COLLOQUIUM MATHEMATICUM

VOL. 112 2008 NO. 1

WEAK COMPACTNESS AND ORLICZ SPACES

BY

PASCAL LEFEVRE (Lens), DANIEL LI (Lens),
HERVE QUEFFELEC (Lille) and LUIS RODRIGUEZ-PIAZZA (Sevilla)

Abstract. We give new proofs that some Banach spaces have Pelczynski’s prop-
erty (V).

1. Introduction. Recall that a Banach space X is said to have Petczyrn-
ski’s property (V') if one has a good weak-compactness criterion in the dual
space X* of X, namely: every subset A of X* is relatively weakly compact
whenever it has the following property (easily seen to be necessary):

lim sup |z*(z,)] =0

N—=00 pxc A
for every weakly unconditionally Cauchy sequence (x,,), in X (i.e. such that
Yons1 l2*(zn)| < oo for any 2* € X*). Equivalently, X has Pelczynski’s
property (V') if and only if for every Banach space Z and every non-weakly
compact operator T: X — Z, there exists a subspace Xy, isomorphic to cg,
such that T is an isomorphism between Xy and T'(Xy). Besides the reflexive
spaces (and in particular the LP spaces for 1 < p < 00), the spaces C(S) of
continuous functions on compact spaces S have property (V'); in particular
L*> has (V). Another general class of Banach spaces having property (V)
is that of Banach spaces which are M-ideals in their bidual, i.e. those for
which the canonical decomposition of their third dual is an ¢; decomposi-
tion:

X*** — X* ®1 XJ_

(see [8, 9]). Note that every subspace of a Banach space M-ideal of its
bidual is itself an M-ideal of its bidual; hence every such subspace has
property (V).

On the contrary, a non-reflexive Banach space that does not contain
co cannot have property (V). In particular, L' does not have this prop-
erty. Thus, the LP spaces have (V) for 1 < p < oo, whereas L' does not.
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For the Orlicz spaces, which are, in a natural sense, intermediate between
L' and L>™, D. Leung [12]| proved that, when the dual space is weakly se-
quentially complete, not only does the Orlicz space have property (V'), but
it actually has the local property (V), i.e. all its ultrapowers have prop-
erty (V).

D. Leung’s proof uses non-trivial properties of Banach lattices. In this
paper, we shall give an elementary proof of the (weaker) result that the
Orlicz space LY has property (V) when the complementary function of ¥
satifies the Ay condition.

Acknowledgements. This work was done during the stay of the fourth-
named author in Lens, in May—June 2005, as Professeur invité of the Uni-
versité d’Artois.

We are grateful to the referee for having simplified the proof of Theo-
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us the statement and proof of Proposition 5.

2. The Morse—Transue space. In this paper, we shall consider Orlicz
spaces defined on a probability space ({2,P), which we shall assume to be
non-purely atomic.

By an Orlicz function, we shall mean a non-decreasing convex function
v [0, 00] — [0, 00] such that ¥(0) = 0 and ¥(c0) = oo. To avoid pathologies,
we shall assume that we work with an Orlicz function ¥ having the following
additional properties: ¥ is continuous at 0, strictly convex (hence strictly
increasing), and such that

r—00
This is essentially to exclude the case of ¥(x) = ax. The Orlicz space L¥ (§2)
is the space of all (equivalence classes of) measurable functions f: 2 — C
for which there is a constant C' > (0 such that

Vo(f(0)]/0) dP(t) < oo,
9]

and then || f||w (the Luzemburg norm) is the infimum of all possible constants
C such that this integral is < 1.

To every Orlicz function is associated the complementary Orlicz function
¢ =¥*: [0,00] — [0, 00] defined by

¢@)=i£@y—wwﬂ

The extra assumptions on ¥ ensure that @ is itself strictly convex.
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Throughout this paper, we shall assume that the complementary Orlicz
function satisfies the Ag condition (¢ € Ag), i.e., for some constant K > 0
and some xg > 0 we have

&(2x) < KP(x), V> xo.

This is usually expressed by saying that ¥ satisfies the Vg condition (¥ € Vs).
This is equivalent to the fact that for some 8 > 1 and xg > 0, one has
U(x) < ¥(Bx)/(20) for © > xp, and that implies that ¥(x)/z — oo as
x — oo. In particular, this excludes the case LY = L.

When & satisfies the Ay condition, LY is the dual space of L.

We shall denote by MY the closure of L*® in LY. Equivalently (see
[15, p. 75]), M¥ is the space of (classes of) functions such that

V@(1ft)l/C)dP(t) < 00, VC > 0.
(0]

This space is the Morse-Transue space associated to ¥, and (MY)* = L2,
isometrically if L? is provided with the Orlicz norm, and isomorphically if
it is equipped with the Luxemburg norm (see [15, Chapter IV, Theorem 1.7,
p. 110]).

We have MY = LY if and only if ¥ satisfies the Ay condition, and L¥
is reflexive if and only if both ¥ and & satisfy the Ay condition. When the
complementary function @ = ¥* satisfies it (but ¥ does not, to exclude the
reflexive case), we have (see |15, Chapter IV, Proposition 2.8, p. 122, and
Theorem 2.11, p. 123])

(%) (L) = (M7)" @1 (M")*,

or, equivalently, (LY)* = L? @, (M¥)L, isometrically, with the Orlicz norm
on L?.

For more information about Orlicz functions and Orlicz spaces, we refer
to [15] or [11].

It follows from (*) that MY is an M-ideal in its bidual. Hence M¥ and
all its subspaces have Pelczynski’s property (V) ([8, 9]; see also [10, Chap-
ter III, Theorem 3.4|, and the end of this paper). This result was shown
by D. Werner ([19]; see also [10, Chapter III, Example 1.4(d), p. 105]), in
different way, using the ball intersection property (in these references, it is
assumed moreover that ¥ does not satisfy the Ay condition, but if it does,
the space LY is reflexive, and so the result is obvious).

The proof given in [8, 9] of the fact that Banach spaces which are M-ideals
in their bidual have property (V) uses local reflexivity and the notion of
pseudo-ball. Below we give a slightly different proof, which does not use this
notion, and seems more transparent. Note, however, that a stronger property,
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namely Pelczynski’s property (u), has since been shown to be satisfied by
the spaces that are M-ideals in their bidual (see 7] and, in a more general
setting, [6]; that also follows from [17]).

THEOREM 1 (Godefroy—Saab, [8, 9]). Ewvery Banach space which is an
M -ideal in its bidual has property (V).

Proof. Assume that X*** = X* @; X+ and let T: X — Y be a non-
weakly compact map. By Gantmacher’s theorem, 7%*: X** — Y™ is not
weakly compact either. This means that 7 (X®) ¢ Y** Since X =
X @ (X*)+ (canonical decomposition of the third dual of X*), there exists
some u € (X*)- with |lu|| = 1 such that T (u) # 0. Now the M-ideal
property of X gives X4 = (X*)L @, XL, It follows that

|z + aul| = max{||z||,|a|}, Vze€ X, VaeC.

By local reflexivity, we can construct a sequence (z)p>1 in X equivalent
to the canonical basis of ¢y and such that ||Tz,|| > § > 0 for every n > 1.

For that, let 0 < § < [|T®Wu)|, €, > 0 be such that (1 — &,)[|T®u| > 6
and [[,5,(1+en) <2, [[,51(1 —en) > 1/2.

Assume that zq,...,z, have been constructed in such a way that
|Tx| > ¢ and

n

H(l —ep)max{lail,...,|an|} < |larzy + -+ anzy|
k=1 n
H 1+ ) max{|ail,..., |an|}
for any scalars ai,...,a,.

Let V, be the linear subspace of X®) generated by {u,z1,...,z,}. By
Bellenot’s version of the principle of local reflexivity ([1, Corollary 7]), there
exists an operator A,: V,, — X such that ||A,], [|AY] < 1+ ent1, Ap is
the identity on the linear span of {z1,...,2,} and

NT@ull = T Apull | < ensr [TW .

If 41 = Apu, it is now clear that

n+1
[T —en)max{lar],. .. Jantal} < llarzr + - + anprznil|
k=1 n+1
<[]+ ep) max{larl,. .., lanial}
k=1
for any scalars aq,...,a,41 and |[|[Tx,41] > 6. Hence
%maxﬂal\, cosanl} < laixn 4+ -+ anzy|| < 2max{|ai], ..., |an|}

for any scalars ai,...,ay. Since || Tx,|| > J, this ends the proof. m
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3. Pelczynski’s property (V) for L¥. As we said, the following result
is a particular case of that of D. Leung ([12]), but we shall give an elementary
proof.

THEOREM 2 ([12]). Suppose that the conjugate function ® of W satisfies
the Ao condition. Then the space LY has Petczyriski’s property (V).

As is well-known (and easy to prove), every dual space with Pelczynski’s
property (V') is a Grothendieck space: every weak-star convergent sequence
in its dual is weakly convergent. Hence, we have:

COROLLARY 3. Suppose that the conjugate function @ of ¥ satisfies the
Ay condition. Then the space LY is a Grothendieck space.

Proof of Theorem 2. We may assume that LY is a real Banach space.

The proof comes directly from the following two results, since £ = MY
is a Banach lattice having property (V) and LY = (MY)**.

LEMMA 4. Suppose that the Orlicz function ¥ does not satisfy the Ao
condition. Then for every sequence (gn)n in the unit ball of LY there exist
a sequence (fu)n in MY and a positive function g € LY such that

lgn — ful < g.

PROPOSITION 5. Let E be a Banach lattice that has property (V). Sup-
pose that for every sequence (x)*)y, in Bg+, there are a sequence (xy), in
E and a positive £** € E** such that |x}* — xp| < 2**. Then E** has prop-
erty (V).

Proof of Lemma 4. Since, by dominated convergence,

Jim } 2 (1gn] 1419, 5¢)) dP = 0,
2
we can choose, for every n > 1, a positive number ¢, so large that

1
S (| gnl IL{Ign|>tn}) dP < on’
Q

and

%)
D P(lgal > tn) < o
n=1

This last condition implies, by Borel-Cantelli’s lemma, that, almost surely,
|gn| < t,, for n large enough. Equivalently, by setting

In = In Lfjg, >t}

we have, almost surely, g, = 0 for n large enough. It follows that almost
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surely sup,, |gn| is attained. Set now
Ap ={w € 2; [G1(w)], - -, [gn-1(w)| < [gn(w)| and
9% (@)| < |gn(W)], VE > n}

(w € Ay, if and only if n is the first time for which supy, |gx(w)| is attained).
The sets A,, are disjoint and

oo
sup|Gn| = > [Gnl1a,-
n>1 n

Hence, if we set

g = sup |gnl
n>1

we have g € LY, since, by the disjointness of the A,’s,

Vw(g)dp=>" | w(ga))d ZS (|Gn]) Z%z
2 n=1A, n=1 {2 n=1

That proves the lemma, by taking f, = g, — gn, which is in L>® C MY . u

Proof of Proposition 5. Suppose that T: E** — Y is not weakly com-
pact. Then there exists a sequence (z*), in Bg++ such that (Tz}*), is not
relatively weakly compact. Choose (z,,), and x** as in the statement of the

proposition, and set y;* = z;* — x,, for all n. Then either:

(a) (Txy)n is not weakly compact, or
(b) (T'y:*)y is not weakly compact.

If (a) holds, Tjg: E' — Y is not weakly compact; hence T|g fixes a copy
of cg.

If (b) holds, let I be the closed lattice ideal generated by x** in E**,
normed so that [—2**, 2**] is the unit ball, and let i: I — E** be the inclusion
map. Since (y*)y, lies in [—2™*, 2**], T o is not weakly compact. But [ is a
lattice isomorphic to a C(K) space, and hence has property (V). Thus T o4
fixes a copy of cg. So T fixes a copy of cy. m

REMARK. We cannot expect that, for ¢, large enough, the functions g,
could have a small norm. For example, let G be a standard Gaussian random

variable A/(0,1). For ¥ = W, (Wy(x) = e”° — 1), we have, for every ¢ > 0,

1 2,2 2
Uy (|G|1 dP = —— T/ e 2y =
é} 2(IG11ga>41/€) N | (e Je T =00

for every & < v/2; that means that [|G1{ig)>y |, > V2 for every ¢ > 0 (recall
that |G|y, = 1/8/3; see [13, p. 31]).

|z|>t
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4. Concluding remarks and questions

1. The full result of D. Leung that LY has the local property (V), i.e. ev-
ery ultrapower of LY has property (V) (see [3]), cannot be obtained straight-
forwardly from our proof. Indeed, since LY = (M¥)** is 1-complemented in
every ultrapower of MY, it would suffice to prove that every such ultrapower
has property (V); but if [(MY)y]* contains (L?)y as a w*-dense subspace,
it is bigger. The ultraprower (L%?)y is not exactly known in general. In the
particular case of ¥ = W, (Wy(z) = * — 1), we have ([4, Propositions 4.1
and 4.2]):

(L?2)y = L (Py) © L' (1u1)-
However, since (LY)* = (L*)** = L® @ L'(p), all the odd duals of LY

can be written
(LLP)(2n+1) o (LLP)* Oy Ll(,un).

Hence all the even duals of LY have property (V).

2. We can define the Hardy—Orlicz space H? in a natural way: it is the
subspace of LY consisting of the functions on the unit circle T = 0 which
have an analytic extension to I); equivalently, it is the subspace of LY whose
negative Fourier coefficients vanish. In [2|, J. Bourgain proved that H> has
property (V). Does H” have property (V)?

Note that the answer cannot follow trivially from our Theorem 2 since
HY is complemented in LY if and only if LY is reflexive: indeed, the Riesz
projection from L¥ onto HY is bounded if and only if LY is reflexive ([18];
see [16, Chapter VI, Theorem 2.8, p. 196]), and we have:

PROPOSITION 6. Assume that W € Vy. Then the Hardy-Orlicz space HY
is complemented in LY if and only if the Riesz projection is bounded on LY.
Hence HY is complemented in LY if and only if LY is reflexive.

Proof. Only the necessity needs a proof. Assume that there is a bounded
projection P from LY onto HY. For all f € M¥ and g € rlvlq’, the translations
t — f; and t — g; are continuous. Hence we can define P by setting

(Pf.g) =\ (P(f:), 1) dt.

T
One has |[Pf|lg < ||P|l||f]lz, so that P is bounded from MY into LY. On
the other hand, it is immediate that for every trigonometric polynomial f
and e, (x) = ", N .
P(f) =) F(n)P(en)(n)en.
nez

Since P is a projection, we have P(e,) = e, for n > 0; and since P takes its
values in HY, we have P(e,)(k) = 0 for k < 0; in particular, P(e,)(n) = 0
for n < 0.
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Therefore we get

P(f) =" f(n)en,

n>0

that is, P is the restriction to MY of the Riesz projection. Hence the Riesz
projection is bounded on MY. By taking its bi-adjoint, we see that it is
bounded on LY. m

In Ryan’s paper ([18]), it is assumed that ¥ is an N-function, that is,
lim, o ¥(z)/x = 0. But we may modify ¥ on [0,1] to get an N-function
¥1. Since we work on a probability space (£2,P), the new space L1 is equal,
as a vector space, to LY, but with an equivalent norm. Hence Ryan’s result
remains true without this assumption.

Note that, when the probability space ({2,P) is separable, since we have
assumed that ¥ € Vg, the reflexivity of LY is equivalent to its separability
(see [15, Chapter III, Theorem 5.1, pp. 87-88]).

3. Property (V) allows us to say that LY looks like LP, 1 < p < oco. In
some sense, it may be seen as being close to L> when ¥ ¢ Ao, since it is not
reflexive. However, from other points of view, it is closer to LP with p < oo;
on the one hand, it is a bidual space; on the other hand, one has:

PROPOSITION 7. If ¥ € Vs, then LY never has the Dunford-Pettis prop-
erty.

Proof. We are actually going to show that MY does not have the Dun-
ford-Pettis property. That will prove the proposition, since LY = (M¥)**.

Since ¥ € V3, there are @ > 1 and ¢ > 0 such that ¥(z) > cx®. It follows
that LY C L® and the natural injection i: LY — L® is bounded, and hence
weakly compact, since L% is reflexive.

Take now an orthonormal sequence (ry)p>1 in L? with constant modu-
lus equal to 1 (for example, an independent sequence of random variables
taking the values 1 each with probability 1/2). One has {, r,, f dP — 0 as
n — oo for every f € L?. By density, this remains true for every f € L!,
and in particular for every f € L2, since L® C L'. Therefore (rn)n>1
weakly converges to 0 in MY. Since |7y]la = 1, (i(rp))n does not norm-
converge to 0, and hence the weakly compact map i: MY — L% is not a
Dunford—Pettis operator. Therefore MY does not have the Dunford—Pettis
property. m

A slightly different way to prove this is to use the fact that for every
Banach space X which has the Dunford-Pettis property and which does
not contain ¢, its dual X* has the Schur property ([5, 14]; see also [13,
Chapitre 7, Exercice 7.2]). But MY does not contain ¢; (because all its sub-
spaces have property (V'); or because its dual L? is separable). Hence L®
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would have the Schur property. The same argument as above shows that is
not the case.

4. We have required in this paper that the complementary function
& satisfies the Ay condition. Hence, in some sense, the space LY is far
from L'. We may ask what happens when we are at the other end of
the scale, namely when LY is close to L!. But if ¥ satisfies the Ay con-
dition, then LY = (M?)* and M?®, being an M-ideal in its bidual, has
property (V), as said in the introduction. It follows that LY is weakly
sequentially complete (and in fact has property (V*)), and if we assume
that ® ¢ Ay (so that LY is not reflexive), then LY does not have prop-
erty (V).
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