube stand for the family of all continuous injections from a perfect
cube C onto a set P € Perf(2*). The elements of Feype are called cubes.

e We say that a family £ C Perf(2¥) is Feube-dense (or cube-dense) in
Perf(2¥) provided

vafcube ngfcube (g g f /\ ra‘n(g) E g)
e Define

88‘“[’6 = {2“’ \ U E : £ is Feupe-dense in Perf(2“)}.

Throughout this note we will use one fixed bijection (-,-) : w X w — w.
For each A € [w]“ and n < w we define (A), = {a@n) : k € w} where
A ={ag,a1,az...} and ag < a1 < ag < ...

Finally, for a finite set A € [w]<¥ we define (A), = {apgn : k € WA
(k,n) <r} where A = {ag,a1,...,a,} and ap < a1 < ... < ay.

For X C (2¢)? we denote by X(,) and X the z-section and y-section
of X, respectively (i.e. X(u) = {y: (z,y) € X}, XW = {z: (2,y) € X}).

For completeness we briefly outline the definition of ¥ and wXQN sets
(see [BRR]).

We say that a sequence of functions fj, : X =R converges quasinormally
to 0 (fx ay 0) if there is a sequence €, — 0 such that Ve x V3° fi(x) <eg.

We say that a sequence of functions f : X — Ry (X) converges to 0 if
Veex Done fr(z) < oo

A topological space X is a X space if for each sequence of continuous
functions f : X — Ry, if fr — 0 pointwise then there is a subsequence k;

such that fy, ) 0.
Analogously, X is a wXQN space if for each sequence of continuous func-

tions fr : X — Ry, if fx =) 0 then there is a subsequence k; such that
N
fro B0,

3. F-UCRy sets. The following terminology will be useful in our proof.

DEFINITION 3.1. Suppose that F is an arbitrary family of Borel func-
tions from 2“ to 2“. We say that X C 2“ is an F-UCRy set if for every
F e F and every Y C X, F~1[Y] is completely Ramsey.
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First note that F-UCRy is a o-ideal and if 7 C G then G-UCRy C
F-UCRg. In what follows we shall consider this general definition for the
following families of functions from 2% to 2:

e 1-1 = all one-to-one continuous functions.
e Count = all continuous functions with countable preimages of points.
e 1-1-Borel = all one-to-one Borel functions.
e Count-Borel = all Borel functions with countable preimages of points.

Note that in [N2], a special case of this definition was considered for F
being the family of all Borel functions from 2% to 2¢.

Fact 3.2. 1-1-Borel-UCRy = Count-Borel-UCRy.

Proof. The inclusion D is obvious. Conversely, let X € 1-1-Borel-UCRy.
Let Y C X and let [s, E] be an Ellentuck neighborhood. Let B : 2 — 2¢
be a Borel mapping with countable preimages of points.

Since Voo |(Graph(B))®¥)| < w, by the Luzin-Novikov Theorem (see
for instance [Ke, Theorem 18.10]) there are Borel sets b, C (2*)? such
that (J,, ¢, bn = Graph(B) and Vyeoo |b7(1y)| < 1. Define A,, for n € w by
letting A, = m[b,]. Then {J,c, An = 2%, since 2 = m,[Graph(B)]| =
Uneo T2lbn] = U, e, An- Since A, € 3}, A, is completely Ramsey, hence
there exists an Ellentuck neighborhood [s1, E1] C [s, E] and ny € w such
that [Sl,El] - Ano-

Define By = BJ[s1, E1]. It is easy to see that B is one-to-one. There is an
i € 2 and an Ellentuck neighborhood [sa, E2] C [s1, E1] such that [sq, E2] C
By '[Ciy), where Cg = {x € 2¥ : s C a}. Next, let By : [s1, E1]S% — 2% be
an extension of Bj[[s2, Fs] to a one-to-one Borel function. Since X € 1-1-
Borel-UCRy, there exists E3 € [E3]“ such that

[82, Eg] g B;l[Y] vV [Sg,Eg] N BQ_I[Y] @

Hence
[s9, B3] € B~'Y]V [s2, B3] N B~ 1[Y]

This proves that X € Count-Borel-UCRg. =

0.

Thus we have the following diagram of inclusions:

Borel- UCR; ——— = UCRy

1-1-Borel-UCRy —— Count-UCR,

|

1-1-UCR,
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Next, we reformulate the characterization of UCRg sets from Theorem 1
of [N1] in our more general language:

THEOREM 3.3. Suppose that F is a family of Borel functions from 2%
to 2. Assume that:

1. For each s € [w]|<%, E € [w]* such that max(s) < min(E) and F € F
we have F os p € F.

2. For every perfect set P C 2% there exist F' € F and X C P such that
S\ [X] & CR.

Then for every X C 2% the following statements are equivalent:
(1) X € F-UCR.
(2) Vrer Jacp [FIP(A)]NX| <w.

Proof. The proof is essentially the same as the proof of Theorem 1 in
[N1]. We use assumption 2 to assure that there is no perfect set in F-UCRy.
Assumption 1 is necessary in the proof of the implication (2)=-(1). m

Unfortunately, we do not know of any examples of sets distinguishing the
properties Borel-UCRgy, UCRg, Count-UCRj, 1-1-UCRy, 1-1-Borel-UCRg.

4. Main result
THEOREM 4.1. Every 1-1-UCRy set is an s5'P° set.

Proof. By Fact 1.0.3 from [CP] it is enough to consider functions defined
on the entire space (2*)“. So, suppose that f : [, 2% — 2¢ is a cube. Let

F:2° — (2%, F(Z)=({(2)n)new-

Note that a variant of this function has been used in [N2] to prove that
every UCR set is an (s3) set.

We show that F' is continuous. Let Z € 2¥ and (W,,)n<n, be a finite
sequence of open subsets of 2¢ and suppose that F'(Z) € [[,_,, Wn X
anno 2“. Then we can find Ky € w such that for every B € 2¢,if BN Ky =
Z N Ky and n < ng then (B),, € W,,. Therefore F' is continuous. It is also
easy to see that fo F' is one-to-one, because f is a cube and F' is one-to-one.

Let X be a 1-1-UCRg set. Then there is a set A € [w]“ such that
|(f o F)[P(A)] N X| < w. Let {ap,a1,az,...} be an increasing enumeration
of the elements of A. We define = : (2¥)“ — P(A) by

a2(k,n>65(($n)n€w) <~ xn(k) = 07 a2<k,n)+165((xn)n€w) A xn(kj):]_
CLAM 4.2. The image F[Z[(2¥)%]] is a perfect cube in (2¥)*, denoted
by C.

Proof. Define Ey n = {as(kn), G2(kny+1}- It is clear that (Ey )k necw is
a partition of A into 2-element subsets.
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Define

Dy, = {CU €2¥:zC U Eym ANVhew |Erpn Nx| = 1}.
kew
These sets are perfect. We will show that

FI=[2*)*] = ]] Da.
ncw

“C”: Let (x,) € F[Z[(2¥)“]] and fix ng € w. Let B € Z[(2¥)“] be such
that (z)new = F(B). Obviously, B € P(A). From the definition of F we
conclude that

vnEw Tn = (B)n
It easily follows from the definition of = that ran(=Z) C [w]“. Therefore, let
{bo, b1, ...} be an increasing enumeration of the elements of B.

Since from the definition of = we easily see that Vi neo |B N Ekyn| =1,
we have Vi new bii,ny € Ern. Hence, (B)n, = {b(k,n,) : k € w} and therefore
Ty = (B)ny € Upew Erino and View [Ekng N Zn,| = 1. Finally, z,,, € Dy,.

“2": Let (Tn)new € [lhew Pn- Define x = |, ¢, #n. Since z, € Dy,
we conclude that (2,)ne. are pairwise disjoint and Vi new |Ern Nz = 1.
Let {bg,b1,...} be an increasing enumeration of the elements of x. Then
Vkmgw b(k,m € Ek,n- Hence F(m) = (xn)new-

Now, define (2, )new € (2¢)“ by

zn(k) =0 < A(k.n) € T, z(k)=1 < a2(k,n)+1 € L.

Since Z((2n)new) = =, we finally obtain F(Z((zn)new)) = (Tn)new, there-
fore (z5)new € F[Z[(2¢)%]]. This finishes the proof of the Claim.

Thus we obtain |f[C] N X| < w. Since next we can find a perfect cube
D C C such that f[D]NX = (), we finally conclude that X is an s§""° set. m

COROLLARY 4.3. Assume CPAcupe. Then every 1-1-UCRq set has size
< wi and 2% = wy holds.

Proof. This follows immediately from Proposition 1.0.4 of [CP] (stating
that under CPA upe, s§"P¢ C [2¢]5¢1) and from the previous theorem. m

COROLLARY 4.4. Under the axiom CPAcupe there is no UCRy set of size
2¥. In particular, this holds in the iterated perfect set model.

This answers a question of Darji from [Da]. m

Recall the following notion of smallness considered in [Sc|]. We say that
X C 2% x 2% has property (s3) if every set P x @ € Perf x Perf has a subset
Py x Q1 € Perf x Perf disjoint from X. It was proven in [Sc] that the class
of (s3) sets is a o-ideal on 2 x 2¥. It was also proven in [N2] that every
UCRy set is an (s3) set. Note that Theorem 4.1 is a strengthening of this
result, since we have the following easy fact:
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OBSERVATION 4.5. Every s'P° set is an (s3) set.

Proof. Let X € s§"°. Suppose that P,Q C 2* are perfect sets. We may
assume that P ~ 2% and Q) =~ 2“. Let hp, hg be arbitrary homeomorphisms
between [], . 2% and P, Q, respectively. Define the following cube:

[ H 20 =29 x2%  f((@n)new) = (hr((T2n)new), ho((T2nt1)new))-
new
Since X € s5"P° there exists a subcube g C f, g : [l Cn — 2 x 2
(C,, € Perf), such that ran(g) N X = (). We define two perfect sets, P; and

@1, by putting
P, = hp[ I1 024 and Qi = hg [ I1 CQW]

ncw necw
It is easy to see that Pj, Q1 are perfect sets and Py x @1 C ran(g). Therefore
(P xQ1)NX =0and P; x Q; C P x Q. This proves that X € (s). m

5. Thin sets related to trigonometric series. In this section we
briefly discuss the relation between thin sets related to trigonometric series
and F-UCRyq sets.

THEOREM 5.1. Let X C 2% be a ¥ set and let h : 2° — 2“ be a contin-
uous one-to-one function. Then h='[X] € CRo. In particular, every ¥ set
is a 1-1-UCRyg set.

Proof. Since every continuous image of a X set is a X set, it is sufficient to
show that X N[w]* € CRy. We notice that for every Ellentuck neighborhood
[s, A] the set [s, A]=“ is homeomorphic to 2¥, hence finally it is enough to
show that there exists A € [w]* such that [A]* N X = 0.

We will make use of the following sequence of functions f, : 2 — R
defined in [BRR] and used there to prove that 2 & wQN:

1
, = if x(n) =1,
fule) = ¢ 1= =11
e if z(n) = 0.

Obviously f,, € C(2¥). One easily checks that f,(z) — 0 for each x € 2¢.
By assumption, there exists a subsequence (fy, )rew such that >, = fn, ()
< oo for each z € X. Let A = {ng,,nk,,...}. Suppose that B € [A]“.
Clearly B = {ny, ,nk, ...} where (r])1e, is an increasing sequence of nat-
ural numbers. Moreover,

fin,, (B) : .

:|{3§”krl :SEB}|:Z+1'
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Thus Y, o, fn(B) =00s0 B&{x:) . fn,(x) < oo} Therefore
[A]“ N {:L’ : ank(x) < oo} = 0.
kew
This proves that [A]*NX =0. =
THEOREM 5.2. Let X C 2% be a wXQN set and let h : 2¥ — 2% be a

continuous one-to-one function. Then h=1[X] € CRy. In particular, every

wXQN set is a 1-1-UCRy set.

Proof. As in the proof of Theorem 5.1, it is enough to show that there
exists A € [w]* such that X N[A]¥ = 0.
We will slightly modify the functions from the previous proof. Namely,

set

n\T) =
fn() {2(”“) if z(n)
Obviously f, € C(2¥). Let z € 2¥. Then

S ) < 3020 1 90 <o

new new new

L,
0.

Since X € wXQN there exists a subsequence (ny) such that f,, [X .
Then there exists a sequence (gx)kecw Of positive numbers converging to zero
such that
X C{xe2¥: V2 fo,(z) <er}

Next, choose an increasing sequence (i;);je., of natural numbers such that
1/27%1 > g; . Let A = {nj,,ni,,ni,,...}. Suppose that B € [A]“. Clearly
B = {ni, ,ni, ,Ni,,,- -}, where (r;)e, is an increasing sequence of natural
numbers. Moreover,

fn, (B) = g~ Hs<ni, s€BY _ o9—(I+1) 5 o—(m+1) > .
irg - ]
Thus 3%° f,, () > k. Therefore [A]* N {z : V3° f,, () < ex} = 0. This
proves that [A][* N X =(. m

Unfortunately, we are still unable to prove that every X set is a UCRg
set. Even, we do not know whether every y-set is a UCRy set.
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