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AN ISOMORPHISM PROBLEM FOR ALGEBRAS DEFINEDBY SOME QUIVERS AND NONADMISSIBLE IDEALSBYSTANIS�AW KASJAN and MAJA S�D�AK (Toru«)Abstra
t. Given a quiver Q, a �eld K and two (not ne
essarily admissible) ideals
I, I ′ in the path algebra KQ, we study the problem when the fa
tor algebras KQ/I and
KQ/I ′ of KQ are isomorphi
. Su�
ient 
onditions are given in 
ase Q is a tree extensionof a 
y
le.1. Introdu
tion. Let K be an arbitrary �eld (not ne
essarily alge-brai
ally 
losed). Assume that Q = (Q0, Q1) is a �nite quiver and I, I ′are two-sided ideals in the path algebra KQ of Q. The aim of this paper isto give a 
riterion for isomorphism of the fa
tor algebras KQ/I and KQ/I ′.We do not assume that the ideals I, I ′ are admissible and we allow Q tohave an oriented 
y
le, so the stru
ture of the fa
tor algebras 
an be quite
ompli
ated and the general problem is very di�
ult. Hen
e we restri
t ourstudy to a 
ertain 
lass of quivers Q 
ontaining exa
tly one oriented 
y
le.The main results of the paper are Theorem 4.4 and Corollary 4.5 
on-taining su�
ient 
onditions for isomorphism of KQ/I and KQ/I ′ when Qis a tree extension of a 
y
le (see Se
tion 4 for the de�nition). An importantpart of the proof is a des
ription of the Auslander�Reiten quiver of KQ/I(Theorem 3.6) and the 
anoni
al generating set of I (Proposition 3.2) when
Q is a single oriented 
y
le.A motivation for this work 
omes from the question, studied in [6℄,whether the representation-�nite algebras over algebrai
ally 
losed �eldsform an open Z-s
heme. An a�rmative answer is given in [7℄ for the 
lassof triangular algebras by applying van den Dries's test [4℄. The key step ofthe proof of the main result of [7℄ is to show that given a V -order A overa valuation subring V of K, the K-algebra KA is representation-�nite andtriangular provided the R-algebra A, obtained from A by passing to theresidue �eld R of V , is representation-�nite and triangular. In a subsequentpaper an analogous impli
ation will be proved for V -orders A su
h that theGabriel quiver of A is a tree extension of a 
y
le. The 
riterion given in2000 Mathemati
s Subje
t Classi�
ation: 16G20, 16G70.Key words and phrases: path algebra of a quiver, admissible ideal, Auslander�Reitenquiver, Morita equivalen
e. [1℄ 
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2 S. KASJAN AND M. S�D�AKCorollary 4.5 below is one of the main te
hni
al tools needed to obtain thatresult.Throughout we use the following terminology and notation.Let Q = (Q0, Q1) be a �nite quiver with the set of verti
es (resp. arrows)
Q0 (resp. Q1). Given an arrow α ∈ Q1, s(α) and t(α) is the sour
e and theterminus of α, respe
tively. By a path in Q we mean a sequen
e u = α1 . . . αmof arrows of Q su
h that t(αi) = s(αi+1) for i = 1, . . . ,m− 1. Then m is thelength of u, s(u) := s(α1) is its sour
e and t(u) := t(αm) its terminus. Givena vertex x of Q we denote by ex the stationary path of length 0 asso
iatedto x, with s(ex) = t(ex) = x.Given a quiver Q, the path algebra of Q is denoted by KQ. By de�nition,the set of paths in Q is a K-basis of KQ and multipli
ation is determinedby 
on
atenation of paths (see e.g. [1, Chap. II, Def. 1.2℄). Denote by KQnthe two-sided ideal of KQ generated by all paths of length n. A two-sidedideal I of KQ is 
alled admissible if KQn ⊆ I ⊆ KQ2 for some n.If u is an arrow or a path in Q then the I-
oset of u in KQ/I is denotedalso by u.For a ring S, the S-algebra of polynomials in one indeterminate t with
oe�
ients in S is denoted by S[t], and Mn(S) is the algebra of all n × n-matri
es with 
oe�
ients in S.Given a �eldK and two polynomials F,G ∈ K[t], we denote by gcd(F,G)the moni
 greatest 
ommon divisor of F and G.As usual, we identify the right KQ-modules X with the 
orrespondingrepresentations (Xi, Xα)i∈Q0, α∈Q1

of Q [1, Chap. III℄. Given a K-algebra Λ,we denote by modΛ the 
ategory of right Λ-modules of �nite K-dimension.2. Representations of an oriented 
y
le. Let n ≥ 1 and Q(n) bethe 
y
li
 quiver with n-verti
es
(2.0) �

◦

◦◦

◦◦

◦
◦◦

0

n−2

n−1

2

1

Q(n) :

that is, Q(n)0 = Z/nZ identi�ed with {0, . . . , n−1}, Q(n)1 = {α0, . . . , αn−1}and s(αi) = i = t(αi−1) for i = 0, . . . , n − 1, where the indi
es are takenmodulo n.Throughout this se
tion, we �x n ≥ 1 and we set Q = Q(n).



AN ISOMORPHISM PROBLEM FOR ALGEBRAS 3Given two paths u, v in Q, we say that u is a subpath of v if there existpaths w1, w2 in Q su
h that v = w1uw2. In that 
ase we write u 4 v.We also use the following notation.For j ≥ 0 and i ∈ Q0, ui,j is the (unique) path of length j starting at thevertex i. For simpli
ity we denote ui,n by ui.Let k, l be verti
es of Q. We denote by wk,l the shortest path in Q su
hthat s(wk,l) = k and t(wk,l) = l.Given a representation V = (Vi, Vαi
)i∈Q0

of the 
y
le Q and a vertex j,we denote by Vuj
: Vj → Vj the 
omposition Vαj−1

◦· · ·◦Vα0
◦Vαn−1

◦· · ·◦Vαj
.For a polynomial F = td + ad−1t

d−1 + · · · + a1t + a0 ∈ K[t], we denoteby MF the d× d-matrix
MF =




0 0 0 . . . 0 −a0

1 0 0 . . . 0 −a1

0 1 0 . . . 0 −a2. . .
0 0 0 . . . 0 −ad−2

0 0 0 . . . 1 −ad−1




.

Note that F is the minimal polynomial of MF .We de�ne the representation V (F ) of the quiver Q as follows: the spa
e
Kd is asso
iated to every vertex and the identity map is asso
iated to everyarrow of Q ex
ept for αn−1; to the arrow αn−1 we asso
iate the map de�nedby MF , with respe
t to the standard bases.We denote by S(i) the simple representation 
orresponding to the vertex
i of Q.Let Xi,j be the inde
omposable nilpotent representation of Q with top
S(i) and of length j [13℄, that is, Xi,j 
orresponds to the module
eiKQ/ui,jKQ. Note that S(i) ∼= Xi,1.An equivalent des
ription of Xi,j 
an be given in terms of the push-down fun
tor Fλ : modKQ̃→ modKQ asso
iated with the universal Galois
overing of F : Q̃→ Q (see [5℄, [8℄) de�ned by the in�nite linear quiver Q̃ oftype A∞, where we identify the verti
es of Q̃ with the integers. The 
overingmap F : Q̃→ Q is determined by F (i) = i+ nZ.One 
an see that Xi,j

∼= Fλ(Yi,j), where Yi,j 
orresponds to the (unique)inde
omposable representation of Q̃ with support {i, . . . , i+ j − 1}.The reader is referred to [1℄ and [2℄ for the terminology of Auslander�Reiten theory and to [9℄ and [12℄ for basi
 fa
ts on standard tubes.For the 
onvenien
e of the reader we present, with an outline of proof,the following assertion, essentially 
ontained in [13℄.



4 S. KASJAN AND M. S�D�AK
Theorem 2.1. Let K be a �eld and Q = Q(n) be the 
y
le (2.0).(a) Every �nite-dimensional inde
omposable KQ-module 
orresponds toone of the following representations:(1) Xi,j with i ∈ Q0 and j ∈ N,(2) V (F ) for some F whi
h is a power of an irredu
ible polynomialin K[t] and F (0) 6= 0.(b) The Auslander�Reiten quiver ΓKQ = Γ (modKQ) of the 
ategory

modKQ 
onsists of the family T = {TG}G of homogeneous stabletubes indexed by the moni
 irredu
ible polynomials G ∈ K[t] su
hthat G(0) 6= 0, and a stable tube Tt of rank n. All the tubes arestandard 
omponents and they are pairwise orthogonal. Here TG hasthe form

�

V (G)

V (G2)=τV (G2)

V (G3)=τV (G3)

V (G4)=τV (G4)

TG :

...
and the tube Tt has the form
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where we identify the modules along the verti
al dashed lines.Outline of proof. Let mod∗KQ be the full sub
ategory of modKQ 
on-sisting of all KQ-modules (identi�ed with representations V = (Vi, Vαi
)i∈Q0

)



AN ISOMORPHISM PROBLEM FOR ALGEBRAS 5su
h that, for every vertex i, the 
omposite map Vui
= Vαi

· · ·Vαi−1
is in-vertible. It is easy to 
he
k that the map

(Vi, Vαi
)i∈Q0

7→ (V0, Vu0
)asso
iating to a representation of Q a representation of the one-loop quiver

Q(1) determines an equivalen
e mod∗KQ ∼= modK[t, t−1]. The stru
ture ofthe latter 
ategory is well known (see e.g. [10, 14.3℄).Now let mod0KQ be the 
ategory of all (modules 
orresponding to)nilpotent representations, that is, representations V = (Vi, Vαi
)i∈Q0

su
hthat Vu0
is nilpotent. This 
ategory and its Auslander�Reiten quiver aredes
ribed in [13]. One 
an also use Galois 
overing arguments to prove thatthe Auslander�Reiten quiver of mod0KQ is just the tube Tt.It remains to show that every inde
omposable representation of Q is ei-ther nilpotent or an obje
t of mod∗KQ, and there are no nonzero mapsbetween these two sub
ategories of modKQ. We repeat the well-known ar-guments from the proof of the Jordan theorem. Namely, let V = (Vi, Vαi

)i∈Q0be a representation of Q. For G ∈ K[t] let V G be the subrepresentation of Vsu
h that V G
i 
onsists of the elements of Vi annihilated by a power of G(Vui

),for i = 0, . . . , n−1. (One needs to 
he
k that it is really a subrepresentation.)Repeating the well-known arguments, we prove that
V ∼=

m⊕

j=1

V Gj

for some irredu
ible G1, . . . , Gm, and there are no nonzero maps between
V Gi and V Gj for Gi and Gj relatively prime.Following the terminology of Galois 
overing theory [3℄, the modules (1)and (2) in the theorem are 
alled the modules of �rst kind and of se
ondkind, respe
tively.We have several dire
t 
onsequen
es of Theorem 2.1.
Corollary 2.2. If V = (Vi, Vαi

)i∈Q0
is an inde
omposable representa-tion of Q, then

|dimK Vi − dimK Vj | ≤ 1for any i, j ∈ Q0. Moreover , dimK Vi = dimK Vj for all i, j if V 6∈ Tt.Now we introdu
e two partial orders �c and �r on the set of verti
esof ΓKQ. De�ne X �c Y (resp. X �r Y ) if X and Y belong to the sametube, lie on the same 
oray (resp. ray) of this tube and dimK Y ≥ dimK X.Clearly, the two orders 
oin
ide on the homogeneous tubes. Further, let � bethe partial order generated by the union of �c and �r on the set of verti
esof ΓKQ.We have another 
onsequen
e of the des
ription of KQ-modules.



6 S. KASJAN AND M. S�D�AK
Corollary 2.3. Every inde
omposable KQ-module X is uniserial , thatis, the latti
e of submodules of X is linear. Moreover , U �r X for everysubmodule U of X, and F �c X for every fa
tor module F of X. If Y is aninde
omposable submodule (resp. fa
tor module) of a module X then X hasa dire
t summand U su
h that Y �r U (resp. Y �c U).Proof. It follows from Theorem 2.1 that the latti
e of submodules of

V (Gr) is
0 ⊂ V (G) ⊂ V (G2) ⊂ · · · ⊂ V (Gr)and the latti
e of submodules of Xi,j is

0 ⊂ Xi+j−1,1 ⊂ · · · ⊂ Xi+1,j−1 ⊂ Xi,j .It is now 
lear that U �r X for every submodule U of an inde
omposable X.Analogously, we show that F �c X for every fa
tor module F of X.For the proof of the remaining statement, assume that Y ⊂ X and Y isinde
omposable. Let X = X1 ⊕ · · · ⊕ Xm ⊕ X ′, where X1, . . . , Xm are allinde
omposable dire
t summands of X belonging to the same tube as Y .Then there exists a monomorphism µ = [µj] : Y → X1 ⊕ · · · ⊕ Xm. Sup-pose that Y �r Xj for all j. Then, for any j, the kernel of µj : Y → Xj isnonzero, hen
e 
ontains the unique simple submodule socY of Y . Therefore
socY ⊂ Kerµ and we get a 
ontradi
tion. Analogously, for an inde
ompos-able fa
tor module Y of X, we prove that X has a dire
t summand U su
hthat Y �c U .The proof of the following 
orollary is routine, and we leave it to thereader.
Corollary 2.4. Let V = (Vi, Vαi

)i∈Q0
be an inde
omposable represen-tation of Q. Then V is 
y
li
, that is, it is generated by one element as a

KQ-module, and :(a) if V belongs to Tt and top V = S(i), then the minimal polynomial ofthe map Vui
is tdimK Vi ,(b) if V belongs to TG with G 6= t, then the minimal polynomial of Vui

is
Gr, where r deg G = dimK Vi, for any i ∈ Q0.

Corollary 2.5. Assume that V,W are two inde
omposable KQ-modulesand f, g : V →W are two epimorphisms (resp. monomorphisms). Then thereexist automorphisms φ and ψ of V and W , respe
tively , su
h that g = fφand ψg = f .Proof. We only 
onsider the 
ase when f and g are epimorphisms, be-
ause the proof in the other 
ase is analogous. It follows from Theorem 2.1that either V ∼= V (Gr) and W ∼= V (Gs) for some irredu
ible G and r ≥ s,or V ∼= Xi,r and W ∼= Xi,s for some i ∈ Q0 and r ≥ s. The assertion follows



AN ISOMORPHISM PROBLEM FOR ALGEBRAS 7by simple analysis of homomorphism spa
es between KQ-modules, and weleave it to the reader.
Theorem 2.6. Let Q = Q(n) be the 
y
le (2.0) and let ΛI = KQ/I,where I is a nonzero two-sided ideal in KQ. Then:(a) dimK ΛI <∞.(b) ΛI is representation �nite.(
) The Auslander�Reiten quiver ΓΛI

is a full subquiver of ΓKQ su
hthat :(
1) if Y is a vertex of ΓΛI
and X � Y in ΓKQ then X is a vertexof ΓΛI

,(
2) every 
omponent of ΓΛI
is �nite,(
3) ΓΛI

has �nitely many 
omponents ,(
4) an inde
omposable ΛI-module P is proje
tive (resp. inje
tive) ifand only if P is �c-maximal (resp. �r-maximal) in ΓΛI
,(
5) the Auslander�Reiten translation in ΓΛI

is the restri
tion of thatin ΓKQ to the set of nonproje
tive verti
es.Proof. For simpli
ity of notation we set Λ = ΛI = KQ/I. Statement (a)is 
lear and (b) follows from (
).(
) Assume that Y is an inde
omposable Λ-module. Obviously submod-ules and fa
tor modules of Y in modKQ are Λ-modules. If X � Y thenthere exist a sequen
e
Y = X0, X1, . . . , Xm+1 = Xof verti
es of ΓKQ su
h that Xi+1 is either a submodule or a fa
tor moduleof Xi for i = 0, . . . ,m− 1. Hen
e X is a vertex of ΓΛ and (
1) follows.Clearly, a homomorphism of Λ-modules whi
h is irredu
ible in modKQis also irredu
ible in modΛ. It follows from (
1) and the shape of ΓKQ thatevery homomorphism between Λ-modules is a 
omposition of morphismsbetween Λ-modules whi
h are irredu
ible in modKQ. Hen
e ΓΛ is a fullsubquiver of ΓKQ.To prove (
2) assume that ̺ is a relation from I. Then ̺ = F (ui)ui,j forsome i ∈ Q0, j < n and F ∈ K[t].Take an inde
omposable representation V = (Vj , Vαj

)j∈Q0
of Q. Choose

i ∈ Q0 su
h that topV ∼= S(i) if V ∈ Tt, and take i arbitrary otherwise. Theminimal polynomial of the endomorphism Vui
of Vi divides tF and hen
e

dimK Vi ≤ degF + 1, by Corollary 2.4. Thanks to Corollary 2.2, we have
dimK V =

∑n
j=1 dimK Vj < n(degF + 2) and hen
e the 
omponents of ΓΛare �nite.(
3) If ΓΛ had in�nitely many 
omponents, then Λ would be a produ
tof in�nitely many algebras by Auslander's result (see e.g. [1, Chap. IV, 5.4℄).This would 
ontradi
t (a).



8 S. KASJAN AND M. S�D�AKFor the proof of (
4) note that if P is �c-maximal then, by Corollary 2.3,
P is not an image of a nonsplit epimorphism from a Λ-module. This meansthat P is proje
tive.If P is not �c-maximal then there exists a Λ-module Y su
h that P ≺c Y ,and we 
on
lude by (
1) that there is a nonsplit exa
t sequen
e of Λ-modulesending at P , thus P is not proje
tive.The proof of (
5) is easy.
Corollary 2.7. Assume that K is algebrai
ally 
losed and let I, I ′be ideals of KQ. The algebras Λ = KQ/I and Λ′ = KQ/I ′ are Moritaequivalent if and only if the translation quivers ΓΛ and ΓΛ′ are isomorphi
.Proof. It is obvious that if Λ is Morita equivalent to Λ′ then their Auslan-der�Reiten quivers are isomorphi
. For the 
onverse, note that if ΓΛ and ΓΛ′are isomorphi
 then the 
on�guration of the proje
tive verti
es in ΓΛ is thesame as in ΓΛ′ . Sin
e the tubes in ΓKQ are standard and orthogonal we thenhave isomorphism of the basi
 algebras asso
iated to Λ and Λ′ (see [1, I.6.3℄).Thus Λ and Λ′ are Morita equivalent.3. The 
anoni
al generating set of an ideal of KQ(n). Throughoutthis se
tion, we �x n ≥ 1 and denote by Q = Q(n) the 
y
le (2.0).Let I be a two-sided ideal of KQ(n) generated by a set G. The aim ofthis se
tion is to des
ribe the Auslander�Reiten quiver of ΛI = KQ(n)/I interms of G. To do this, we �rst redu
e G to a �
anoni
al� set of generators.Let us explain the idea on an example.
Example 3.1. Assume that charK 6= 2, 3 and 
onsider the ideal I of

KQ(3) generated by the following elements:
F0(u0)α0α1 = u2

0α0α1 − 3u0α0α1 + 2α0α1,

F1(u0)α0 = u3
0α0 + u2

1α0 − u0α0 − α0,

F2(u1)α1α2 = u3
1α1α2 − u2

1α1α2 − u1α1α2 + α1α2,where
F0(t) = (t− 1)(t− 2), F1(t) = (t− 1)(t+ 1)2, F2(t) = (t+ 1)(t− 1)2.Observe that I 
ontains the elements F0(u0)u0α0 = F0(u0)α0α1α2α0,
F1(u0)α0α1 and F2(u1)α1α2.Now, using the fa
t that G = t− 1 is the greatest 
ommon divisor of tF0and F1, we see that the ideal I is generated by

G(u0)α0, F2(u1)α1α2.Note that
G1(u1)α1α2 = α1α2G(u0)α0α1α2 ∈ I,



AN ISOMORPHISM PROBLEM FOR ALGEBRAS 9where G1 = tG. Sin
e G is the greatest 
ommon divisor of F2 and G1, itfollows that I is generated by
G(u0)α0, G(u1)α1α2.By generalizing this pro
edure we redu
e any set of generators of anyideal in KQ to the form des
ribed in the proposition below.

Proposition 3.2. Let I be a two-sided ideal of KQ(n). There exist :(i) a moni
 polynomial G ∈ K[t] su
h that G(0) 6= 0,(ii) a nonnegative integer g,(iii) verti
es i1, . . . , ir of Q(n) and integers 0 ≤ ma < 2n, a = 1, . . . , r,su
h that(a) the paths uia,ma , a=1, . . . , r, are pairwise in
omparable with res-pe
t to the subpath order � (in parti
ular , the numbers i1, . . . , ir,as well as i1 +m1, . . . , ir +mr, are pairwise di�erent modulo n),(b) the elements
ug

i1
G(ui1)ui1,m1

, . . . , ug
ir
G(uir)uir,mrgenerate I as a two-sided ideal.A set of generators of this form is 
alled a 
anoni
al set of generatorsof I.To present the proof we need some preparation. Clearly, I has a �niteset of generators of the form

G = {Ga(uia)uia,ja : a = 1, . . . , p}for some ia ∈ {0, . . . , n− 1}, Ga ∈ K[t], ja ≥ 0.Without loss of generality, we 
an assume that ja < n for any a. Indeed,if ja = kn+ j′a for some k ∈ N, then
Ga(uia)uia,ja = G′

a(ua)uia,j′a
, where G′

a = tkGa.Let na be the multipli
ity of t as a fa
tor of Ga for a = 1, . . . , p. We keepthe notation introdu
ed above.
Lemma 3.3. Assume that G satis�es the following 
ondition:(R1) There are a 6= b su
h that uia,ja 4 uib,jb

and (ia = ib or ia + ja =
ib + jb) in Q0 = Z/nZ.Let

G1 =

{
(G \ {Ga(uia)uia,ja , Gb(uib)uib,jb

}) ∪ {H(uia)uia,ja} if nb ≥ na,
(G \ {Ga(uia)uia,ja , Gb(uib)uib,jb

}) ∪ {H(uib)uib,jb
} if nb < na,where H = gcd(Ga, Gb). Then (G) = (G1).



10 S. KASJAN AND M. S�D�AKProof. Observe that the elements uiaGb(uia)uia,ja , Ga(uib)uib,jb
belongto

J1 = (Ga(uia)uia,ja , Gb(uib)uib,jb
).For instan
e, if ia = ib then

uiaGb(uia)uia,ja = Gb(uib)uib,jb
wib+jb,ia+ja .The remaining 
ase is similar and we leave it to the reader.LetH1 = gcd(tGb, Ga). Then the ideal J1 is generated byH(uib)uib,jb

and
H1(uia)uia,ja . To �nish the proof it is enough to observe that if nb ≥ na then
H = H1 and H(uia)uia,ja generates J1, whereas if nb < na then H(uib)uib,jbdoes.Observe that after applying the operation G 7→ G1 �nitely many timeswe 
an assume that our generating set G satis�es ia 6= ib and ia +ja 6= ib +jbmodulo n, for any a 6= b, that is, (R1) is not satis�ed.
Lemma 3.4. Assume that G satis�es the following 
ondition:(R2) there are a 6= b su
h that uia,ja 4 uib,jb

and Ga 6= tGb.Let
G2 = (G \ {Ga(uia)uia,ja , Gb(uib)uib,jb

}) ∪ S,where
S =





{H(uia)uia,ja} if na ≤ nb,
{H(uib)uib,jb

, uiaH(uia)uia,ja} if na = nb + 1,
{H(uib)uib,jb

} if na > nb + 1,
H = gcd(Ga, Gb).Then (G) = (G2).Proof. Observe that the elements u2

ia
Gb(uia)uia,ja , Ga(uib)uib,jb

belongto
J2 = (Ga(uia)uia,ja , Gb(uib)uib,jb

).Let H2 = gcd(t2Gb, Ga). Then J2 is generated by the elements
H(uib)uib,jb

and H2(uia)uia,ja .To �nish the proof it is enough to observe that if na ≤ nb then H(uia)uia,jagenerates J2, and if na > nb + 1 then H(uib)uib,jb
does. If na = nb + 1 then

H2 = tH.Observe that if G does not satisfy (R1) then neither does the set G2obtained from G as in Lemma 3.4.
Lemma 3.5. Assume that G satis�es the following 
ondition:(R3) there are a 6= b su
h that uib,jb

64 uia,ja , uia,ja 64 uib,jb
and Ga 6= Gb.
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G3 = (G \ {Ga(uia)uia,ja , Gb(uib)uib,jb

}) ∪ S,where
S =





{H(uia)uia,ja , H(uib)uib,jb
} if nb = na,

{H(uia)uia,ja} if na < nb,
{H(uib)uib,jb

} if na > nb,
H = gcd(Ga, Gb).Then (G) = (G3).Proof. As in the proofs of Lemmas 3.3 and 3.4 we observe that the ele-ments uibGa(uib)uib,jb

, uiaGb(uia)uia,ja belong to
J3 = (Ga(uia)uia,ja , Gb(uib)uib,jb

)and hen
e J3 =(H3(uia)uia,ja , H1(uib)uib,jb
), where we putH3 =gcd(Ga, tGb)and H1 = gcd(tGa, Gb). If na < nb then H3 = H, H1 = tH and H1(uib)uib,jb

∈ (H(uia)uia,ja). The 
ase na>nb is analogous. If na = nb then H1 =H3 =H.Proof of Proposition 3.2. We de�ne the degree of a relation G(ui)ui,jto be ndegG + j. Observe that if G satis�es one of the 
onditions (RN),
N = 1, 2, 3, then applying the 
orresponding operation G 7→ GN de
reasesthe sum of the degrees of the relations in the generating set. For instan
e,if (R2) is satis�ed and na = nb + 1 then 2 degH + 1 < degGa + degGbbe
ause Ga 6= tGb. Therefore after �nitely many redu
tions, we obtain agenerating set G = {Ga(uia)uia,ja : a = 1, . . . , r} that does not satisfy anyof the 
onditions (R1)�(R3). Observe that sin
e (R1) is not satis�ed thenumbers ia for a = 1, . . . , r are pairwise di�erent modulo n, as also are ia+ja,
a = 1, . . . , r. Sin
e (R2) is not satis�ed, uia,ja 4 uib,jb

yields Ga = tGb.Analogously, sin
e (R3) is not satis�ed, uib,jb
64 uia,ja , and uia,ja 64 uib,jbyields Ga = Gb. Now let tgG, where G(0) 6= 0, be the greatest 
ommondivisor of all Ga, a = 1, . . . , r. Moreover, put ma = ja + 1 whenever uia,jais a subpath of another uib,jb

, and let ma = ja otherwise. It is easy to 
he
kthat the 
onditions of the proposition are satis�ed.
Remark. Note that if

G = {Ga(uia)uia,ja : a = 1, . . . , p, ja < n}generates I then the polynomial G in Proposition 3.2 equals (1/tg) gcd{Ga :
a = 1, . . . , p} for some g ∈ N. This is a dire
t 
onsequen
e of the proof ofProposition 3.2.Now we des
ribe the Auslander�Reiten quiver ofKQ(n)/I assuming thatwe know a 
anoni
al set of generators of I:

ug
i1
G(ui1)ui1,m1

, . . . , ug
ir
G(uir)uir,mr .



12 S. KASJAN AND M. S�D�AKThroughout the rest of this se
tion, we assume that I is as above and we set
Λ = KQ(n)/I.Assume moreover that the polynomial G has the following de
ompositionin K[t]:

G = F r1

1 . . . F rs
s ,where F1, . . . , Fs are pairwise relatively prime irredu
ible polynomials.Given i ∈ Q0 and m ∈ N, we denote by Ki,m the set of paths from theset {ui1,m1

, . . . , uir ,mr} whi
h pass through αi−1 exa
tly m times, that is,
Ki,m = {uis,ms : um−1

i−1 αi−1 4 uis,ms , u
m
i−1αi−1 64 uis,ms} for m ≥ 1,

Ki,0 = {uis,ms : αi−1 64 uis,ms}.Note that, under our assumptions, if Ki,0 is empty then Ki,1 is not empty,for every i.Assume that Ki,m 6= ∅. Suppose we are walking from vertex i followingthe dire
tion of arrows; denote by qi,m the terminus of a path fromKi,m whi
hwe meet �rst. Let ℓi,m be the length of the shortest path from i to qi,m.For example let Λ = KQ(3)/I, where a 
anoni
al set of generators of Iis {G(u0)α0α1, G(u1)α1α2} for some G ∈ K[X], G(0) 6= 0. Then
K2,0 = ∅,

K1,0 = {α1α2}, q1,0 = 0, ℓ1,0 = 2,

K2,1 = {α0α1, α1α2}, q2,1 = 2, ℓ2,1 = 0.Let S(Λ) be set of verti
es i ∈ Q0 su
h that the simple KQ-module S(i)is a Λ-module. It is easy to see that i ∈ S(Λ) if and only if i 6∈ {i1, . . . , ir}or (i = ik and g + jk ≥ 1, for some k ∈ {1, . . . , r}).
Theorem 3.6. Suppose that Λ = KQ/I and I has a 
anoni
al set ofgenerators

{ug
i1
G(ui1)ui1,m1

, . . . , ug
i1
G(uir)uir ,mr},where G = F r1

1 . . . F rs
s and F1, . . . , Fs are pairwise relatively prime irredu
iblepolynomials. The Auslander�Reiten quiver of the 
ategory modΛ is a disjointunion

TF1
(Λ) ∪ · · · ∪ TFs

(Λ) ∪ Tt(Λ),where(a) TFj
(Λ) is a 
onne
ted 
omponent and is the part of the tube TFj


on-sisting of modules of regular length less than or equal to rj.(b) Tt(Λ) 
onsists of all �-prede
essors of one of the modules Πi, i ∈
S(Λ), where

Πi =

{
Xi,gn+ℓi,0

if Ki,0 6= ∅,
Xi,(g+1)n+ℓi,1

if Ki,0 = ∅.
Tt(Λ) is not 
onne
ted in general.
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) The modules V (F
rj

j ) for j = 1, . . . , s and Πi, i ∈ S(Λ), des
ribedabove, form a 
omplete set of inde
omposable proje
tive Λ-modules(up to isomorphism).Proof. Statements (a) and (b) follow from (
) and Theorem 2.6.(
) One 
he
ks dire
tly that V (F
rj

j ) and Πi are Λ-modules. By Theorem2.6 it is enough to see that that they are �c-maximal. Observe that if V =
(Vi, Vαi

)i∈Q0
is a representation satisfying the relations ug

i1
G(ui1)ui1,m1

, . . . ,

ug
ir
G(uir)uir,mr then the minimal polynomial of Vui

divides t2+gG for any i.It follows that ΓΛ is 
ontained in ⋃s
j=1 TFj

∪ Tt.Assume, to the 
ontrary, that V (F
rj

j ) is not �c-maximal. Then, by Corol-lary 2.3, W = V (F
rj+1
j ) is a Λ-module. If we view W as a representation

(Wi,Wαi
)i∈Q0

, then the minimal polynomial ofWui
is F rj+1

j , a 
ontradi
tion.Let Ki,0 6= ∅ and suppose that uk,l ∈ Ki,0, qi,0 = t(uk,l). If Πi = Xi,gn+ℓi,0is not�c-maximal thenXi,gn+ℓi,0+1 is a Λ-module. Moreover ug
kG(uk)uk,l ∈ Iand then ug

iG(ui)ui,l ∈ I. But Xi,gn+ℓi,0+1 does not satisfy that relation,a 
ontradi
tion.The assumption Ki,0 = ∅ yields Ki,1 6= ∅ and we pro
eed analogously.It is easy to observe that there are no other �c-maximal Λ-modules.Let Λ be KQ(3)/I as in Example 3.1. We have four proje
tive Λ-modules
X0,1, X2,2, X1,2, V0(G), and ΓΛ 
onsists of two 
onne
ted 
omponents:

Tt−1(Λ) : V0(MG)

Tt(Λ) : X0,1

$$II
I

X2,1

$$II
I

X1,1

X2,2

::uuu

X1,2

::uuu

The basi
 algebra Λb asso
iated with Λ (see [1, I.6.3℄) is isomorphi
 to thealgebra KD/(αβ), where
D : • α // •

β
// • •

Proposition 3.7. Under the assumptions and notation of Theorem 3.6,there is an isomorphism
eiΛ ∼=

s⊕

j=1

V (F
rj

j ) ⊕Πifor i ∈ {0, . . . , n− 1}, where we set Πi = 0 if i /∈ S(Λ).Proof. There are surje
tive maps from eiΛ to ea
h of V (F
rj

j ) and Πi.Moreover, these modules are inde
omposable proje
tive and pairwise noni-somorphi
, thus ⊕s
j=1 V (F

rj

j ) ⊕ Πi is a dire
t summand of eiΛ. It su�
es
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dimK eiΛ ≤ dimK

( s⊕

j=1

V (F
rj

j ) ⊕Πi

)
.

First assume that Ki,0 6= ∅. It is easy to 
he
k that dimK eiΛei+k ≤ d+1for any k < n, where d = g + degG. Moreover, dimK eiΛei+k ≤ d if ℓi,0 ≤
k < n. Hen
e dimK eiΛ ≤ nd+ ℓi,0. On the other hand, ng+ ℓi,0 = dimK Πiand ∑s

j=1 dimK V (F
rj

j ) = ndegG.Similarly if Ki,0 = ∅ then we prove that dimK eiΛ ≤ n(d + 1) + ℓi,1 andthe assertion follows, sin
e dimK Πi = n(g + 1) + ℓi,1.An isomorphism of algebras f : Λ → Λ′ indu
es an isomorphism of
ategories
Φf : modΛ→ modΛ′de�ned by asso
iating to any Λ-module M the ve
tor spa
e Φf (M) = Mequipped with multipli
ation given by the formula m ·Λ′ λ′ = m ·Λ f

−1(λ′).Moreover, Φf (γ) = γ for every homomorphism γ. It is 
lear that Φf (eΛ) ∼=
f(e)Λ′ for any e ∈ Λ.
Corollary 3.8. Assume that F1, . . . , FM (resp. F ′

1, . . . , F
′
M ) are pair-wise relatively prime polynomials of degree 1 in K[X], Fs(0) 6= 0, F ′

s(0) 6= 0,
0 ≤ jp < n, rp, np,s ∈ N∪{0} for s = 1, . . . ,M , p = 1, . . . , N , i1, . . . , ir ∈ Q0.Let Λ = KQ/I, Λ′ = KQ/I ′ where

I = (u
rp

ip
F

np,1

1 (uip) · . . . · F
np,M

M (uip)uip,jp ; p = 1, . . . , N),

I ′ = (u
rp

ip
(F ′

1)
np,1(uip) · . . . · (F

′
M )np,M (uip)uip,jp ; p = 1, . . . , N).There is an isomorphism of algebras f : Λ → Λ′ su
h that Φf (Xi,j) ∼= Xi,jand Φf (V (F r

i )) ∼= V ((F ′
i )

r) whenever Xi,j , V (F r
i ) are Λ-modules.Under the assumptions of the 
orollary we say that I and I ′ have gener-ating sets of the same shape.Proof. Observe that the set of generators of I satis�es one of the 
ondi-tions (RN), N = 1, 2, 3, if and only if the set of generators of I ′ does. Thenan appli
ation of a suitable operation G 7→ GN on both of them gives ustwo new generating sets of I and I ′ of the same shape. By indu
tion we 
anassume that I has the 
anoni
al set of generators

{ug
i1
G(ui1)ui1,m1

, . . . , ug
ir
G(uir)uir,mr},where 0 ≤ ma < 2n for a = 1, . . . , r, G = F r1

1 . . . F rL

L for some L ≤ M , and
I ′ has a 
anoni
al set of generators of the same shape

{ug
i1
G′(ui1)ui1,m1

, . . . , ug
ir
G′(uir)uir,mr},where G′ = (F ′

1)
r1 . . . (F ′

L)rL .
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tive Λ-modules and proje
tive Λ′-modules in the tube Tt are thesame. By Proposition 3.7, we have
eiΛ ∼=

L⊕

j=1

V (F
rj

j ) ⊕Πi, eiΛ ∼=

L⊕

j=1

V ((F ′
j)

rj) ⊕Πi.Hen
e there are de
ompositions into proje
tive inde
omposables:
ΛΛ

∼=

L⊕

j=1

V (F
rj

j )n ⊕
⊕

i∈S(Λ)

Πi,

Λ′
Λ′

∼=

L⊕

j=1

V ((F ′
j)

rj )n ⊕
⊕

i∈S(Λ′)

Πi.

Sin
e the algebras EndΛ(V (F
rj

j )) and EndΛ′(V ((F ′
j)

rj )) are isomorphi
, andby Theorem 3.6 the 
omponents in ΓΛ (resp. in ΓΛ′) are orthogonal, thereexists an isomorphism
Λ ∼= EndΛ(ΛΛ) ∼= EndΛ′(Λ′

Λ′) ∼= Λ′satisfying the required 
ondition.Let us formulate separately a spe
ial 
ase of our results.
Corollary 3.9. Assume that F has the following de
omposition in

K[t]:
G = tgF r1

1 . . . F rs
s ,where F1, . . . , Fs are pairwise relatively prime irredu
ible polynomials notdivisible by t. Then there is an isomorphism of algebras

KQ/(G(ui), i = 0, . . . , n− 1) ∼= An,g ×
s∏

j=1

Mn(Dj[t]/(t
rj)),

where An,g is the Nakayama algebra KQ/(ui,g, i = 0, . . . , n−1) (see [1, V.3℄),and Dj = K[t]/(Fj).Proof. Let Λ = KQ/(G(ui), i = 0, . . . , n − 1). It follows from Theorem3.6 that the 
omponents in ΓΛ are orthogonal. Moreover, Proposition 3.7yields
eiΛ ∼=

s⊕

j=1

V (F
rj

j ) ⊕Πifor i = 0, . . . , n− 1. Then there is an isomorphism of algebras
Λ ∼= EndΛ(ΛΛ) ∼= EndΛ(V (F r1

1 )n)×· · ·×EndΛ(V (F rs
s )n)×EndΛ

( n−1⊕

i=0

Πi

)
.
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EndΛ(V (F

rj

j )n) ∼= Mn(End(V (F
rj

j )), End(V (F
rj

j )) ∼= Dj [t]/(t
rj).The proje
tive Λ-modules Π0, . . . , Πn−1 are pairwise nonisomorphi
 andthe algebra EndΛ(

⊕n−1
i=0 Πi) is basi
. As the additive hull of {Π0, . . . , Πn−1}is isomorphi
 to the 
ategory of proje
tive An,g-modules, it follows that

EndΛ(
⊕n−1

i=0 Πi) is isomorphi
 to An,g.4. The main result. Re
all that an isomorphism of algebras f : Λ→ Λ′indu
es an isomorphism of 
ategories Φf : modΛ → modΛ′. If M is an A-
Λ-bimodule for some algebra A then Φf (M) has a natural A-Λ′-bimodulestru
ture.
Proposition 4.2. Let

B =

[
A M

0 Λ

]
, B′ =

[
A M ′

0 Λ′

]

be generalized matrix algebras , where M is an A-Λ-bimodule and M ′ is an
A′-Λ′-bimodule (see [1, I.2.10℄). If there exist an isomorphism f : Λ → Λ′of algebras and an isomorphism σ : Φf (M) → M ′ of A-Λ′-bimodules, then
B ∼= B′.Proof. The map g : B → B′ given by

(
a m

0 λ

)
7→

(
a σ(m)

0 f(λ)

)

for a ∈ A,m ∈M,λ ∈ Λ is an isomorphism.We 
onsider the algebras of the form KQ/I, where Q is obtained fromthe 
y
le Q(n) of (2.0) by atta
hing trees. More pre
isely, suppose we havepairwise disjoint �nite 
onne
ted trees T1, . . . , Tm with distinguished verti
es
ω1, . . . , ωm, ωi ∈ (Ti)0, for i = 1, . . . ,m, and verti
es z1, . . . , zm of Q(n). Let
T = (T1, . . . , Tm) and let ω = (ω1, . . . , ωm) and z = (z1, . . . , zm). De�ne anew quiver Q = Q(n, T , ω, z) by setting

Q0 = Q(n)0 ∪
m⋃

i=1

(Ti)0, Q1 = Q(n)1 ∪
m⋃

i=1

(Ti)1 ∪ {β1, . . . , βm},where β1, . . . , βm are new arrows with s(βi) = ωi and t(βi) = zi for i =
1, . . . ,m. We 
all su
h a quiver a tree extension of the 
y
le Q(n) by trees
T1, . . . , Tm with roots ω1, . . . , ωm at the verti
es z1, . . . , zm. Throughout thisse
tion we keep the notation introdu
ed above and we denote by Q the quiver
Q(n, T , ω, z).Given an algebra R and a quiver ∆ = (∆0, ∆1), the 
on
ept of R-representation M = (Mx,Mβ)x∈∆0, β∈∆1

of ∆ is de�ned as usual: we as-
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iate right R-modules Mx to the verti
es x of ∆ and R-homomorphisms
Mβ to the arrows β. The 
ategory of R-representations (with morphismsde�ned in the usual way) is denoted by RepR(∆). The full sub
ategory ofRepR(∆) 
onsisting of obje
ts (Mx,Mβ)x∈∆0, β∈∆1

su
h that Mx is �nitelygenerated, for every vertex x of ∆, is denoted by repR(∆).If f : R → R′ is an algebra homomorphism then the fun
tor Φf indu
esan equivalen
e of the 
ategories RepR(∆) and RepR′(∆) (and of repR(∆)and repR′(∆)), whi
h we also denote by Φf .Given a dire
ted quiver ∆ and its vertex x, we denote by x+ the set ofall verti
es whi
h are su

essors of x with respe
t to the path order in ∆.
Lemma 4.3. Let Λ=KQ(n)/J for some nonzero ideal J . Assume that ∆is a tree and x0 is a sour
e in a tree ∆. Assume also that M = (Mx,Mβ) and

M ′ = (M ′
x,M

′
β) are obje
ts of repΛ(∆) satisfying the following 
onditions:(i) Mx = 0 = M ′

x for x /∈ x+
0 ,(ii) Mα and M ′

α are epimorphisms for any arrow α su
h that s(α) ∈ x+
0 ,(iii) Mx0

(resp. M ′
x0
) has at most one inde
omposable dire
t summand inea
h 
onne
ted 
omponent of ΓΛ.If Mx

∼= M ′
x as Λ-modules for ea
h x ∈ ∆0, then M ∼= M ′ as Λ-represent-ations.Proof. Thanks to the orthogonality of the tubes in ΓΛ it is enough toprove the statement for M,M ′ su
h that all the inde
omposable dire
t sum-mands of Mx and M ′

x, x ∈ ∆0, lie in one 
onne
ted 
omponent of ΓΛ.Then Mx0
and M ′

x0
are inde
omposable by (iii). Condition (ii), togetherwith Corollary 2.3, implies that Mx (resp. M ′

x) is inde
omposable or 0, forall x ∈ ∆0.By indu
tion with respe
t to the path order on the verti
es of ∆ we shallde�ne a system of Λ-isomorphisms Θx : Mx →M ′
x, x ∈ ∆0.Fix an arbitrary isomorphism Θx0

: Mx0
→ M ′

x0
. Assume that x ∈

x+
0 and Θx : Mx → M ′

x is de�ned and there exists an arrow x
α
→ y in ∆.Therefore we have a Λ-module epimorphismMα : Mx →My and a Λ-moduleepimorphismM ′

α : M ′
x →M ′

y. The mapsM ′
α◦Θx andMα are epimorphisms,therefore, by Corollary 2.5, there exists a Λ-isomorphism Θy : My →M ′

y su
hthat the diagram
Mx

Mα //

Θx

��

My

Θy

��

M ′
x

M ′

α // M ′
yis 
ommutative. We set Θx = 0, for x 6∈ x+

0 . Then Θ = (Θx)x∈∆0
: M →M ′is an isomorphism of Λ-representations.
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Theorem 4.4. Let Q = Q(n, T , ω, z) be the tree extension of the 
y
le

Q(n) by trees T with roots ω at the verti
es z, B = KQ/I, B′ = KQ/I ′,where I and I ′ are two-sided ideals in KQ su
h that KTj ∩ I = KTj ∩ I
′ for

j = {1, . . . ,m}. Let
Λ = KQ(n)/(I ∩KQ(n)), Λ′ = KQ(n)/(I ′ ∩KQ(n)).If there exists an isomorphism of algebras f : Λ→ Λ′ su
h that Φf (eiB|Λ) ∼=

eiB|Λ′ as Λ′-modules for any i ∈ Q0 \Q(n)0, then the algebras B and B′ areisomorphi
.In the formulation of Theorem 4.4, given a B-module, we denote by
X|Λ = X ·

( ∑

x∈Q(n)0

ex

)

the restri
tion of X to Λ. Analogously, we denote by Y |Λ′ the restri
tion ofa B′-module Y to Λ′.Proof. We de�ne M j ∈ repΛ(T op
j ) as follows. To a vertex x of Tj , weasso
iate the Λ-module exB|Λ, and given an arrow x

α
→ y of Tj we de�nethe map M j

α : M j
y → M j

x by setting M j
α(r) = αr for r ∈ M j

y . Similarly, wede�ne M ′j ∈ repΛ′(T
op
j ) by asso
iating the Λ′-module exB|Λ′ to a vertex xand we de�ne the mapM ′j

α : M ′j
y →M ′j

x by settingM ′j
α (r) = αr for r ∈M ′j

y .We shall prove that the representations Φf (M j) and M ′j satisfy 
onditions(i)�(iii) of Lemma 4.3 with ∆ = T op
j and x0 = ωj . Condition (i) is 
lear.Let x α

→ y be an arrow in Tj su
h that y is a prede
essor of ωj in the pathorder in Tj . Sin
e ea
h path in KQ starting at x and ending in Q(n) passesthrough α it follows that M j
α , M ′j

α are epimorphisms and (ii) follows. Forany y ∈ (Tj)0 the module eyB|Λ is a fa
tor of the proje
tive Λ-module ezj
Λ(resp. eyB

′|Λ′ is a fa
tor of the proje
tive Λ′-module ezj
Λ′), whi
h has atmost one inde
omposable dire
t summand in ea
h 
onne
ted 
omponent of

ΓΛ (resp. ΓΛ′); see Proposition 3.7. Hen
e we get (iii) by Corollary 2.3. Thenit follows from Lemma 4.3 that M ′j ∼= Φf (M j).We treat any representation of T op
j as a representation of T op in theobvious way, where T is the disjoint union of T1, . . . , Tm.Then we set M =

⊕m
j=1M

j ∈ repΛ(T op), M ′ =
⊕m

j=1M
′j ∈ repΛ′(T op).Let A = KT . If we identify the Λ-representation M of T op with an

A-Λ-bimodule (resp. Λ′-representation M ′ of T op with an A-Λ′-bimodule),then
B ∼=

[
A M

0 Λ

]
, B′ ∼=

[
A M ′

0 Λ′

]
.Hen
e, by Proposition 4.2, the algebras B and B′ are isomorphi
.



AN ISOMORPHISM PROBLEM FOR ALGEBRAS 19Dually, we obtain an analogous theorem for tree 
oextensions of the 
y
le
Q(n) de�ned in the obvious way.
Remark. The whole 
ategory of �nitely generated Λ-representations ofa tree may be arbitrarily 
ompli
ated even if T is just one arrow and Λ ∼=

K[t]/(tm) for some m ≥ 1 (a
tually, that 
ategory is wild when m ≥ 7, see[11℄).The last result of this arti
le has a te
hni
al 
hara
ter, at least as regardsits formulation. Let us explain its idea: if Q is a tree extension of the 
y
le
Q(n), and ideals I and I ′ of KQ have generating sets �of the same shape�(
f. Corollary 3.8), then the algebras KQ/I and KQ/I ′ are isomorphi
.Let us say that two polynomials in one indeterminate (over an alge-brai
ally 
losed �eld) have the same shape if there is a multipli
ity preserv-ing bije
tion between the sets of their roots. One 
an naturally extend this
on
ept to sequen
es of polynomials.Given an ideal in KQ, we 
an 
hoose a generating set 
onsisting of zero-relations (that is, paths) and relations of the form vaFa(uia)wa, where va, waare paths, uia is a 
y
li
 path in Q(n) and Fa is a polynomial. Now one 
ansay that two sets (of generators of two ideals) have the same shape if they
ontain the same zero-relations and the remaining relations 
an be orderedin su
h a way that the paths va, uia , wa are the same in both sets and theresulting sequen
es of Fa's have the same shape.Pre
isely, let Q = Q(n, T , ω, z) be a tree extension of Q(n) (we keep thenotation introdu
ed above). Assume that there are �xed integers M > 0,
−1 ≤ N ′ < N , L ≥ 0 and(i) pairwise relatively prime polynomials F1, . . . , FM of degree one su
hthat Fa(0) 6= 0, a = 1, . . . ,M ,(i′) pairwise relatively prime polynomials F ′

1, . . . , F
′
M of degree one su
hthat F ′

a(0) 6= 0, a = 1, . . . ,M ,(ii) paths va, a = −L, . . . ,−1, 0, 1, . . . , N ′, starting in T = T1∪· · ·∪Tm.If the path va starts in Ti then va terminates in Ti for a < 0 andterminates at the vertex zi for a ≥ 0,(iii) verti
es ia of Q(n), a = 0, . . . , N , su
h that ia = t(va) for a =
0, . . . , N ′,(iv) numbers ra, na,s ∈ N ∪ {0}, a = 0, . . . , N , s = 1, . . . ,M ,(v) numbers ja, 0 ≤ ja < n, 0 = 1, . . . , N .These data determine two triples of sets of elements of KQ:

G0 = {va : a = −L, . . . ,−1},

G1 = {vau
ra

ia
Ga(uia)uiaja : a = 0, . . . , N ′},

G2 = {ura

ia
Ga(uia)uiaja : a = N ′ + 1, . . . , N}
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G′

0 = G0,

G′
1 = {vau

ra

ia
G′

a(uia)uiaja : a = 0, . . . , N ′},

G′
2 = {ura

ia
G′

a(uia)uiaja : a = N ′ + 1, . . . , N},where Ga = F
na,1

1 . . . F
na,M

M and G′
a = (F ′

1)
na,1 . . . (F ′

M )na,M for a = 0, . . . , N .
Corollary 4.5. Keep the above notation and let I (resp. I ′) be the idealin KQ generated by G0 ∪ G1 ∪ G2 (resp. G′

0 ∪ G′
1 ∪ G′

2). Then
KQ/I ∼= KQ/I ′.Proof. We set

B = KQ/I, Λ = KQ(n)/J, B′ = KQ/I ′, Λ′ = KQ(n)/J ′,where J (resp. J ′) is the ideal in KQ(n) generated by G2 (resp. G′
2). Observethat the sets G2 and G′

2 are of the same shape in the sense of Corollary 3.8.Hen
e there is an isomorphism of algebras f : Λ→ Λ′. It is enough to provethat one 
an 
hoose f so that Φf (eyB|Λ) ∼= eyB
′|Λ′ for every vertex y of T .Then the statement follows from Theorem 4.4.To do this let us de
ompose the modules eyB|Λ and eyB

′|Λ′ into inde-
omposables. Fix k ∈ {1, . . . ,m} and let y be a vertex of Tk. Re
all that zk isthe vertex of Q(n)0 the tree Tk is atta
hed at. First observe that eyB|Λ = 0and eyB
′|Λ′ = 0 provided that either there is no oriented path from y to zk,or there is su
h a path (then it is unique) but it 
ontains va as a subpath forsome a = −L, . . . ,−1.Now suppose that w∗ is the unique oriented path from y to zj , and w∗does not 
ontain any va, a = −L, . . . ,−1, as a subpath. Then there is anepimorphism of Λ-modules h : ezk

Λ→ eyB|Λ su
h that Kerh is a submoduleof ezk
Λ generated by

{ura
zk
Ga(uzk

)uzk,ja : a ∈ Jy},where Jy = {a = 0, . . . , N ′ : va � w∗}. We have an analogous des
ription of
eyB

′|Λ′ .Let G = gcd{Ga : a = N ′+1, . . . , N}, G′ = gcd{G′
a : a = N ′+1, . . . , N}.Without loss of generality, we 
an assume that G = F c1

1 . . . F
cM ′

M ′ and G′ =
(F ′

1)
c1 . . . (F ′

M ′)cM ′ for some M ′ ≤ M and c1, . . . , cM ′ > 0. Moreover, put
Hy = gcd{G,Ga : a ∈ Jy} and H ′

y = gcd{G′, G′
a : a ∈ Jy}.For a = 1, . . . ,M ′, let qa be the multipli
ity of Fa in Hy (equal to themultipli
ity of F ′

a inH ′
y). Let also b = min({nra+ja : a ∈ Jy}∪{dimK Πzk

}),where Πzk
is the proje
tive Λ-module (as well as Λ′-module) des
ribed inTheorem 3.6(b). Then
eyB|Λ ∼= V (F q1

1 ) ⊕ · · · ⊕ V (F
qM ′

M ′ ) ⊕Xzk,b,

eyB
′|Λ′

∼= V ((F ′
1)

q1) ⊕ · · · ⊕ V ((F ′
M ′)qM ′ ) ⊕Xzk,b.
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e, by Corollary 3.8, the isomorphism f 
an be 
hosen in su
h a waythat Φf (eyB|Λ) ∼= eyB|Λ′ for any vertex y of T .A
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