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POSSIBLY THERE IS NO UNIFORMLY

COMPLETELY RAMSEY NULL SET OF SIZE 2ω

BY

ANDRZEJ NOWIK (Gdańsk)

Abstract. We show that under the axiom CPAcube there is no uniformly completely
Ramsey null set of size 2ω . In particular, this holds in the iterated perfect set model. This
answers a question of U. Darji.

1. Introduction. The class of uniformly completely Ramsey null sets
(UCR0 sets) was defined and investigated in [Da], and also in [N1] and [N2].
In this paper we continue the investigation of this class and other kinds of
small sets defined analogously. The main purpose of this paper is to give a
full answer to the problem of U. Darji (see [Da, Question 1]) whether there
is always an UCR0 set of size continuum. We show that under the axiom
CPAcube there is no such set. In particular, since by Theorem 7.0.4 of [CP],
CPAcube holds in the iterated perfect set model, there is no such set in this
model. Thus the answer to Darji’s question is negative.

2. Definitions. We identify [ω]ω with a subset of 2ω. We often identify
[ω]≤ω with the space 2ω via the standard isomorphism. For example, if
x, y ∈ 2ω, then x ⊆ y means that ∀n∈ω x(n) ≤ y(n). If s ∈ [ω]

<ω, A ∈ [ω]ω

and max s < minA then we define [s,A] = {x ∈ [ω]ω : s ⊆ x ⊆ s ∪ A}.
These sets are called the Ellentuck neighborhoods. Moreover let [s,A]≤ω =
{x ⊆ ω : s ⊆ x ⊆ s ∪A}.
We denote by ψs,A the standard homeomorphism ψ : 2ω → [s,A]≤ω

defined by ψ(x) = s ∪ {an : x(n) = 1}, where A = {a0, a1, a2, . . .} with
a0 < a1 < a2 < . . .
Recall that X ⊆ [ω]ω is completely Ramsey null (for short, X is CR0)

if for every Ellentuck neighborhood [s,A] there exists B ∈ [A]ω such that
[s,B] ∩ X = ∅, and X is completely Ramsey (X is CR) if for every [s,A]
there exists B ∈ [A]ω such that [s,B] ∩ X = ∅ ∨ [s,B] ⊆ X. A set X ⊆
2ω is uniformly completely Ramsey null if for every continuous function
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F : 2ω → 2ω and for every Y ⊆ X, F−1[Y ] is completely Ramsey. We
then write X ∈ UCR0. We will use the following characterization of UCR0
sets given in [N1]: A set X ⊆ 2ω is UCR0 if for each continuous function
F : 2ω → 2ω there exists A ∈ [ω]ω such that |F [P (A)] ∩X| ≤ ω.
We will use the following definitions from [CP]:

• A subset C of the product
∏

n∈ω 2
ω of Cantor sets is said to be a perfect

cube if C =
∏

n∈ω Cn, where Cn ∈ Perf(2
ω) for each n.

• Let Fcube stand for the family of all continuous injections from a perfect
cube C onto a set P ∈ Perf(2ω). The elements of Fcube are called cubes.
• We say that a family E ⊆ Perf(2ω) is Fcube-dense (or cube-dense) in

Perf(2ω) provided

∀f∈Fcube ∃g∈Fcube (g ⊆ f ∧ ran(g) ∈ E).

• Define

scube0 =
{

2ω \
⋃

E : E is Fcube-dense inPerf(2
ω)
}

.

Throughout this note we will use one fixed bijection 〈·, ·〉 : ω × ω → ω.
For each A ∈ [ω]ω and n < ω we define (A)n = {a〈k,n〉 : k ∈ ω} where
A = {a0, a1, a2 . . .} and a0 < a1 < a2 < . . .
Finally, for a finite set A ∈ [ω]<ω we define (A)n = {a〈k,n〉 : k ∈ ω ∧

〈k, n〉 ≤ r} where A = {a0, a1, . . . , ar} and a0 < a1 < . . . < ar.
For X ⊆ (2ω)2 we denote by X(x) and X

(y) the x-section and y-section

of X, respectively (i.e. X(x) = {y : 〈x, y〉 ∈ X}, X
(y) = {x : 〈x, y〉 ∈ X}).

For completeness we briefly outline the definition of Σ and wΣQN sets
(see [BRR]).
We say that a sequence of functions fk : X→R+ converges quasinormally

to 0 (fk
QN
→ 0) if there is a sequence εn→0 such that ∀x∈X ∀

∞
k fk(x)<εk.

We say that a sequence of functions fk : X → R+ (Σ) converges to 0 if
∀x∈X

∑∞
k=1 fk(x) <∞.

A topological space X is a Σ space if for each sequence of continuous
functions fk : X → R+, if fk → 0 pointwise then there is a subsequence kl

such that fkl
(Σ)
→ 0.

Analogously, X is a wΣQN space if for each sequence of continuous func-

tions fk : X → R+, if fk
(Σ)
→ 0 then there is a subsequence kl such that

fkl
QN
→ 0.

3. F-UCR0 sets. The following terminology will be useful in our proof.

Definition 3.1. Suppose that F is an arbitrary family of Borel func-
tions from 2ω to 2ω. We say that X ⊆ 2ω is an F -UCR0 set if for every
F ∈ F and every Y ⊆ X, F−1[Y ] is completely Ramsey.
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First note that F -UCR0 is a σ-ideal and if F ⊆ G then G-UCR0 ⊆
F -UCR0. In what follows we shall consider this general definition for the
following families of functions from 2ω to 2ω:

• 1-1 = all one-to-one continuous functions.

• Count = all continuous functions with countable preimages of points.

• 1-1-Borel = all one-to-one Borel functions.

• Count-Borel = all Borel functions with countable preimages of points.

Note that in [N2], a special case of this definition was considered for F
being the family of all Borel functions from 2ω to 2ω.

Fact 3.2. 1-1-Borel-UCR0 = Count-Borel-UCR0.

Proof. The inclusion ⊇ is obvious. Conversely, let X ∈ 1-1-Borel-UCR0.
Let Y ⊆ X and let [s, E] be an Ellentuck neighborhood. Let B : 2ω → 2ω

be a Borel mapping with countable preimages of points.

Since ∀y∈2ω |(Graph(B))
(y)| ≤ ω, by the Luzin–Novikov Theorem (see

for instance [Ke, Theorem 18.10]) there are Borel sets bn ⊆ (2
ω)2 such

that
⋃

n∈ω bn = Graph(B) and ∀y∈2ω |b
(y)
n | ≤ 1. Define An for n ∈ ω by

letting An = πx[bn]. Then
⋃

n∈ω An = 2
ω, since 2ω = πx[Graph(B)] =

⋃

n∈ω πx[bn] =
⋃

n∈ω An. Since An ∈ Σ
1
1, An is completely Ramsey, hence

there exists an Ellentuck neighborhood [s1, E1] ⊆ [s, E] and n0 ∈ ω such
that [s1, E1] ⊆ An0 .

Define B1 = B↾[s1, E1]. It is easy to see that B1 is one-to-one. There is an
i ∈ 2 and an Ellentuck neighborhood [s2, E2] ⊆ [s1, E1] such that [s2, E2] ⊆
B−11 [C〈i〉], where Cs = {x ∈ 2

ω : s ⊆ x}. Next, let B2 : [s1, E1]
≤ω → 2ω be

an extension of B1↾[s2, E2] to a one-to-one Borel function. Since X ∈ 1-1-
Borel-UCR0, there exists E3 ∈ [E2]

ω such that

[s2, E3] ⊆ B
−1
2 [Y ] ∨ [s2, E3] ∩B

−1
2 [Y ] = ∅.

Hence

[s2, E3] ⊆ B
−1[Y ] ∨ [s2, E3] ∩B

−1[Y ] = ∅.

This proves that X ∈ Count-Borel-UCR0.

Thus we have the following diagram of inclusions:

Borel-UCR0 UCR0

1-1-Borel-UCR0 Count-UCR0

1-1-UCR0

��

//

��
//

��
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Next, we reformulate the characterization of UCR0 sets from Theorem 1
of [N1] in our more general language:

Theorem 3.3. Suppose that F is a family of Borel functions from 2ω

to 2ω. Assume that :

1. For each s ∈ [ω]<ω, E ∈ [ω]ω such that max(s) < min(E) and F ∈ F
we have F ◦ ψs,E ∈ F .
2. For every perfect set P ⊆ 2ω there exist F ∈ F and X ⊆ P such that

f−1[X] 6∈ CR.

Then for every X ⊆ 2ω the following statements are equivalent :

X ∈ F-UCR0.(1)

∀F∈F ∃A∈[ω]ω |F [P (A)] ∩X| ≤ ω.(2)

Proof. The proof is essentially the same as the proof of Theorem 1 in
[N1]. We use assumption 2 to assure that there is no perfect set in F -UCR0.
Assumption 1 is necessary in the proof of the implication (2)⇒(1).

Unfortunately, we do not know of any examples of sets distinguishing the
properties Borel-UCR0, UCR0, Count-UCR0, 1-1-UCR0, 1-1-Borel-UCR0.

4. Main result

Theorem 4.1. Every 1-1-UCR0 set is an s
cube
0 set.

Proof. By Fact 1.0.3 from [CP] it is enough to consider functions defined
on the entire space (2ω)ω. So, suppose that f :

∏

n∈ω 2
ω → 2ω is a cube. Let

F : 2ω → (2ω)ω, F (Z) = ((Z)n)n∈ω.

Note that a variant of this function has been used in [N2] to prove that
every UCR0 set is an (s

2
0) set.

We show that F is continuous. Let Z ∈ 2ω and (Wn)n<n0 be a finite
sequence of open subsets of 2ω and suppose that F (Z) ∈

∏

n<n0
Wn ×

∏

n≥n0
2ω. Then we can find K0 ∈ ω such that for every B ∈ 2

ω, if B∩K0 =
Z ∩K0 and n < n0 then (B)n ∈ Wn. Therefore F is continuous. It is also
easy to see that f ◦F is one-to-one, because f is a cube and F is one-to-one.
Let X be a 1-1-UCR0 set. Then there is a set A ∈ [ω]

ω such that
|(f ◦ F )[P (A)] ∩X| ≤ ω. Let {a0, a1, a2, . . .} be an increasing enumeration
of the elements of A. We define Ξ : (2ω)ω → P (A) by

a2〈k,n〉∈Ξ((xn)n∈ω) ⇔ xn(k) = 0, a2〈k,n〉+1∈Ξ((xn)n∈ω) ⇔ xn(k)=1.

Claim 4.2. The image F [Ξ[(2ω)ω]] is a perfect cube in (2ω)ω, denoted
by C.

Proof. Define Ek,n = {a2〈k,n〉, a2〈k,n〉+1}. It is clear that (Ek,n)k,n∈ω is
a partition of A into 2-element subsets.
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Define

Dn =
{

x ∈ 2ω : x ⊆
⋃

k∈ω

Ek,n ∧ ∀k∈ω |Ek,n ∩ x| = 1
}

.

These sets are perfect. We will show that

F [Ξ[(2ω)ω]] =
∏

n∈ω

Dn.

“⊆”: Let (xn) ∈ F [Ξ[(2
ω)ω]] and fix n0 ∈ ω. Let B ∈ Ξ[(2

ω)ω] be such
that (xn)n∈ω = F (B). Obviously, B ∈ P (A). From the definition of F we
conclude that

∀n∈ω xn = (B)n.

It easily follows from the definition of Ξ that ran(Ξ) ⊆ [ω]ω. Therefore, let
{b0, b1, . . .} be an increasing enumeration of the elements of B.
Since from the definition of Ξ we easily see that ∀k,n∈ω |B ∩ Ek,n| = 1,

we have ∀k,n∈ω b〈k,n〉 ∈ Ek,n. Hence, (B)n0 = {b〈k,n0〉 : k ∈ ω} and therefore
xn0 = (B)n0 ⊆

⋃

k∈ω Ek,n0 and ∀k∈ω |Ek,n0 ∩ xn0 | = 1. Finally, xn0 ∈ Dn0 .
“⊇”: Let (xn)n∈ω ∈

∏

n∈ωDn. Define x =
⋃

n∈ω xn. Since xn ∈ Dn,
we conclude that (xn)n∈ω are pairwise disjoint and ∀k,n∈ω |Ek,n ∩ x| = 1.
Let {b0, b1, . . .} be an increasing enumeration of the elements of x. Then
∀k,n∈ω b〈k,n〉 ∈ Ek,n. Hence F (x) = (xn)n∈ω.
Now, define (zn)n∈ω ∈ (2

ω)ω by

zn(k) = 0 ⇔ a2〈k,n〉 ∈ x, zn(k) = 1 ⇔ a2〈k,n〉+1 ∈ x.

Since Ξ((zn)n∈ω) = x, we finally obtain F (Ξ((zn)n∈ω)) = (xn)n∈ω, there-
fore (xn)n∈ω ∈ F [Ξ[(2

ω)ω]]. This finishes the proof of the Claim.

Thus we obtain |f [C] ∩ X| ≤ ω. Since next we can find a perfect cube
D ⊆ C such that f [D]∩X = ∅, we finally conclude that X is an scube0 set.

Corollary 4.3. Assume CPAcube. Then every 1-1-UCR0 set has size
≤ ω1 and 2

ω = ω2 holds.

Proof. This follows immediately from Proposition 1.0.4 of [CP] (stating
that under CPAcube, s

cube
0 ⊆ [2ω]≤ω1) and from the previous theorem.

Corollary 4.4. Under the axiom CPAcube there is no UCR0 set of size
2ω. In particular , this holds in the iterated perfect set model.

This answers a question of Darji from [Da].

Recall the following notion of smallness considered in [Sc]. We say that
X ⊆ 2ω× 2ω has property (s20) if every set P ×Q ∈ Perf ×Perf has a subset
P1 ×Q1 ∈ Perf ×Perf disjoint from X. It was proven in [Sc] that the class
of (s20) sets is a σ-ideal on 2

ω × 2ω. It was also proven in [N2] that every
UCR0 set is an (s

2
0) set. Note that Theorem 4.1 is a strengthening of this

result, since we have the following easy fact:
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Observation 4.5. Every scube0 set is an (s20) set.

Proof. Let X ∈ scube0 . Suppose that P,Q ⊆ 2ω are perfect sets. We may
assume that P ≈ 2ω and Q ≈ 2ω. Let hP , hQ be arbitrary homeomorphisms
between

∏

n∈ω 2
ω and P,Q, respectively. Define the following cube:

f :
∏

n∈ω

2ω → 2ω × 2ω, f((xn)n∈ω) = 〈hP ((x2n)n∈ω), hQ((x2n+1)n∈ω)〉.

Since X ∈ scube0 there exists a subcube g ⊆ f , g :
∏

n∈ω Cn → 2
ω × 2ω

(Cn ∈ Perf), such that ran(g) ∩X = ∅. We define two perfect sets, P1 and
Q1, by putting

P1 = hP

[

∏

n∈ω

C2n

]

and Q1 = hQ

[

∏

n∈ω

C2n+1

]

.

It is easy to see that P1, Q1 are perfect sets and P1×Q1 ⊆ ran(g). Therefore
(P1 ×Q1) ∩X = ∅ and P1 ×Q1 ⊆ P ×Q. This proves that X ∈ (s

2
0).

5. Thin sets related to trigonometric series. In this section we
briefly discuss the relation between thin sets related to trigonometric series
and F -UCR0 sets.

Theorem 5.1. Let X ⊆ 2ω be a Σ set and let h : 2ω → 2ω be a contin-
uous one-to-one function. Then h−1[X] ∈ CR0. In particular , every Σ set
is a 1-1-UCR0 set.

Proof. Since every continuous image of a Σ set is a Σ set, it is sufficient to
show that X∩ [ω]ω ∈ CR0. We notice that for every Ellentuck neighborhood
[s,A] the set [s,A]≤ω is homeomorphic to 2ω, hence finally it is enough to
show that there exists A ∈ [ω]ω such that [A]ω ∩X = ∅.

We will make use of the following sequence of functions fn : 2
ω → R

defined in [BRR] and used there to prove that 2ω 6∈ wQN:

fn(x) =















1

|{i ≤ n : x(i) = 1}|
if x(n) = 1,

1

n+ 1
if x(n) = 0.

Obviously fn ∈ C(2
ω). One easily checks that fn(x) → 0 for each x ∈ 2

ω.
By assumption, there exists a subsequence (fnk)k∈ω such that

∑

k∈ω fnk(x)
< ∞ for each x ∈ X. Let A = {nk0 , nk1 , . . .}. Suppose that B ∈ [A]

ω.
Clearly B = {nkr0 , nkr1 , . . .} where (rl)l∈ω is an increasing sequence of nat-
ural numbers. Moreover,

fnkrl
(B) =

1

|{s ≤ nkrl : s ∈ B}|
=
1

l + 1
.
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Thus
∑

k∈ω fnk(B) =∞ so B 6∈ {x :
∑

k∈ω fnk(x) <∞}. Therefore

[A]ω ∩
{

x :
∑

k∈ω

fnk(x) <∞
}

= ∅.

This proves that [A]ω ∩X = ∅.

Theorem 5.2. Let X ⊆ 2ω be a wΣQN set and let h : 2ω → 2ω be a
continuous one-to-one function. Then h−1[X] ∈ CR0. In particular , every
wΣQN set is a 1-1-UCR0 set.

Proof. As in the proof of Theorem 5.1, it is enough to show that there
exists A ∈ [ω]ω such that X ∩ [A]ω = ∅.
We will slightly modify the functions from the previous proof. Namely,

set

fn(x) =

{

2−|{i≤n:x(i)=1}| if x(n) = 1,

2−(n+1) if x(n) = 0.

Obviously fn ∈ C(2
ω). Let x ∈ 2ω. Then

∑

n∈ω

fn(x) ≤
∑

n∈ω

2−(n+1) +
∑

n∈ω

2−(n+1) <∞.

Since X ∈ wΣQN there exists a subsequence (nk) such that fnk↾X
QN
→ 0.

Then there exists a sequence (εk)k∈ω of positive numbers converging to zero
such that

X ⊆ {x ∈ 2ω : ∀∞k fnk(x) < εk}.

Next, choose an increasing sequence (ij)j∈ω of natural numbers such that
1/2j+1 > εij . Let A = {ni0 , ni1 , ni2 , . . .}. Suppose that B ∈ [A]

ω. Clearly
B = {nir0 , nir1 , nir2 , . . .}, where (rl)l∈ω is an increasing sequence of natural
numbers. Moreover,

fnirl
(B) = 2−|{s≤nirl :s∈B}| = 2−(l+1) ≥ 2−(rl+1) > εirl .

Thus ∃∞k fnk(x) > εk. Therefore [A]
ω ∩ {x : ∀∞k fnk(x) < εk} = ∅. This

proves that [A]ω ∩X = ∅.

Unfortunately, we are still unable to prove that every Σ set is a UCR0
set. Even, we do not know whether every γ-set is a UCR0 set.

Acknowledgements. I would like to thank Professor Krzysztof Ciesiel-
ski for his valuable remarks which allowed me to improve the main result of
this article.
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Wita Stwosza 57
80-952 Gdańsk, Poland
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