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EXACT C∞ COVERING MAPS OF THE CIRCLE
WITHOUT (WEAK) LIMIT MEASURE

BY

ROLAND ZWEIMÜLLER (Salzburg)

Abstract. We construct C∞ maps T on the interval and on the circle which are
Lebesgue exact preserving an absolutely continuous infinite measure µ ≪ λ, such that

for any probability measure ν ≪ λ the sequence (n−1
∑
n−1

k=0
ν ◦ T−k)n≥1 of arithmetical

averages of image measures does not converge weakly.

1. Introduction. A measurable map T on some σ-finite measure space
(X,A,m) is called nonsingular ifm◦T−1 ≪ m. In this case the image of any
absolutely continuous measure ν ≪ m with density u ∈ L1(m) again has a

density, denoted by T̂ u := d(ν ◦ T−1)/dm. The positive linear operator T̂ :
L1(m)→ L1(m) thus defined is the dual (or transfer or Perron–Frobenius)
operator of T with respect to m. For a probability density u ∈ D(m) :=

{v ∈ L1(m) : v ≥ 0, m(v) = 1} on X, T̂
nu is the density of the distribution

of Tn on X. A result of M. Lin (cf. [Li]) shows that T is exact with respect
to m (meaning that the tail σ-field A∞ :=

⋂
n≥0 T

−nA only contains sets A

for which either A or Ac has zero measure) iff for any u, v ∈ D(m) we have

limn→∞ ‖T̂
nu− T̂nv‖L1(m) = 0.

Assume now thatX is a compact metrizable space and A equals B = BX ,
its Borel σ-field. The setM1(X) of all probability measures on B is compact
and metrizable in the topology of weak convergence of measures (i.e. in the
weak∗-topology on C∗(X)), where νn → ν iff limn→∞ νn(f) = ν(f) for all
f ∈ C(X). For any ν ∈ M1(X) the sequence (ν ◦ T

−n)n≥0 of image mea-
sures therefore has accumulation points in M1(X). If now T is exact with
respect to m and there is some ν0 ∈M1(X) with ν0 ≪ m such that ν0 ◦T

−n

actually converges to some measure ν̃ inM1(X) (e.g. if there exists an ab-
solutely continuous invariant probability ν̃), then Lin’s theorem implies that
in fact limn→∞ ν ◦ T

−n = ν̃ for all ν ∈ M1(X) with ν ≪ m. Rudnicki in
[Ru] raised the question whether every exact nonsingular map on a compact
metric space had such a weak limit measure. As pointed out in [Ke], there
do exist quadratic maps of the unit interval X := [0, 1] which have no weak
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limit measure (cf. [HK]) but are exact with respect to Lebesgue measure
λ =: m (cf. [BH]).

The purpose of the present note is to propose a construction which pro-
duces simpler exact counterexamples on the interval and on the circle for
which (just as for those of [Ke]) even the averaged sequence (n−1

∑n−1
k=0 ν ◦

T−k)n≥0 does not converge in M1(X) if ν is absolutely continuous with
respect to Lebesgue measure λ.

2. Construction of examples: C∞ covering maps on the interval
and the circle. The transformations T considered here will be piecewise
smooth and onto: there is some finite partition ξ of X into subintervals Zi,
i ∈ I, such that each restriction T |Z◦ , Z ∈ ξ, is a C

∞ diffeomorphism onto
(0, 1). They will be almost expanding in that T ′ > 1 except at indifferent
fixed points xi where T

′xi = 1, and the mass pushed forward by the map
will keep fluctuating between shrinking neighbourhoods of these points.

We begin with the globally simplest prototypical family of interval maps
with two branches and two indifferent fixed points x0 = 0 and x1 = 1.
A slight variation of this will then result in equally smooth covering maps
of the circle.

Starting from a map T1 we shall give an inductive scheme producing
a sequence (Tj)j≥1 of maps by changing Tj on the set (0, βj) ∪ (1 − βj , 1)
(where βj ց 0) to obtain Tj+1. One suitable choice for T1 is as follows.
Let H(t) := t + 1(0,∞)(t) · 2

−1 exp(2 − 1/t), so that H ∈ C∞(R), and let S
denote its restriction to [0, 1/2]. Then take T1(x) := S(x) for x ∈ [0, 1/2]
and T1(x) := 1− S

∗(1− x) for x ∈ (1/2, 1], where S∗ := S.
We want the modification procedure to preserve a few convenient prop-

erties of the branches of Tj , clearly shared by the preceding example, which
we collect in the following definition: We let S denote the collection of
all C∞ diffeomorphisms S : [0, 1/2] → [0, 1] of the form Sx = x + Dx
with D : [0, 1/2] → [0, 1/2] increasing, D′ ≤ κD · D

′′ on [0, 1/4] for some
κD ∈ (0,∞), and D

(n)(0+) = 0 for all n ≥ 0. Observe that in this case both
S and D are convex (but D may well vanish on some interval [0, ε]), and
D can be extended to a C∞ function on (−∞, 1/2] by letting Dx := 0 for
x < 0.

Given S, S∗ ∈ S we let [S, S∗] denote the piecewise C∞ map T : [0, 1]→
[0, 1] with Tx = Sx for x ∈ Z0 := [0, 1/2] and Tx = 1 − S

∗(1 − x) for
x ∈ Z1 := (1/2, 1]. If both S and S

∗ are strictly convex, then T = [S, S∗]
belongs to the class T of endomorphisms studied in [T2], and we write
T ∈ TS . Thus T is conservative ergodic with respect to Lebesgue measure
λ and preserves an infinite measure µ≪ λ which has a continuous positive
density h with singularities of the type specified in [T1] at the indifferent
fixed points xi = 0, 1. According to Theorem 1 of [T2], T is Lebesgue exact.
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As a consequence of these properties, limn→∞
T
(ε,1−ε) T̂

nu dλ = 0 for any

ε > 0 and u ∈ L1(λ) (cf. [T3]), showing that the mass of the iterated

densities T̂nu accumulates near the fixed points xi. We are going to construct
a transformation of this type for which this mass fluctuates between the two
points (δx denotes unit point mass at x):

Theorem 1 (Existence of T ∈TS without weak limit measures). The
class TS contains maps T = [S, S

∗] which are exact and have no weak limit
measures on [0, 1], as for any u ∈ D(λ) the set of weak accumulation points

of the measures (n−1
∑n−1
k=0 T̂

ku dλ)n≥1 equals {sδ0 + (1− s)δ1 : s ∈ [0, 1]}.

Remark 1. The maps T ∈ T are not only exact, but share another
strong ergodic property: They are pointwise dual ergodic, i.e. for each T ∈ T
there are constants an = an(T ) ∈ (0,∞), n ≥ 1, such that a

−1
n

∑n−1
k=0 T̂

ku→
λ(u)h a.e. on [0, 1] for any u ∈ L1(λ); see [A1], or Sections 3.7 and 4.8 of
[A0]. In fact, if u ∈ C1([0, 1]) and u > 0, this convergence is even uniform on
each (ε, 1− ε), ε ∈ (0, 1/2); cf. [T3] and [Zw]. Still, this regular asymptotic

behaviour of the
∑n−1
k=0 T̂

ku on any center interval cannot prevent the mass
fluctuations between the endpoints.

Proof of Theorem 1. By exactness we need only consider one specific
u ∈ D(λ) which we choose to be (uniformly) continuous. Since for any ε > 0

and T ∈ TS , limn→∞
T
(ε,1−ε) n

−1
∑n−1
k=0 T̂

ku dλ = 0, it is enough to construct

some T∞ ∈ TS and a subsequence nj ր∞ of N such that\
Ij

(
1

nj

nj−1∑

k=0

T̂ k∞u

)
dλ ≤

1

j

for all j ≥ 1, where Ij = Z0 if j is even and Ij = Z1 if j is odd. The map
T∞ we are going to construct will be the limit of a sequence Tj = [Sj , S

∗
j ],

j ≥ 1, in TS with all S
(∗)
j = Id +D

(∗)
j strictly convex, where S

(∗) ∈ {S, S∗}

(the same convention for D(∗) respectively), and Ti = Tj on (βj, 1− βj) for
all i ≥ j ≥ 1, where (βj)j≥1 is a suitable sequence in (0, 1/2) with βj ց 0.

Clearly, S
(∗)
∞ := limj→∞ S

(∗)
j =: Id+D

(∗)
∞ are then continuous and strictly

increasing on [0, 1/2]. They are strictly convex and C∞ on each (δ, 1/2],
δ ∈ (0, 1/2), which immediately proves strict convexity on all of [0, 1/2].
To show that these functions are in fact C∞ on [0, 1/2] we need to check

that limx→0+(D
(∗)
∞ )(k)(x) = 0 and (D

(∗)
∞ )(k)(0+) = 0 for all k ≥ 1. This

follows by a simple induction from the fact that we shall have |(D
(∗)
j+1)

(k)| ≤

(1+εj)|(D
(∗)
j )
(k)| for 1 ≤ k ≤ j+1, where εj := 2

−j . Finally, T∞ will belong

to TS , as S
(∗)
∞ ∈ S results from the estimate (D

(∗)
j+1)

′ ≤ (κj + εj)(D
(∗)
j+1)

′′

provided below.



298 R. ZWEIMÜLLER

To start the inductive construction at step j = 1, we choose any T1 =

[S1, S
∗
1 ] ∈ TS for which each derivative T

(k)
1 , k ≥ 1, is strictly monotone in

a suitable neighbourhood Nk of the fixed points, e.g. S
(∗)
1 = H|[0,1/2] with

H as above. Let n1 := 1, β1 := 1/4. Since
T
[0,1] n

−1
∑n−1
k=0 T̂

ku dλ = 1 in any

case, we have\
Ij

(
1

nj

nj−1∑

k=0

T̂ ku

)
dλ ≤

1

j
for j = 1 and any T ∈ TS .

For the inductive step assume that for some j ≥ 1 we have constructed
Tj = [Sj , S

∗
j ] ∈ TS with all derivatives monotone near the fixed points, and

found nj ≥ 1, βj ∈ (0, 1/4) such that\
Ij

(
1

nj

nj−1∑

k=0

T̂ ku

)
dλ ≤

1

j
for any T ∈ TS with T = Tj on [βj, 1− βj ].

We show that we can do likewise for j + 1 with some βj+1 ∈ (0, βj/2),
thereby respecting the estimates on derivatives mentioned above. Suppose
without loss of generality that j is even, so that Ij+1 = Z1. (In case j is
odd, apply the argument to follow to [S∗j , Sj ] obtaining [S

∗
j+1, Sj+1] and take

Tj+1 := [Sj+1, S
∗
j+1].) We shall isolate the main steps of the construction in

the form of four lemmas, whose proofs are deferred to the next section.
The first crucial observation is that no matter how high the degree of

tangency of some strictly convex S ∈ S to the identity may be, we can still
do much better without leaving S:

Lemma 1 (Locally deforming S∈S towards the identity). For any strict-
ly convex S = Id+D ∈ S with all derivatives D(k), k ≥ 1, strictly monotone
on neighbourhoods of 0+, any j ≥ 1, ε > 0 and β ∈ (0, 1/2) there is a
decreasing family (Φt)t∈[0,1] = (Id+Ψt)t∈[0,1] in S, C

r for any r ≥ 1, with the
following properties: Φ1 = S, Φt|[β,1/2] = S|[β,1/2] for all t ∈ [0, 1], for each
t ∈ (0, 1] the function Ψt is strictly convex with derivatives strictly monotone
around 0+, and there is some η ∈ (0, β) such that {x : Φ0x = x} = [0, η].
Moreover , we can ensure that for all t ∈ [0, 1] we have Ψ ′t ≤ (κD + ε)Ψ

′′
t on

[0, 1/4], and |Ψ
(k)
t | ≤ (1 + ε)|D

(k)| for 1 ≤ k ≤ j + 1.

We apply Lemma 1 with S := Sj , ε := εj , and β := βj, to obtain η > 0
and a family (Φt)t∈[0,1] in S as specified there. We can thus locally modify
Tj = [Sj , S

∗
j ] near x = 0 to obtain maps [Φt, S

∗
j ] ∈ TS , t ∈ (0, 1], which are

close to the identity on [0, η]. This is perfect for our purpose since the limit
map [Φ0, S

∗
j ] traps all the mass into this now absorbing set:

Lemma 2 (Mass accumulates in the absorbing set). Let T =[S, S∗] with
S∗ ∈ S strictly convex and S ∈ S with {Sx = x} = [0, η] for some η > 0.

Then limn→∞
T
[η,1] T̂

nu dλ = 0 for any u ∈ L1(λ).
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Let P(t) denote the dual operator of [Φt, S
∗
j ], t ∈ [0, 1]. According to the

Lemma 2, there is some nj+1 > nj such that\
Z1

(
1

nj+1

nj+1−1∑

k=0

P k(0)u

)
dλ ≤

1

3(j + 1)
.

We cannot take Tj+1 to be this limit map, as we need strictly convex
branches. However, all the Φt with t > 0 are strictly convex and approx-
imate Φ0 in the C

1-norm, which by the next lemma is enough to let us
conclude that P k(t)u→ P

k
(0)u in C

0.

Lemma 3 (Continuous dependence of T̂ ku on C1-branches). Let u ∈
C([0, 1]), S∗ ∈ S and for S ∈ S let PS denote the dual operator of [S, S

∗]
with respect to λ. For any k ≥ 1, S 7→ P kSu is then continuous as a map
from (S, ‖ · ‖C1) into (C([0, 1]), ‖ · ‖C0).

Therefore
T
Z1
n−1j+1
∑nj+1−1
k=0 P k(t)u dλ is continuous in t, so that if we define

S∗j+1 := S
∗
j and Sj+1 := Φt for some sufficiently small t > 0, Tj+1 :=

[Sj+1, S
∗
j+1] ∈ TS still satisfies\

Z1

(
1

nj+1

nj+1−1∑

k=0

T̂ kj+1u

)
dλ ≤

1

2(j + 1)
.

We finally need to provide some space for the modifications to be done
in the subsequent steps of the construction. Let us point out that this does
not depend on the particular class of maps, but works for any nonsingular
system:

Lemma 4 (Small modifications of nonsingular transformations). Let T
be a nonsingular map on the σ-finite measure space (X,A,m), and consider
a decreasing sequence (Bl)l≥1 in A with liml→∞m(Bl) = 0. Then for any
n ≥ 1, u ∈ L1(m), and ε > 0 there is some l = l(n, u, ε) ≥ 1 such that

‖T̂ ku− T̂ k∗u‖L1(m) < ε for k ∈ {0, 1, . . . , n− 1}

whenever T∗ is a nonsingular map on (X,A,m) with T∗ = T on B
c
l .

As a consequence, there is some βj+1 ∈ (0, βj/2) such that\
Z1

(
1

nj+1

nj+1−1∑

k=0

T̂ ku

)
dλ ≤

1

j + 1

for any T ∈ TS with T = Tj+1 on [βj+1, 1 − βj+1]. This completes the
inductive step and hence the proof of Theorem 1.
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Observe that if we start our construction with a map T1 ∈ TS which can
be regarded as a C∞ covering map of the circle by identifying the endpoints

of the interval (i.e. if T
(k)
1 ((1/2)

−) = T
(k)
1 ((1/2)

+) for k ≥ 1), then the same
is true for the limit map T , as Tj = T1 for all j ≥ 1 around the critical
point x = 1/2 and the fixed point is flat on either side. However, T then has
a weak limit measure on the circle, as the two accumulation points of the
measures coincide. Still, a slight modification of the construction yields

Theorem 2 (Covering maps of the circle). There exist Lebesgue exact
C∞ covering maps of the circle without weak limit measure.

Let us briefly sketch how to construct an orientation-preserving map of
degree 3 with the required properties. (To get a degree 2 map, we need to
reverse orientation.) Take some 3-to-1 map T1 from Thaler’s class T with flat

indifferent fixed points at xi ∈ {0
+, 1/2, 1−} (i.e. T ′1(xi) = 1 and T

(k)
1 (xi) = 0

for k ≥ 2) which is C∞ on the circle and satisfies (T1 − Id)
′ ≤ κ(T1 − Id)

′′

and monotonicity of derivatives near the fixed points. Then use the same
inductive scheme as before, modifying Tj near 0

+ and 1− if j is even, or near
(1/2)± if j is odd, to obtain Tj+1. The straightforward formal modifications
are left to the reader.

3. Proofs of the lemmas. We conclude with the technical proofs of
the lemmas announced before.

Proof of Lemma 1. Assume without loss of generality that β is so small
that each D(k), 1 ≤ k ≤ j +1, is strictly monotone on [0, β]. It is enough to

construct S̃ ≤ S satisfying the requirements for Φ0 and take Φt := t · S +
(1− t) · S̃, t ∈ [0, 1]. To this end we let S̃x := x+ D̃x with D̃ := D ◦ϕα and
ϕα chosen as follows.

Take a, b ∈ (0, β), a < b; then we can choose some concave C∞ function
F on R with F = 0 on [b,∞) and F ′ = 1 on (−∞, a]. For α ∈ (0, 1) we
define ϕα(x) := x + αF (x), x ∈ R. Then ϕα ∈ C∞(R), ϕα = Id on [β,∞),
and ϕα is strictly increasing and concave, and ϕα(0) < 0, so that there is a
unique zero ηα ∈ (0, β). Notice that for any r ≥ 1, ϕα → Id in C

r([0, 1/2])
as αց 0, in particular we have ηα → 0.

The function D̃ is C∞ and increasing with D̃ = 0 on [0, ηα], D̃ = D

on [b, 1/2], and satisfies D̃ ≤ D. The first of these properties immediately

implies that for t ∈ (0, 1] each derivative Ψ
(k)
t , k ≥ 1, has the same mono-

tonicity behaviour around 0+ as D(k). As ϕα is affine on [0, a], we have

D̃(k) = (1 + α)kD(k) ◦ ϕα on this set, which in view of the monotonicity

of D(k) there shows that |D̃(k)| ≤ (1 + ε)|D(k)| on [0, a] for 1 ≤ k ≤ j + 1
provided α is small enough.
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To deal with the D̃(k) on [a, b], we notice that each is a finite sum of

terms of the form const · (D(i) ◦ ϕα) ·
∏
1≤l≤k(ϕ

(l)
α )ml with 1 ≤ i ≤ k and

ml ≥ 0, and that the only one containing no factor ϕ
(l)
α with l ≥ 2 (and

hence not necessarily tending to zero as α → 0) is (D(k) ◦ ϕα)(ϕ
′
α)
k. By

strict monotonicity of the derivatives, D(k) has no zero in [a, b], and we

can conclude that |D̃(k)| ≤ (1 + ε)|D(k)| on [a, b] for 1 ≤ k ≤ j + 1 for α
sufficiently small.
Straightforward calculation finally shows that D̃′ ≤ (κD + ε)D̃

′′ for α
small enough if we recall that ϕ′α → 1 and ϕ

′′
α → 0 uniformly on [0, 1/2] as

αց 0.

Proof of Lemma 2. We are going to show thatM := [0, η) is a sweep-out
set, i.e.

⋃
n≥1T

−nM = [0, 1] mod λ, implying limn→∞ λ(
⋂n
k=0T

−kM c) = 0.
The assertion then follows immediately: M being an absorbing set (i.e.

TM ⊆M), we have
T
Mc T̂

nu dλ =
T
⋂n
k=0 T

−kMc u dλ.

LetM ′ := Z1∩T
−1M ; then T−1M\M ′ =M , showing that the sweep-out

property for M follows once we prove that M ′ is a sweep-out set for T |Mc .
This however is easily seen, as the map T0 : M

c → M c with T0 = T on
M c\M ′ which mapsM ′ affinely ontoM c is of type T and hence conservative
ergodic on M c (so that any set of positive Lebesgue measure is a sweep-out
set for T0).

Proof of Lemma 3. For T piecewise smooth and onto and (i0, . . . , in−1) ∈
In we let Zi0,...,in−1 :=

⋂n−1
k=0 T

−kZik denote the cylinders of order n, and
write fi0,...,in−1 := (T

n|Zi0,...,in−1 )
−1 : (0, 1) → Zi0,...,in−1 . The dual operator

T̂ with respect to Lebesgue measure λ then has a version which admits a
simple explicit representation as

T̂nu =
∑

(i0,...,in−1)∈In

u ◦ fi0,...,in−1 · |f
′
i0,...,in−1 |.

It is therefore enough to show that each fi0,...,in−1 depends C
1-continuously

on the C1-branch S, which is immediate from the following observations
whose elementary proofs are omitted: Let J and J ′ be compact intervals;
then the operation of inverting C1 diffeomorphisms of J onto J ′, g 7→ g−1, is
C1-C1-continuous. Moreover, for C1 maps g : J → J ′ and f : J ′ → R the op-
eration of composition (f, g) 7→ f ◦g is continuous as a map C1×C1 → C1.

Proof of Lemma 4. Fix u and n. Writing Cl :=
⋃n−1
k=0 T

−kBl we have

T̂ k∗(1Ccl · u) = T̂
k(1Ccl · u) for 0 ≤ k ≤ n − 1 provided T∗ = T on B

c
l .

Consequently, ‖T̂ ku − T̂ k∗u‖L1(m) = ‖T̂
k(1Cl · u) − T̂

k
∗(1Cl · u)‖L1(m) ≤

2‖1Cl ·u‖L1(m), and this bound decreases to zero as l→∞: sincem◦T
−k≪m

for each k, we have liml→∞m(T
−kBl) = 0 so that Cl ց ∅ mod m.
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Acknowledgments. This note arose from a discussion with G. Keller
in Erlangen. I am also grateful to M. Thaler for critical comments on a
previous version, and to the referee for carefully reading the manuscript.
This research was supported by the Austrian Science Foundation FWF,
project P14734-MAT.

REFERENCES

[A0] J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys Monogr.
50, Amer. Math. Soc., 1997.

[A1] —, Random f-expansions, Ann. Probab. 14 (1986), 1037–1057.
[BH] H. Bruin and J. Hawkins, Exactness and maximal automorphic factors of unimodal

maps, Ergodic Theory Dynam. Systems 21 (2001), 1009–1034.
[HK] F. Hofbauer and G. Keller, Quadratic maps without asymptotic measure, Comm.

Math. Phys. 127 (1990), 319–337.
[Ke] G. Keller, Completely mixing maps without limit measure, preprint, Erlangen, De-

cember 2000.
[Li] M. Lin, Mixing for Markov operators, Z. Wahrsch. Verw. Geb. 19 (1971), 231–243.
[Ru] R. Rudnicki, On a one-dimensional analogue of the Smale horseshoe, Ann. Polon.

Math. 54 (1991), 147–153.
[T1] M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent

fixed points, Israel J. Math. 37 (1980), 303–314.
[T2] —, Transformations on [0, 1] with infinite invariant measure, ibid. 46 (1983),

67–96.
[T3] —, A limit theorem for the Perron–Frobenius operator of transformations on [0, 1]

with indifferent fixed points, ibid. 91 (1995), 111–127.
[Zw] R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with

indifferent fixed points, Ergodic Theory Dynam. Systems 20 (2000), 1519–1549.

Institut für Mathematik
Universität Salzburg
Hellbrunnerstraße 34
A-5020 Salzburg, Austria
E-mail: roland.zweimueller@sbg.ac.at

Received 26 April 2001;

revised 6 March 2002 (4057)


