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AN ISOMORPHISM PROBLEM FOR ALGEBRAS DEFINED
BY SOME QUIVERS AND NONADMISSIBLE IDEALS

BY

STANISELAW KASJAN and MAJA SEDLAK (Toruri)

Abstract. Given a quiver @, a field K and two (not necessarily admissible) ideals
I, I’ in the path algebra K@, we study the problem when the factor algebras KQ/I and
KQ/I' of KQ are isomorphic. Sufficient conditions are given in case @ is a tree extension
of a cycle.

1. Introduction. Let K be an arbitrary field (not necessarily alge-
braically closed). Assume that Q@ = (Qo, Q1) is a finite quiver and I, I’
are two-sided ideals in the path algebra K@) of (. The aim of this paper is
to give a criterion for isomorphism of the factor algebras KQ/I and KQ/I'.
We do not assume that the ideals I, I’ are admissible and we allow Q to
have an oriented cycle, so the structure of the factor algebras can be quite
complicated and the general problem is very difficult. Hence we restrict our
study to a certain class of quivers () containing exactly one oriented cycle.

The main results of the paper are Theorem 4.4 and Corollary 4.5 con-
taining sufficient conditions for isomorphism of KQ/I and KQ/I' when Q
is a tree extension of a cycle (see Section 4 for the definition). An important
part of the proof is a description of the Auslander—Reiten quiver of KQ/I
(Theorem 3.6) and the canonical generating set of I (Proposition 3.2) when
Q is a single oriented cycle.

A motivation for this work comes from the question, studied in [6],
whether the representation-finite algebras over algebraically closed fields
form an open Z-scheme. An affirmative answer is given in [7] for the class
of triangular algebras by applying van den Dries’s test [4]. The key step of
the proof of the main result of [7] is to show that given a V-order A over
a valuation subring V of K, the K-algebra K A is representation-finite and
triangular provided the R-algebra A, obtained from A by passing to the
residue field R of V, is representation-finite and triangular. In a subsequent
paper an analogous implication will be proved for V-orders A such that the
Gabriel quiver of A is a tree extension of a cycle. The criterion given in
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Corollary 4.5 below is one of the main technical tools needed to obtain that
result.

Throughout we use the following terminology and notation.

Let @ = (Qo, Q1) be a finite quiver with the set of vertices (resp. arrows)
Qo (resp. Q1). Given an arrow « € @1, s(«) and t(«) is the source and the
terminus of «, respectively. By a path in () we mean a sequence u = o . .. up
of arrows of @ such that ¢(a;) = s(a;y1) for i =1,...,m —1. Then m is the
length of u, s(u) := s(ay) is its source and t(u) := t(ay,) its terminus. Given
a vertex = of () we denote by e, the stationary path of length 0 associated
to x, with s(ey) = t(ey) = x.

Given a quiver @), the path algebra of () is denoted by K (@Q). By definition,
the set of paths in @) is a K-basis of K() and multiplication is determined
by concatenation of paths (see e.g. |1, Chap. II, Def. 1.2|). Denote by K@,
the two-sided ideal of K@ generated by all paths of length n. A two-sided
ideal I of KQ is called admissible if KQ,, C I C KQ for some n.

If uw is an arrow or a path in @ then the I-coset of u in KQ/I is denoted
also by wu.

For a ring S, the S-algebra of polynomials in one indeterminate ¢ with
coefficients in S is denoted by S[t], and M, (S) is the algebra of all n x n-
matrices with coefficients in S.

Given a field K and two polynomials F, G € K[t]|, we denote by gcd(F, G)
the monic greatest common divisor of F' and G.

As usual, we identify the right KQ-modules X with the corresponding
representations (X, Xo)icQo,acq, of @ [1, Chap. III|. Given a K-algebra A,
we denote by mod A the category of right A-modules of finite K-dimension.

2. Representations of an oriented cycle. Let n > 1 and Q(n) be
the cyclic quiver with n-vertices

(2.0) Q(n) : f

that is, Q(n)o = Z/nZ identified with {0,...,n—1}, Q(n)1 = {apg, ..., an_1}
and s(a;) = @ = t(aj—1) for i = 0,...,n — 1, where the indices are taken
modulo n.

Throughout this section, we fix n > 1 and we set Q = Q(n).
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Given two paths u,v in @), we say that u is a subpath of v if there exist
paths wy,we in @ such that v = wiuws. In that case we write u < v.

We also use the following notation.

For j > 0 and i € Qo, u; ; is the (unique) path of length j starting at the
vertex 4. For simplicity we denote u; , by u;.

Let k,l be vertices of ). We denote by wy; the shortest path in () such
that s(wy,;) = k and t(wyy) = 1.

Given a representation V' = (V;, Vi, )icq, of the cycle Q and a vertex j,
we denote by V,; : V; — Vj; the composition Vi, ,0---0Vy,0Vq, ,0---0V,,.

For a polynomial F' = t9 + ag_1t%" ! + .- + a1t + ag € K|t], we denote
by Mp the d x d-matrix

[0 0 0 —ay |
0 0 —a
0 0 —a2
Mp =
00 0 ... 0 —ag_
|00 0 ... 1 —ag—1 |

Note that F' is the minimal polynomial of Mpg.

We define the representation V(F') of the quiver @ as follows: the space
K? is associated to every vertex and the identity map is associated to every
arrow of ) except for a,—1; to the arrow «,_; we associate the map defined
by Mg, with respect to the standard bases.

We denote by S(i) the simple representation corresponding to the vertex
1 of Q.

Let X;; be the indecomposable nilpotent representation of ¢ with top
S(i) and of length j [13], that is, X;; corresponds to the module
€1KQ/ul’]KQ Note that S(Z) = X’L’,l-

An equivalent description of X;; can be given in terms of the push-
down functor F) : mod K @ — mod K@ associated with the universal Galois
covering of F: Q — Q (see [5], [8]) defined by the infinite linear quiver Q of
type A, where we identify the vertices of @ with the integers. The covering
map F': @ — @ is determined by F'(i) =i + nZ.

One can see that X; ; = F)\(Y; ;), where Y; ; corresponds to the (unique)
indecomposable representation of QV with support {i,...,i+j —1}.

The reader is referred to [1] and [2] for the terminology of Auslander—
Reiten theory and to [9] and [12] for basic facts on standard tubes.

For the convenience of the reader we present, with an outline of proof,
the following assertion, essentially contained in [13].
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THEOREM 2.1. Let K be a field and Q = Q(n) be the cycle (2.0).

(a) FEwvery finite-dimensional indecomposable KQ-module corresponds to

one of the following representations:

(1) X@j with 1 € Qg and j € N,

(2) V(F) for some F which is a power of an irreducible polynomial
in K[t] and F(0) # 0.

(b) The Auslander—Reiten quiver I'xg = I'(mod KQ) of the category
mod KQ consists of the family T = {Tg}a of homogeneous stable
tubes indexed by the monic irreducible polynomials G € KJt| such
that G(0) # 0, and a stable tube T; of rank n. All the tubes are
standard components and they are pairwise orthogonal. Here Tg has

the form
V(G)
V(G2)=1V(G?)
Ta : V(G3)=TV(G3)
V(GH=1V(G*)
and the tube Ty has the form
Xo,1 Xn—11 - Xon X1 Xo,1
N - ~ 7 ~ ~7
[ Xn-12 X122 Xo,2 |
I 7 ~ 7 ~ 7 ~ |
Xn-1,3 Xn—23 X1,3 Xo,3 Xn-1,3
| ~ 7 N\ 7 N 7 |
I Xn-24 Xo,4 Xn-14 I
| 7 ~ 7 ~ 7 ~ |
Xn_25 Xn_35 Xo,5 Xn_15 Xn_25
| = 7 ~ 7 ~ 7
| Xn—_36 Xn—16 Xn—26 |

where we identify the modules along the vertical dashed lines.

Outline of proof. Let mod, KQ be the full subcategory of mod KQ con-
sisting of all KQ-modules (identified with representations V' = (V;, Vi, )ieq, )
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such that, for every vertex ¢, the composite map V,,, = V,, ---V,, , is in-
vertible. It is easy to check that the map

(Viv Vai)iEQo = (V07 Vuo)

associating to a representation of () a representation of the one-loop quiver
Q(1) determines an equivalence mod, KQ = mod K[t,t~!]. The structure of
the latter category is well known (see e.g. [10, 14.3|).

Now let modg K@ be the category of all (modules corresponding to)
nilpotent representations, that is, representations V = (Vj, Vy,)icq, such
that V,, is nilpotent. This category and its Auslander-Reiten quiver are
described in [13]. One can also use Galois covering arguments to prove that
the Auslander—Reiten quiver of mody K@ is just the tube 7;.

It remains to show that every indecomposable representation of @) is ei-
ther nilpotent or an object of mod, K@, and there are no nonzero maps
between these two subcategories of mod K'@Q). We repeat the well-known ar-
guments from the proof of the Jordan theorem. Namely, let V' = (V;, Vi, )icq,
be a representation of Q. For G € K|t] let V& be the subrepresentation of V'
such that V.“ consists of the elements of V; annihilated by a power of G(Vy,,),
fori =0,...,n—1. (One needs to check that it is really a subrepresentation.)
Repeating the well-known arguments, we prove that

V é VG
j=1

for some irreducible Gi,...,G,,, and there are no nonzero maps between
V& and V% for G; and G relatively prime. =

Following the terminology of Galois covering theory [3], the modules (1)
and (2) in the theorem are called the modules of first kind and of second
kind, respectively.

We have several direct consequences of Theorem 2.1.

COROLLARY 2.2. IfV = (V;, Vi, )ieq, is an indecomposable representa-
tion of @, then

for any i,j € Qo. Moreover, dimg V; = dimg V; for all i,5 if V € T;. m

Now we introduce two partial orders <. and =<, on the set of vertices
of I'kq. Define X <. Y (resp. X =, Y) if X and Y belong to the same
tube, lie on the same coray (resp. ray) of this tube and dimg Y > dimg X.
Clearly, the two orders coincide on the homogeneous tubes. Further, let < be
the partial order generated by the union of <. and =<, on the set of vertices
of I'kq.

We have another consequence of the description of K@Q-modules.
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COROLLARY 2.3. Fwery indecomposable K @Q-module X is uniserial, that
18, the lattice of submodules of X s linear. Moreover, U =<, X for every
submodule U of X, and F <. X for every factor module F' of X. If Y is an
indecomposable submodule (resp. factor module) of a module X then X has
a direct summand U such that Y <, U (resp. Y <. U).

Proof. Tt follows from Theorem 2.1 that the lattice of submodules of
V(G") is
0C V(@) CV(GHcC---CV(G)
and the lattice of submodules of X ; is
0C Xitj—1,1 C - C Xig1j-1 C Xy

It is now clear that U <, X for every submodule U of an indecomposable X.
Analogously, we show that F' <. X for every factor module F' of X.

For the proof of the remaining statement, assume that Y C X and Y is
indecomposable. Let X = X1 @ --- ® X,,, ® X', where X1,...,X,, are all
indecomposable direct summands of X belonging to the same tube as Y.
Then there exists a monomorphism g = [p;] : Y — X1 & -+ & X,,,. Sup-
pose that Y A, X, for all j. Then, for any j, the kernel of p; : ¥ — Xj is
nonzero, hence contains the unique simple submodule socY of Y. Therefore
socY C Ker p and we get a contradiction. Analogously, for an indecompos-
able factor module Y of X, we prove that X has a direct summand U such
that Y <. U. =

The proof of the following corollary is routine, and we leave it to the
reader.

COROLLARY 2.4. Let V = (V;,Vy,)icq, be an indecomposable represen-

tation of Q. Then V is cyclic, that is, it is generated by one element as a
KQ-module, and:

(a) if V' belongs to T; and top V = S(i), then the minimal polynomial of
the map V,,; s tdime Vi

(b) if V belongs to Tg with G # t, then the minimal polynomial of V,,, is
G", where rdeg G = dimg V;, for any i € Qp. =

COROLLARY 2.5. Assume that V, W are two indecomposable K Q-modules
and f,g:V — W are two epimorphisms (resp. monomorphisms). Then there
exist automorphisms ¢ and Y of V. and W, respectively, such that g = f¢

and g = f.

Proof. We only consider the case when f and g are epimorphisms, be-
cause the proof in the other case is analogous. It follows from Theorem 2.1
that either V' = V(G") and W = V(G?®) for some irreducible G and r > s,
or V=X, and W= X, for some i € Qo and r > s. The assertion follows
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by simple analysis of homomorphism spaces between K(@Q-modules, and we
leave it to the reader. m

THEOREM 2.6. Let Q = Q(n) be the cycle (2.0) and let Ay = KQ/I,
where I 1s a nonzero two-sided ideal in KQ. Then:

(a) dimg A7 < 0.

(b) Aj is representation finite.

(c) The Auslander-Reiten quiver I's, is a full subquiver of I'xg such
that:

(cl) if Y is a vertex of 'y, and X XY in I'xg then X is a vertex
of L'y,

(c2) every component of Iy, is finite,

(c3) I'a, has finitely many components,

(c4) an indecomposable Ar-module P is projective (resp. injective) if
and only if P is <c-mazimal (resp. <y-mazimal) in Iy, ,

(c5) the Auslander—Reiten translation in Iy, is the restriction of that
in I'q to the set of nonprojective vertices.

Proof. For simplicity of notation we set A = Ay = KQ/I. Statement (a)
is clear and (b) follows from (c).

(c) Assume that Y is an indecomposable A-module. Obviously submod-
ules and factor modules of Y in mod K@ are A-modules. If X < Y then
there exist a sequence

Y = X0, X1, oo, Xons1 = X

of vertices of I'kq such that X, is either a submodule or a factor module
of X; fori=0,...,m — 1. Hence X is a vertex of I’y and (cl) follows.

Clearly, a homomorphism of A-modules which is irreducible in mod KQ
is also irreducible in mod A. It follows from (c1) and the shape of I'xq that
every homomorphism between A-modules is a composition of morphisms
between A-modules which are irreducible in mod KQ. Hence I is a full
subquiver of I'kq.

To prove (c2) assume that g is a relation from I. Then ¢ = F(u;)u; ; for
some i € Qo, j <n and F € K[t].

Take an indecomposable representation V' = (V, Vaj) jeQo of Q. Choose
i € Qo such that top V' = S(i) if V' € 73, and take i arbitrary otherwise. The
minimal polynomial of the endomorphism V,,, of V; divides tF' and hence
dimg V; < deg F' + 1, by Corollary 2.4. Thanks to Corollary 2.2, we have
dimp V' = Y70, dimg V; < n(deg F' + 2) and hence the components of I’y
are finite.

(¢3) If I'y had infinitely many components, then A would be a product
of infinitely many algebras by Auslander’s result (see e.g. [1, Chap. IV, 5.4]).
This would contradict (a).
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For the proof of (c4) note that if P is <.-maximal then, by Corollary 2.3,
P is not an image of a nonsplit epimorphism from a A-module. This means
that P is projective.

If P is not <.-maximal then there exists a A-module Y such that P <. Y,
and we conclude by (c1) that there is a nonsplit exact sequence of A-modules
ending at P, thus P is not projective.

The proof of (c5) is easy. =

COROLLARY 2.7. Assume that K is algebraically closed and let I, I’
be ideals of KQ. The algebras A = KQ/I and A" = KQ/I' are Morita

equivalent if and only if the translation quivers I'y and I’y are isomorphic.

Proof. It is obvious that if A is Morita equivalent to A’ then their Auslan-
der—Reiten quivers are isomorphic. For the converse, note that if I'4 and 'y
are isomorphic then the configuration of the projective vertices in I’y is the
same as in I'y/. Since the tubes in I’k are standard and orthogonal we then
have isomorphism of the basic algebras associated to A and A’ (see [1, 1.6.3]).
Thus A and A’ are Morita equivalent. m

3. The canonical generating set of an ideal of KQ(n). Throughout
this section, we fix n > 1 and denote by @ = Q(n) the cycle (2.0).

Let I be a two-sided ideal of KQ(n) generated by a set G. The aim of
this section is to describe the Auslander—Reiten quiver of Ay = KQ(n)/I in
terms of G. To do this, we first reduce G to a “canonical” set of generators.
Let us explain the idea on an example.

ExaAMPLE 3.1. Assume that char K # 2,3 and consider the ideal I of
KQ(3) generated by the following elements:
Fo(uo)apay = udapga; — 3ugagay + 20par,
Fl(uo)ao = u%ao + u%ao — upypg — Q,

3 2
Fy(up)ajas = ujajay — ujaiag — ujagag + ajag,

where
Fot)=(t—-1)(t—-2), Fi(t)=(t—-1({t+1)?2 Fyt)=(t+1)(t—1)>
Observe that I contains the elements Fy(ug)upay = Folup)apaazag,

Fl(U())Ozoal and Fg(ul)alag.
Now, using the fact that G =t — 1 is the greatest common divisor of tFj
and Fi, we see that the ideal I is generated by
G(’LL())Oéo, Fz(ul)oqozg.
Note that
Gl(ul)alag = alagG(uo)agalag S I,
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where G1 = t(. Since G is the greatest common divisor of F» and G, it
follows that I is generated by

G(UO)ao, G(ul)alag.

By generalizing this procedure we reduce any set of generators of any
ideal in K@) to the form described in the proposition below.

PROPOSITION 3.2. Let I be a two-sided ideal of KQ(n). There exist:
(i) a monic polynomial G € K|[t| such that G(0) # 0,
(ii) @ nonnegative integer g,
(iii) wvertices i1,...,1, of Q(n) and integers 0 < mg < 2n, a = 1,...,r,
such that

(a) the paths wi, m,, a=1,...,r, are pairwise incomparable with res-
pect to the subpath order < (in particular, the numbers iy, . .., i,
as well as iy +ma, ..., i +m,, are pairwise different modulo n),
(b) the elements

wl G(uiy )iy mys -5 u] Gui, )i, m,

generate I as a two-sided ideal.

A set of generators of this form is called a canonical set of generators
of I.

To present the proof we need some preparation. Clearly, I has a finite
set of generators of the form

G ={Ga(ui,)ui, j, ra=1,...,p}

for some i, € {0,...,n — 1}, G, € K[t], jo > 0.
Without loss of generality, we can assume that j, < n for any a. Indeed,
if jo = kn + j! for some k € N, then

Ga(uia)uiaaja = G:l(ua)uia:jéﬂ Where Gl/ﬁl = tha

Let n, be the multiplicity of ¢ as a factor of G, fora =1,...,p. We keep
the notation introduced above.

LEMMA 3.3. Assume that G satisfies the following condition:
(R1) There are a # b such that u;, j, < Wi, j, and (iq = iy O iq + Jo =
iy + Jp) in Qo = Z/nZ.
Let
G — { (G \{Ga(ui,)uiy jor Go(wi, )iy, g, }) U {H (g )i 5o b ff np > Na,
(G\A{Galui, )i jo, Go(wiy, )iy 5, }) U {H (wi,)uiy 5, b if np < na,
where H = gcd(Gyq, Gp). Then (G) = (G1).

Ugy,
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Proof. Observe that the elements w;, Gp(us, )ui, j., Ga(us,)ui,, 5, belong
to

Ji = (Ga(uiy )iy o, Goluiy )i j,)-
For instance, if i, = 7 then
Wi G (Wig )iy o = Go(Wiy Wiy, Wi tia+ia-

The remaining case is similar and we leave it to the reader.

Let Hy = gcd(tGy, Go). Then the ideal J; is generated by H (u;, )us, 5, and
Hi (u;, )ui, j,- To finish the proof it is enough to observe that if n, > n, then
H = Hy and H(u;,)u;, j, generates Ji, whereas if n, < n, then H (u;,)u;, j,
does. m

Observe that after applying the operation G — G finitely many times
we can assume that our generating set G satisfies i, # 43 and i, + jo 7# 5+ Jp
modulo n, for any a # b, that is, (R1) is not satisfied.

LEMMA 3.4. Assume that G satisfies the following condition:
(R2) there are a # b such that u;, j, < wi, j, and G4 # tGy,.

Let
Go = (G \{Ga(wi, Uiy jo, Go(ui, )uiy 5, }) U S,

where
{H (i, )uig jo } if g < np,
S = ¢ {H (ui,)wiy gy Wi, H(wiy )i, 5, b if na = np + 1,
{H<uib)uib7jb} if ng > np + 1,

H = ged(Gy, Gy).
Then (G) = (G2).

Proof. Observe that the elements u? Gy(us,)ui, j,» Ga(ui,)us,, 5, belong
to

Jo = (Galuiy)tiq jor Go(Wiy )i j,)-
Let Hoy = ged(t?Gy, Gy). Then J; is generated by the elements
H(uib)uib,jb and Hg(uia)uimja.

To finish the proof it is enough to observe that if n, < ny, then H (u;, )ui, j,
generates Jo, and if n, > np + 1 then H(u;,)u;, 5, does. If n, = ny + 1 then
Hy=tH. u

Observe that if G does not satisfy (R1) then neither does the set Go
obtained from G as in Lemma 3.4.

LEMMA 3.5. Assume that G satisfies the following condition:
(R3) there are a # b such that u;, j, & Ui, jo» Wi, jo R Uiy 00d Gy # Gy.
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Let
G3 = (G \{Ga(ui, Ui, jo, Go(uy, )iy 5, }) U S,

where
{H (Wi, )iy, jo, H (i )iy 5, b if b = nas
S = {H(uia)uimja} Zf na < nb?
{H(uib)uib,jb} if ng > nyp,
H = ged(Gy, Gy).

Then (G) = (G3).

Proof. As in the proofs of Lemmas 3.3 and 3.4 we observe that the ele-
ments u;, Go(ui, )i, j, Wi, Go(i, )i, j, belong to

J3 = (Ga(ui, )tig jo, Go(ui, )i, jy,)
and hence J3 = (H3(u;, )us, j,, H1(ui, )i, 5, ), where we put H3=gcd(Gq, tGp)

and Hy = ged(tGq, Gy). If ng < ny then Hy = H, Hy = tH and Hq(u;,)ui, j,
€ (H(ui, )ui,,j, )- The case ng >ny is analogous. If n, = ny, then H1=Hs=H.

Proof of Proposition 3.2. We define the degree of a relation G(u;)u;;
to be ndeg G + j. Observe that if G satisfies one of the conditions (RN),
N = 1,2,3, then applying the corresponding operation G — Gy decreases
the sum of the degrees of the relations in the generating set. For instance,
if (R2) is satisfied and n, = ny + 1 then 2deg H + 1 < deg G, + deg Gy,
because G, # tGy. Therefore after finitely many reductions, we obtain a
generating set G = {Gq(u;, )i, j, : @ = 1,...,7} that does not satisfy any
of the conditions (R1)—(R3). Observe that since (R1) is not satisfied the
numbers i, for a = 1,...,r are pairwise different modulo n, as also are i,+j,,
a =1,...,r. Since (R2) is not satisfied, w;, j, < ui,j vields G, = tG).
Analogously, since (R3) is not satisfied, w;, j, & Ui, j,, and wi, j, £ Ui, j,
yields G, = Gyp. Now let t9G, where G(0) # 0, be the greatest common
divisor of all G4, a = 1,...,r. Moreover, put m, = j, + 1 whenever v;_ j,
is a subpath of another w;, j,, and let m, = j, otherwise. It is easy to check
that the conditions of the proposition are satisfied. m

REMARK. Note that if
g = {Ga(uia)uiayja ta= 1’ e 7p7 ja < n}

generates I then the polynomial G in Proposition 3.2 equals (1/t9) gcd{G,, :
a =1,...,p} for some g € N. This is a direct consequence of the proof of
Proposition 3.2.

Now we describe the Auslander—Reiten quiver of KQ(n)/I assuming that
we know a canonical set of generators of I:

uf G (wiy )iy my s - - -5 ], G(ui, )iy, -
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Throughout the rest of this section, we assume that I is as above and we set
A=KQ(n)/I.

Assume moreover that the polynomial G has the following decomposition
in K[t]:

G=F'. .. F,
where F1, ..., Fs are pairwise relatively prime irreducible polynomials.
Given i € Qo and m € N, we denote by K; ,,, the set of paths from the
set {wi, mys- -, Wi,m, } which pass through a;_; exactly m times, that is,

Kim = {Uism, : "7 01 < Wiy, W01 & Uiy n, } for m > 1,

Kio = {tigm, + @ic1 & Wiy m, }-

Note that, under our assumptions, if K; o is empty then K;; is not empty,
for every 1.

Assume that K;,, # (). Suppose we are walking from vertex ¢ following
the direction of arrows; denote by g; ,,, the terminus of a path from K; ,,, which
we meet first. Let ¢;,, be the length of the shortest path from i to g; .

For example let A = KQ(3)/I, where a canonical set of generators of I
is {G(up)apar, G(ur)ayan} for some G € K[X]|, G(0) # 0. Then

’CQ,O = (Dv
K10 = {a1as}, q10=0, fi0=2,
Kon ={aoar, iz}, g1 =2, 421 =0.

Let S(A) be set of vertices i € (g such that the simple KQ)-module S(7)
is a A-module. It is easy to see that ¢ € S(A) if and only if 7 & {i1,... i}
or (i =i, and g + jp > 1, for some k € {1,...,r}).

THEOREM 3.6. Suppose that A = KQ/I and I has a canonical set of
generators

{uzglG(uh)uh,mla s ulglG(uiT)uiTamT}7
where G = F{* ... F!* and Fy, ..., Fy are pairwise relatively prime irreducible
polynomials. The Auslander—Reiten quiver of the category mod A is a disjoint
union
T, (A) U+ U T (4) UTi(A),
where

(a) TF;(A) is a connected component and is the part of the tube Tr; con-
sisting of modules of reqular length less than or equal to r;.
(b) T:(A) consists of all <-predecessors of one of the modules II;, i €
S(A), where
7 { Xignttio if Kio # 0,
' Xi’(g-‘rl)n-i-fi,l if Kio = 0.

Ti(A) is not connected in general.
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(c) The modules V(F;j) for j =1,...,s and II;, i € S(A), described
above, form a complete set of indecomposable projective A-modules
(up to isomorphism).
Proof. Statements (a) and (b) follow from (c¢) and Theorem 2.6.
(c) One checks directly that V(F JT 7) and II; are A-modules. By Theorem
2.6 it is enough to see that that they are <.-maximal. Observe that if V =
(Vi, Vi )ieQo is a representation satisfying the relations uf G (ui; )uiy mys - - -,
u?TG(uir)uinmr then the minimal polynomial of V,,, divides t>t9G for any i.
It follows that I'4 is contained in szl Tp; UT:.
Assume, to the contrary, that V(F ;j ) is not <.-maximal. Then, by Corol-
lary 2.3, W = V(F;j—i_l) is a A-module. If we view W as a representation

(Wi, Wa,)ieo» then the minimal polynomial of W, is ', a contradiction.

Let ]Ci,() =+ () and suppose that Uk € ,Ci707 qi0 = t(uk,l). IfII; = Xz',gn+li70
is not <c-maximal then X; g, 14, o+1 is a A-module. Moreover ul G (ug)ug € I
and then u!G(u;)u;; € I. But Xigne;o+1 does not satisfy that relation,
a contradiction.

The assumption K; g = () yields K; 1 # () and we proceed analogously.

It is easy to observe that there are no other <.-maximal A-modules. m

Let A be KQ(3)/I as in Example 3.1. We have four projective A-modules
Xo,1, X222, X1,2, Vo(G), and I'y consists of two connected components:

T1(A): Vo(Mg)

The basic algebra A° associated with A (see [1, 1.6.3]) is isomorphic to the
algebra K D/(af3), where

D : e % o e °

PROPOSITION 3.7. Under the assumptions and notation of Theorem 3.6,
there is an isomorphism

eiA=PV(F7) o II;
Jj=1

for i€ {0,...,n— 1}, where we set II; =0 ifi ¢ S(A).

Proof. There are surjective maps from e; A to each of V(F;j) and [I;.
Moreover, these modules are indecomposable projective and pairwise noni-
somorphic, thus @jzl V(F]-T] ) @ II; is a direct summand of e;A. It suffices
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to prove that

S
dimg e; A < dimpg (@ V(F]) @ H)
j=1

First assume that /C; o # (0. It is easy to check that dimg e;Ade; 1 < d+1
for any k < n, where d = g 4+ deg G. Moreover, dimg e;Ae;p < d if £;9 <
k < n. Hence dimg ;A < nd + 4; 9. On the other hand, ng 4 ¢; o = dimg II;
and 37, dimg V(F;j) =ndegG.

Similarly if &C; o = () then we prove that dimg e;4 < n(d + 1) + ¢;1 and
the assertion follows, since dimg IT; =n(g+ 1)+ ;1. m

An isomorphism of algebras f : A — A’ induces an isomorphism of
categories
@ : mod A — mod A’

defined by associating to any A-module M the vector space @r(M) = M
equipped with multiplication given by the formula m -y X = m -4 f=1(\).
Moreover, $¢(y) = 7 for every homomorphism ~. It is clear that @;(ed) =
f(e)A’ for any e € A.

COROLLARY 3.8. Assume that F,...,Fy (resp. F{,...,F},) are pair-
wise relatively prime polynomials of degree 1 in K[X|, Fs(0) # 0, F.(0) # 0,
0<jp<m,rpn,s € NU{0} fors=1,.... M,p=1,...,N,i1,...,ir € Qo.
Let A= KQ/I, A" = KQ/I' where

~

I= (u;fFfpl(uZp) e F]?f’M(uip)uip’jp; p=1,...,N),
I = (uZ(Fll)”Pl(uzp) R (FZ'\/I)"P’M(uip)uip,jp; p=1,...,N).

There is an isomorphism of algebras f : A — A" such that P¢(X; ;) = X, j
and @¢(V(F])) = V((F])") whenever X; ;, V(F]) are A-modules.

Under the assumptions of the corollary we say that I and I’ have gener-
ating sets of the same shape.

Proof. Observe that the set of generators of I satisfies one of the condi-
tions (RN), N =1,2,3, if and only if the set of generators of I’ does. Then
an application of a suitable operation G — Gy on both of them gives us
two new generating sets of I and I’ of the same shape. By induction we can
assume that I has the canonical set of generators

{U%G(uil)uil,mlv s 7uzng(uir)uir,mr}7
where 0 <mg < 2nfora=1,...,r, G=F*...F/* for some L < M, and
I’ has a canonical set of generators of the same shape
/ /
{uzglG (uil)uil,mlv s 7ung (uir)uir,mr}a

where G' = (F{)™ ... (F})".
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Projective A-modules and projective A’-modules in the tube 7; are the
same. By Proposition 3.7, we have

L L
A= PVE) oI, ed=PV(F)"
=1 i=1

Hence there are decompositions into projective indecomposables:

AA—@V T] @ Hlv

1€S(A
e @V((F;)w e P I
j=1 1€S(A)

Since the algebras EndA(V( 7)) and End (V' ((F})™9)) are isomorphic, and
by Theorem 3.6 the components in I’y (resp. in I'y/) are orthogonal, there
exists an isomorphism

A2 Endj(A4) 2 End g (A)y) 2 A
satisfying the required condition. m
Let us formulate separately a special case of our results.

COROLLARY 3.9. Assume that F has the following decomposition in
Kt]:
G=tF* ... F}°,
where Fy,...,Fs are pairwise relatively prime irreducible polynomials not
divisible by t. Then there is an isomorphism of algebras

KQ/(G(ui),i=0,...,n—1) ngXHM /(7)),
where Ay, 4 is the Nakayama algebra KQ/(u; g, =0,...,n—1) (see [1, V.3]),

and D; = K[t]/(Fj).

Proof. Let A = KQ/(G(u;),i = 0,...,n — 1). It follows from Theorem
3.6 that the components in I'4 are orthogonal. Moreover, Proposition 3.7

yields
e = PV(F) @ II,
j=1

for t =0,...,n — 1. Then there is an isomorphism of algebras

n—1

A= Enda(A4) = Endag(V(F)") x - - x End o (V(FT*)") x Endy (@ H)
i=0
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Moreover
End(V(F)") = My (End(V(E)),  End(V(FI")) = D,{]/(t").
The projective A-modules 1y, ..., Il,_1 are pairwise nonisomorphic and

the algebra End (@)~ IT;) is basic. As the additive hull of {ITy, ..., IT,_1}
is isomorphic to the category of projective A, j-modules, it follows that

End, (@}~ II;) is isomorphic to A, ;.

4. The main result. Recall that an isomorphism of algebras f : A — A’
induces an isomorphism of categories @5 : mod A — mod A’. If M is an A-
A-bimodule for some algebra A then ®;(M) has a natural A-A’-bimodule
structure.

PROPOSITION 4.2. Let
A M A M
0 4 0o A

be generalized matriz algebras, where M is an A-A-bimodule and M’ is an
A'-A’-bimodule (see [1, 1.2.10]). If there exist an isomorphism f : A — A’
of algebras and an isomorphism o : Dy(M) — M’ of A-A'-bimodules, then
B=DB.

/

)

Proof. The map g : B — B’ given by

a m a o(m)
r—)
0 X 0 f(Nn)
fora e A,m € M, \ € Ais an isomorphism. =

We consider the algebras of the form KQ/I, where @) is obtained from
the cycle Q(n) of (2.0) by attaching trees. More precisely, suppose we have
pairwise disjoint finite connected trees 17, ..., T}, with distinguished vertices
Wiy e oy W, wi € (T;)o, for t = 1,...,m, and vertices z1, ..., 2z, of Q(n). Let
T = (T,...,T)) and let w = (w1,...,wn) and z = (21,...,2y). Define a
new quiver @ = Q(n,T,w, z) by setting

m m
Qo=QmoUJTo, @Q1=Qn1uJT)U{Bs...,Bm}
=1 i=1
where f1,...,Bn are new arrows with s(3;) = w; and t(3;) = z; for i =
1,...,m. We call such a quiver a tree extension of the cycle Q(n) by trees
T1,...,T, with roots wy, ..., w, at the vertices z1, ..., z;,. Throughout this
section we keep the notation introduced above and we denote by ) the quiver

Qn,T,w,z).
Given an algebra R and a quiver A = (Ap, A;), the concept of R-
representation M = (M, Mg)zen,, gea, of A is defined as usual: we as-
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sociate right R-modules M, to the vertices x of A and R-homomorphisms
Mg to the arrows (3. The category of R-representations (with morphisms
defined in the usual way) is denoted by Repr(A). The full subcategory of
Reppr(A) consisting of objects (M, M3)zcn,, gea, such that M, is finitely
generated, for every vertex x of A, is denoted by repr(A).

If f: R — R'is an algebra homomorphism then the functor ¢ induces
an equivalence of the categories Repr(A) and Repr/(A) (and of repr(A)
and repp/(A)), which we also denote by ®y.

Given a directed quiver A and its vertex x, we denote by =™ the set of
all vertices which are successors of x with respect to the path order in A.

LEMMA 4.3. Let A=KQ(n)/J for some nonzero ideal J. Assume that A
is a tree and xq is a source in a tree A. Assume also that M = (M., Mg) and
M' = (Mg, Mp) are objects of rep 4(A) satisfying the following conditions:

(i) M, =0= M. forx ¢ x],
(ii) My and M, are epimorphisms for any arrow a such that s(a) € z§,
(i) My, (resp. M, ) has at most one indecomposable direct summand in
each connected component of I'y.

If M, = M/ as A-modules for each x € Aq, then M = M' as A-represent-
ations.

Proof. Thanks to the orthogonality of the tubes in I'4 it is enough to
prove the statement for M, M’ such that all the indecomposable direct sum-
mands of M, and M., = € Ay, lie in one connected component of I'4.
Then Mg, and M  are indecomposable by (iii). Condition (ii), together
with Corollary 2.3, implies that M, (resp. M) is indecomposable or 0, for
all z € Ag.

By induction with respect to the path order on the vertices of A we shall
define a system of A-isomorphisms O, : M, — M., x € Ay.

Fix an arbitrary isomorphism O, : M, — M, . Assume that z €
xg' and O, : M, — M is defined and there exists an arrow S5y in A.

Therefore we have a A-module epimorphism M, : M, — M, and a A-module
epimorphism M/, : M/ — M,. The maps M/, 00, and M, are epimorphisms,
therefore, by Corollary 2.5, there exists a A-isomorphism @, : M, — lel such
that the diagram

M, Moo n,
Y (R Vi

is commutative. We set @, = 0, for x ¢ 363'. Then © = (Oy)zen, : M — M’
is an isomorphism of A-representations. m
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THEOREM 4.4. Let Q = Q(n,T,w, z) be the tree extension of the cycle
Q(n) by trees T with roots w at the vertices z, B = KQ/I, B' = KQ/I',
where I and I' are two-sided ideals in KQ such that KT; NI = KT; N1 for
j=A{1,...,m}. Let

A= KQm)/(TNKQ(), A = KQ(n)/(I'n KQ(n)).
If there exists an isomorphism of algebras f : A — A" such that $s(e;B|,) =
eiB|ar as A'-modules for any i € Qo \ Q(n)o, then the algebras B and B’ are
isomorphic.

In the formulation of Theorem 4.4, given a B-module, we denote by

X[a=X" (m%(%)o e:c)

the restriction of X to A. Analogously, we denote by Y|4 the restriction of
a B’-module Y to A'.

Proof. We define M7 € rep A(T](-)p) as follows. To a vertex z of T}, we

associate the A-module e;B|4, and given an arrow z -y of T; we define

the map M2 : Mj — M by setting Mé(r) = ar for r € Mﬂ Similarly, we
define M € repA/(T;)p) by associating the A’-module e, B| s to a vertex x
and we define the map MY : M{,j — MY by setting MY (r)=arforr e Méj.
We shall prove that the representations @¢(M7) and M" satisfy conditions
(i)—(iii) of Lemma 4.3 with A = T;p and 9 = w;. Condition (i) is clear.
Let =y be an arrow in T} such that y is a predecessor of w; in the path

order in Tj. Since each path in K@ starting at = and ending in Q(n) passes
through « it follows that M} , MY are epimorphisms and (ii) follows. For
any y € (T})o the module e, B, is a factor of the projective A-module e, A
(resp. ey B'|x/ is a factor of the projective A’-module e, A’), which has at
most one indecomposable direct summand in each connected component of
I'y (resp. I'y); see Proposition 3.7. Hence we get (iii) by Corollary 2.3. Then
it follows from Lemma 4.3 that M"7 = @¢(M7).

We treat any representation of T;p as a representation of T°P in the
obvious way, where T is the disjoint union of 7171, ...,T;,.

Then we set M = D], M7 € rep ,(T°P), M' = D, M" € rep 4, (T°P).

Let A = KT. If we identify the A-representation M of T°P with an
A-A-bimodule (resp. A’-representation M’ of T°P with an A-A’-bimodule),
then
A M

0o A

[a]

>~

0 A

AM] »

Hence, by Proposition 4.2, the algebras B and B’ are isomorphic. =
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Dually, we obtain an analogous theorem for tree coextensions of the cycle
Q(n) defined in the obvious way.

REMARK. The whole category of finitely generated A-representations of
a tree may be arbitrarily complicated even if T is just one arrow and A =
K|[t]/(t™) for some m > 1 (actually, that category is wild when m > 7, see

[11]).

The last result of this article has a technical character, at least as regards
its formulation. Let us explain its idea: if () is a tree extension of the cycle
Q(n), and ideals I and I' of K() have generating sets “of the same shape”
(cf. Corollary 3.8), then the algebras KQ/I and KQ/I' are isomorphic.

Let us say that two polynomials in one indeterminate (over an alge-
braically closed field) have the same shape if there is a multiplicity preserv-
ing bijection between the sets of their roots. One can naturally extend this
concept to sequences of polynomials.

Given an ideal in K@), we can choose a generating set consisting of zero-
relations (that is, paths) and relations of the form v, Fy(u;, )w,, where vg, wq
are paths, u;, is a cyclic path in Q(n) and F, is a polynomial. Now one can
say that two sets (of generators of two ideals) have the same shape if they
contain the same zero-relations and the remaining relations can be ordered
in such a way that the paths v,, u;,, w, are the same in both sets and the
resulting sequences of F,’s have the same shape.

Precisely, let Q = Q(n,T,w, z) be a tree extension of Q(n) (we keep the
notation introduced above). Assume that there are fixed integers M > 0,
—1< N <N, L>0and

(i) pairwise relatively prime polynomials Fi, ..., Fys of degree one such
that F,(0) #0,a=1,..., M,

(i') pairwise relatively prime polynomials F7, ..., F}, of degree one such
that F/(0) £0, a=1,..., M,

(i) paths vq, a = —L,...,—1,0,1,..., N’ starting in T =Ty U---UT,,.

If the path v, starts in T; then v, terminates in T} for a < 0 and
terminates at the vertex z; for a > 0,
(iii) vertices iq of Q(n), a = 0,..., N, such that i, = t(v,) for a =
0,...,N',
(iv) numbers rq,nqs € NU{0},a=0,...,N,s=1,..., M,
(v) numbers jg, 0 < j, <n,0=1,..., N.
These data determine two triples of sets of elements of KQ:

Go={vg:a=—-L,...,—1},
g1 = {vau:;Ga(uia)uiaja ca=0,...,N'},
Go = {u;-":Ga(uia)uiaja ca=N+ 1,.. .,N}
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and
Go = Go,
G1 = {vauj* Gy (ui, Juiyj, s a=0,...,N'},
Gh = {u?:Gg(uia)uiaja ca=N'+1,...,N},
where G, = F/'*" ... Fy/"" and G, = (F])"a1 ... (F})"eM fora =0,...,N.

COROLLARY 4.5. Keep the above notation and let I (resp. I') be the ideal
in KQ generated by Go U G1 U Gy (resp. Gy UG UGh). Then

KQ/I = KQ/TI'
Proof. We set
B=KQ/I, A=KQ(n)/J, B =KQ/T', A=KQ(n)/J

where J (resp. J') is the ideal in KQ(n) generated by Gy (resp. G5). Observe
that the sets Gy and gg are of the same shape in the sense of Corollary 3.8.
Hence there is an isomorphism of algebras f : A — A’. It is enough to prove
that one can choose f so that ®¢(e,B|1) = e, B’| 4 for every vertex y of T'.
Then the statement follows from Theorem 4.4.

To do this let us decompose the modules e,B| and e,B’[ 4 into inde-
composables. Fix k € {1,...,m} and let y be a vertex of Tj. Recall that zj, is
the vertex of Q(n)o the tree T}, is attached at. First observe that e, B4 = 0
and e, B’| 4 = 0 provided that either there is no oriented path from y to z,
or there is such a path (then it is unique) but it contains v, as a subpath for
some a = —L,...,—1.

Now suppose that w, is the unique oriented path from y to z;, and w
does not contain any v,, a = —L,...,—1, as a subpath. Then there is an
epimorphism of A-modules h : e, A — e, B| 4 such that Ker h is a submodule
of e, /A generated by

{uleGa(uz )z, j, 2 a € Ty},
where J, = {a=0,..., N’ : v; < wy}. We have an analogous description of
eyB’\A/ .

Let G = ged{Gy:a=N'+1,..., N}, G' = ged{G), :a=N'+1,...,N}.
Without loss of generality, we can assume that G = Fy' ... FX%' and G' =
(F) ... (Fyp ) for some M’ < M and cq,...,cpr > 0. Moreover, put
Hy =gcd{G,G,:a € J,} and H), = ged{G', G, : a € Jy}.

For a = 1,...,M’, let ¢ be the multiplicity of Fj, in H, (equal to the
multiplicity of F, in H})). Let also b = min({nro+j. : a € J,}U{dimg IT,, }),
where II,, is the projective A-module (as well as A’-module) described in
Theorem 3.6(b). Then

eyBla = V(F{") @ @ V(ERN) @ X,
ey By ZV((F)T) @ @ V((Fyp)™) © Xy p-
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Hence, by Corollary 3.8, the isomorphism f can be chosen in such a way
that @¢(eyB|a) = eyB|y for any vertex y of T'. m
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