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ON DERIVED EQUIVALENCE CLASSIFICATION
OF GENTLE TWO-CYCLE ALGEBRAS

BY

GRZEGORZ BOBINSKI and PIOTR MALICKI (Torur)

Abstract. We classify, up to derived (equivalently, tilting-cotilting) equivalence, all
nondegenerate gentle two-cycle algebras. We also give a partial classification and formulate
a conjecture in the degenerate case.

Introduction and the main result. Throughout the paper, k£ denotes
a fixed algebraically closed field. By an algebra we mean a finite-dimensional
basic connected k-algebra and by a module a finite-dimensional left module.
By Z, N, and Ny, we denote the sets of integers, nonnegative integers, and
positive integers, respectively. Finally, if 4,j € Z, then [i,j] = {l € Z | i <
1<j}

With an algebra A we may associate its bounded derived category D’(A)
(in the sense of Verdier [29]) of bounded complexes of A-modules, which
has the structure of a triangulated category (see [17]). The bounded derived
category is an important homological invariant of the module category of an
algebra and attracts a lot of interest (see for example [5, 8, 15, 16, 18, 22,
24, 25]). In particular, the derived equivalence classes of algebras have been
investigated (see for example [1, 9, 11, 14, 20]), where two algebras are said
to be derived equivalent if their bounded derived categories are equivalent
as triangulated categories.

A handy way of proving derived equivalence between algebras A and A’
is to construct a (co)tilting A-module T" such that A’ is (isomorphic to) the
opposite of the endomorphism algebra of 7. Here a A-module T is called
(co)tilting if pd, T < 1 (idy T < 1, respectively), ExtY(T,T) = 0, and T
is a direct sum of precisely rk Ky(A) pairwise nonisomorphic indecompos-
able A-modules, where K((A) denotes the Grothendieck group of the cate-
gory of A-modules. The transitive closure of the relation defined in this way
is called tilting-cotilting equivalence. For many classes of algebras tilting-
cotilting equivalence and derived equivalence coincide.
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Results of this type have been obtained for gentle algebras, introduced
by Assem and Skowronski in [4] (see Section 1 for a precise definition),
which form an important subclass of the class of special biserial algebras
in the sense of |27]. We note that a representation-infinite algebra admits
a simply connected Galois covering all of whose finite convex subcategories
are representation-finite if and only if it is a special biserial algebra and its
simply connected Galois covering is the repetitive category of the union of a
countable chain of gentle tree algebras (see [23]).

The class of algebras derived equivalent to a hereditary algebra of Dynkin
type A, for some n € N coincides with the class of algebras tilting-cotilting
equivalent to a hereditary algebra of type A, and consists of the gentle
algebras whose Gabriel quivers have n vertices and n — 1 arrows (see [2]).
Moreover, for a given n all such algebras form one derived equivalence class.

Similarly, the class of algebras derived equivalent to a hereditary algebra
of Euclidean type A,, for some n € N coincides with the class of algebras
tilting-cotilting equivalent to a hereditary algebra of type ,&n and consists of
the gentle algebras whose Gabriel quivers have n vertices and n arrows and
which satisfy the so-called clock condition on the unique cycle. In this case,
there are exactly |n/2] derived (equivalently, tilting-cotilting) equivalence
classes for a given n.

The algebras with the same numbers of vertices and arrows in the Gabriel
quiver are called one-cycle algebras. The remaining gentle one-cycle algebras
form the class of derived discrete algebras which are not derived (equiva-
lently, tilting-cotilting) equivalent to a hereditary algebra of Dynkin type
(see [30]). The derived equivalence classes of these algebras were described
in [10].

The aim of this paper it to extend the above classification to the class
of gentle two-cycle algebras, where we call an algebra a two-cycle algebra
if the number of arrows in the Gabriel quiver exceeds the number of ver-
tices by one. An additional motivation for this research is the proof by
Schroer and Zimmermann in [26] that the gentle algebras are closed un-
der derived equivalences. Moreover, for gentle algebras the numbers of ver-
tices and arrows in the Gabriel quiver are derived invariants (see |7, Corol-
lary 15]). However, we obtain a full classification only for nondegenerate
gentle two-cycle algebras, where we call a gentle two-cycle algebra A nonde-
generate if Z(n,m)ENXN oa(n,m) = 3. Here ¢4 : N x N — N is the derived
invariant introduced by Avella-Alaminos and Geiss in [7] (see Section 3).
For the remaining gentle two-cycle algebras A, which we call degenerate,
we have >, yenxn @4(n,m) = 1. Obviously, both these classes of gen-
tle two-cycle algebras are closed under derived (hence also tilting-cotilting)
equivalences.
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Before formulating the main results of the paper we define the following
families of algebras.

e Ao(p,r) for p € N1 and r € [0,p — 1] is the algebra of the quiver

° ee—>0
ap [e%1
v
B

bound by oy, ajipq for i € [1,7] and yoy.
e Aj(p,r) for p € Ny and r € [0,p — 1] is the algebra of the quiver

o <— -

[e%} Qp
Y
P Z S

bound by ;a4 for i € [1,7], apy, and (9.

o Ai(p1,p2,p3,pa,71) for p1,p2 € Ny, p3,ps € N, and 71 € [0,p1 — 1]
such that ps + p3 > 2 and ps + r1 > 1 is the algebra of the quiver

° > @
o
Ops 01 71 Tp3
o e o e ®
\\ﬂ\ ﬁPQ
o< .. °

bound by a1 for i € [pr—71,p1—1], ap, B1, Bifit1 fori € [1,pa—1],
and By, 0.

o As(p1,p2,p3,71,72) for p1,p2 € Ny, p3s € N,y € [0,p1 — 1], and 73 €
[0, p2 — 1] such that ps + 71 4+ ro > 1 is the algebra of the quiver

N L L
| N

bound by a;a;y1 for i € [p1 —r1,p1 — 1], ap a1, BiBig1 fori € [pa —ra,
p2 — 1], and £, 5.

The main results of the paper are the following.

THEOREM 1. If A is a nondegenerate gentle two-cycle algebra, then A
is derived (equivalently, tilting-cotilting) equivalent to one of the following
algebras:
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L Al(plap2)p37p4ar1) fO’l" some p1,p2 € N+7 p3ap4ENa andry € [Oapl_l]
such that ps + p3 > 2, ps +1r1 > 1, and either ps > p4, or p3s = pg and
D2 > 11,

o Ay(p1,p2,p3,7r1,72) for some pr,p2 € Ny, p3 €N, ry € [0,p1 — 1], and
ro € [0,p2 — 1] such that ps+ri+r2 > 1 and either py > pa, or p1 = p2
and r1 > r9.

Moreover, different algebras from the above list are not derived (equivalently,
tilting-cotilting) equivalent.

THEOREM 2. If A is a degenerate gentle two-cycle algebra, then A is
derived (equivalently, tilting-cotilting) equivalent to one of the following al-
gebras:

o Ao(p,r) for somep € Ny and r € [0,p — 1],
o Aj(p,0) for some p € Ny.

Moreover, we have the following conjecture concerning the minimality of
the list in the above theorem.

CONJECTURE. Different algebras from the list in Theorem 2 are not de-
rived (equivalently, tilting-cotilting) equivalent.

ObViOUSIY7 if D1,p2 € N+7 € [Ovpl - 1]7 ro € [0,]92 - 1]7 and Y41 7£ D2,
then Ag(p1,r1) and Ag(p2,72) (Ay(p1,0) and Aj(p2, 0), respectively) are not
derived equivalent. Similarly, if p1,p2 € Ny, r1 € [0,p1 — 1], and p1 # p2 +1,
then Ag(p1,71) and Af(p2, 0) are not derived equivalent. Thus it is enough to
prove that Ayg(p+1,0),..., Ag(p+1,p) and Aj(p,0) are pairwise not derived
equivalent for a fixed p € Ny. It follows easily by investigating the Euler
quadratic forms that Ag(p+1,71) and A(p+1,r2) (Af(p,0) and Ag(p+1,r2))
are not derived equivalent if 71 # rp (mod 2) (r2 =0 (mod 2), respectively).

The paper is organized as follows. In Section 1 we first present basic
definitions, then describe main tools used in order to reduce an arbitrary
gentle two-cycle algebra to one of the algebras listed in Theorems 1 and 2:
passing to the opposite algebra, (generalized) APR-(co)reflections, and HW-
(co)reflections. Finally, we describe an operation of shifting relations, which
is a basic application of the above operations, and investigate two particular
families of gentle two-cycle algebras. In Section 2, the technical heart of the
paper, we prove, in a sequence of steps, that the lists of representatives of
the tilting-cotilting equivalence classes of gentle two-cycle algebras given in
Theorems 1 and 2 are complete, while in Section 3 we show that different
algebras from the list given in Theorem 1 are not derived equivalent. The last
property follows by calculating the derived invariant introduced by Avella-
Alaminos and Geiss in [7].

For basic background on representation theory of finite-dimensional al-
gebras we refer to [3].
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1. Basic tools and auxiliary results. By a (finite) quiver A we mean
a finite set Ay of vertices together with a finite set A; of arrows and two
maps s = sa,t = ta : Ay — A which assign to an arrow « its starting
and terminating vertex, respectively. We say that an arrow « is adjacent to
a vertex x if either s = x or ta = x. By a path of length n € N, we mean a
sequence o = qj - - - ay, of arrows such that sa; = tayq for all ¢ € [1,n — 1].
In the above situation we denote sa,, and ta; by so and to, respectively.
We also call a1 and «, the terminating and starting arrow of o, respectively.
Additionally, for each © € Ay we consider the trivial path of length 0, also
denoted by x, such that sz = = tx. The length of a path ¢ will be denoted
by ¢(o). A path o is called mazimal if there exists no arrow « such that
either sav = to or ta = so. Similarly, we define maximal paths starting (or
terminating) at a given vertex. A connected quiver is said to be a c-cycle if
’Al‘ = ‘A0’ +c—1.

With a quiver A we associate its path algebra kA, which as a k-vector
space has a basis formed by all paths in A and whose multiplication is
induced by composition of paths. By a relation ¢ in A we mean a linear
combination of paths of length at least 2 with common starting and ter-
minating vertices. The common starting vertex is denoted by sp and the
common terminating vertex by to. A set R of relations is called minimal if
o does not belong to the ideal (R \ {o}) of kA generated by R\ {o} for
every o € R. A pair (A, R) consisting of a quiver A and a minimal set of
relations R such that there exists n € N with o € (R) for each path ¢ in
A of length at least n is called a bound quiver. If (A, R) is a bound quiver,
then the algebra kA/(R) is called the bound quiver algebra of (A, R).

Let (A, R) be a bound quiver and assume that R consists of paths. A
path o in A is said to be a path in (A, R) if o ¢ (R) (in other words, none of
the paths from R is a subpath of o). A path ¢ in (A, R) is said to be mazimal
if there is no o € Ay such that either sa = to and ao ¢ (R) or ta = so
and oo ¢ (R). Again we define maximal paths starting and terminating at
a given vertex. If additionally R consists of paths of length two, then we say
that o € Ay is a free arrow provided there exists no 6 € A; such that either
sf =ta and fa € R, or t8 = sa and af € R.

Following [4] we say that a connected bound quiver (A4, R) is gentle if
the following conditions are satisfied:

(1) for each z € Ay there are at most two arrows « such that sa = =
(ta = x),
(2) R consists of paths of length two,
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(3) for each o € Ay there is at most one arrow [ such that ¢t3 = sa and
af € R (of sf =ta and fa € R),
(4) for each av € Ay there is at most one arrow (3 such that ¢3 = sa and

aff € R (s = ta and fa € R).

An algebra which is isomorphic to the bound quiver algebra of a gentle bound
quiver is called gentle.

With an abelian category A we may associate its bounded derived category
DY(A) in the following way (see for example [29] for details). The objects of
DY(A) are the bounded complexes of objects of A and the morphisms are
obtained from the morphisms in the homotopy category by formally inversing
the quasi-isomorphisms (more precisely, by localizing with respect to the
quasi-isomorphisms), where by a quasi-isomorphism we mean a morphism
of complexes which induces an isomorphism of homology groups. The derived
category together with the shift functor sending X to the shifted complex
X[1], where X[1],, = X,+1 and dypn) = —d}"[rll} for n € Z, is a triangulated
category (see for example [17]). We say that two abelian categories A and B
are derived equivalent if there exists a triangle equivalence

DY(A) — D(B).
We say that two algebras A and A’ (bound quivers (A, R) and (A’, R))

are derived equivalent if their categories of modules (representations, re-
spectively) are derived equivalent. It follows from [26, Corollary 1.2] and [7,
Corollary 15| that for ¢ € Z the gentle c-cycle algebras (bound quivers) are
closed under derived equivalences.

Recall from [12, 19] that if A is an algebra, then a A-module T is called
tilting if pd, T < 1, Ext} (T, T) = 0, and T is a direct sum of n pairwise noni-
somorphic indecomposable modules, where n is the rank of the Grothendieck
group of A. Dually, we define the notion of a cotilting module. Algebras A and
A are said to be tilting-cotilting equivalent if there exists a sequence A = Ay,
Ay, ..., A, = A of algebras such that for each i € [0,n — 1] there exists a
(co)tilting A;_1-module T;_; such that A; ~ Endy, ,(7;-1)°P. It was proved
by Happel [16, Corollary 1.7| that if A and A’ are tilting-cotilting equivalent,
then they are derived equivalent.

A vertex z in a quiver A is called a sink (source) if there is no a € A
with s = = (ta = x, respectively). If = is a sink in a gentle bound quiver
(A, R), then we define a new gentle bound quiver (A’, R'), called the bound
quiver obtained from (A, R) by applying the APR-reflection at x, in the
following way: A = Ay, A = Ay,

x if taa =z,
saQ = .
saa  otherwise,
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saa if taa = x,
tha=< ifd e Ay taB=xANsafB =taa A Pa € R,
taa  otherwise,

and

R ={o€eR|tpo#x}U{af |tra=1x
ANFye A :v#aNtay=x ANsay=taB ANyP € R}.
It follows that the bound quiver algebra of (A’ R') is isomorphic to the

opposite algebra of the endomorphism algebra of the APR-tilting module
(see [6]) at = defined as

P Pla) @ (@ P(sa)) /P(z)

a€Ap acAq
a;é;c ta=x

(see [4, 2.1]).

We now present a generalization of the above construction due to Brenner
and Butler (see [13, Chapter 2|). Let x be a vertex in a gentle bound quiver
(A, R) such that there is no o € Ay with sa = 2 = ta and for each o € A
with sa = x there exists 8, € Ay with {8, = = and a8, € R. We define a
bound quiver (A’, R') in the following way: Afj = A, A} = A,

T if tha = x,
spa =< 8B, if spa ==,

saa  otherwise,

saa if taa = x,
thrao =< if3dg e Ay taB=xANsaB =taa A PBa € R,
taa  otherwise,

and set
R ={aB e R|taa#zxNspa#x}U{afs|saa =1z}
Uf{af |taa=ax ATy e A1y #aNtay=xANsay=taBAN~y0 € R}.

We will say that (A’, R') is obtained from (A, R) by applying the generalized
APR-reflection at x. As in the previous situation, it follows easily that the
bound quiver algebra of (A’, R') is the opposite algebra of the endomorphism
algebra of the tilting module defined in the same way as before. Obviously
all APR-reflections are generalized APR-reflections.

We also have a version of the above construction for a vertex x of a
gentle bound quiver (A, R) such that there exists a« € A; with sa = z = ta.
Observe that then o € R. We additionally assume that there exists 3y € A;
with sy # = and t3y = x. We define a bound quiver (A’, R’) in the following
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way: Ay = Ao, A} = Ay,
x if tha = x,
saa =4 safo if spa=x ANtaa # x,

saa otherwise,

saa  if taa =x,
thao =< T if3d e Ay taB=xANsaB =taa A PBa € R,

taa  otherwise,

and R’ = R. We will say again that (A’, R’) is obtained from (A, R) by ap-
plying the generalized APR-reflection at x. It follows that the bound quiver
algebra of (A’, R’) is the opposite algebra of the endomorphism algebra of
the tilting module

@ Pa)® (Py) & P(y))/Pla),

a€EAgp

aFx
where y = sy and P(z) is embedded in P(y) ® P(y) in such a way that the
quotient module is indecomposable.

Let again = be a sink in a gentle bound quiver (A, R). We define the
HW-reflection of (A, R) at x as the bound quiver (4A’, R’) constructed in the
following way. If Ay = {z} (equivalently, A; = (}), then (A’ R') = (A, R),
hence assume this is not the case. Then we put Aj = Ag and A} = A;. For
each arrow « terminating at x let (3, be the starting arrow of the maximal
path in (A, R) terminating at  whose terminating arrow is a. We put

taa  otherwise.

x if tha = x, sAPa iftha =z,
sao = . tara =
saa  otherwise,

Finally, let

R ={o€ R|taro#x}
U{Ba|taa =2 NsaB =35aLa NG # Ba NtASB # x}.

It is known that the bound quiver algebra of (A’, R') is (isomorphic to)
the algebra obtained from the bound quiver algebra of (A, R) by the HW-
reflection at x (defined in [21]), hence in particular it is tilting-cotilting
equivalent to (A, R) (see [28]). Dually, one defines the quiver obtained from
(A, R) by applying the HW-coreflection at a source.

Before we present basic applications of the above transformations, we
describe one more construction. Let X' be a subquiver of a quiver A. Assume
that X’ is a quiver such that Xj) = Xy and X = X (but, usually, sy # sx
and ty # ty). We say that a quiver A’ is obtained from A by replacing X
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by X if Al = Ao, A} = Ay, and
{SAO[ ifCMGAl\Zl, {tAOé ifOéGAl\El,
SArQ = . tara = .
syra if a € Xy, tsra if o € Xq,
for a € A;.
We now describe operations of shifting relations.

LemmMmA 1.1. If

Z:z ° o

S J

is a subquiver of a gentle bound quiver (A, R) such that cyag € R, asas € R,
and there are no other arrows adjacent to y, then (A, R) is tilting-cotilting
equivalent to the bound quiver (A',R'), where R' = (R \ {aqaz2}) U {a2as}
and A’ is obtained from A by replacing X by the quiver

[e%1 oo as

° ° ° o .
U Y T z

Proof. Apply the generalized APR-coreflection at 1. =

We remark that it may happen that one of the following equalities holds:
u =1y, x =v or u=v. Moreover, u = y if and only if z = v, and in this case
a1 = ag. We call the above operation shifting the relation ajas to the right.
Dually, one defines the operation of shifting relations to the left.

We will need the following generalization of the above lemma.

LEMMA 1.2. If

a1 oz Bn 51 a3
= o ° ° ° . ° ° °
r= x Un Un—1 Y1 90 e, neEN,

is a subquiver of a gentle bound quiver (A, R) such that ayag € R, B1,. .., On
are free arrows, and there are no other arrows adjacent to x,yq,. .., Yn, then
(A, R) is tilting-cotilting equivalent to the bound quiver (A’, R'), where R’ =
(R\ {a1aa}) U {agas} and A’ is obtained from A by replacing X by the
quiver

a1 B1 Bn a2 as
° ) . ° )
Yo Y1 Yn—1 Yn

[ ]
u

51 J

L2
z

Proof. We leave it to the reader to verify that the following sequence of
operations leads from (A, R) to (A’, R'): first for each i = n, ..., 1 we apply
the APR-coreflections at ;, ..., yn, , and next we apply the generalized
APR-coreflections at yg,...,yn. =

We will also shift a group of relations in the following sense.

LEMMA 1.3. Let

1] o «
Y=o o<l o . o< " o n > 2,
Yy xo 1 Tn—1 Tn -
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be a subquiver of a gentle bound quiver (A, R) such that (3 is a free arrow,
ajair1 € R for all i € [1,n — 1], and there are no other arrows adjacent
to xg,...,Tn_1. If there is no a € Ay with taw = x, and apa € R, then
(A, R) is tilting-cotilting equivalent to the bound quiver (A’, R'), where R’ =
(R\ {an—1an}) U{Bar} and A’ is obtained from A by replacing X by the

quiver

<@
8
—
5
o
8
i
—
8
o
8
3

Proof. We apply the APR-reflection at xg, followed by the composition
of the APR-reflection at x; and the generalized APR-reflection at zg applied
fore=1,....n—1. =

Observe that in the above lemma we shift relations to the left. Dually we
define the operation of shifting a group of relations to the right.

We now present a reduction, resulting from the above lemmas, which will
appear a few times in our proofs. Let

(63} Qn

Y=o ° ® n € Ny,

[ J . s
0 1 Tn—1 Tn

be a subquiver of a gentle bound quiver (A, R) such that there are no other
arrows adjacent to z1,...,x,—1 (it may happen that z¢o = z,). We divide
X1 into two disjoint subsets X' . and i _ in such a way that, for each
i € [1,n — 1], a; and ;41 belong to the same subset if and only if either
sa; = taiq or ta; = sayyq. We additionally assume that there exists € €
{—,+} such that af & R for all o, § € X . with s = ¢3. If zg = tay, then
by applying APR-reflections and shifts of relations (we leave the details to
the reader), hence by passing to a tilting-cotilting equivalent bound quiver,
we may replace X' by the quiver

/ 1 "
/ o o 1" " (6%
a; 1 lo 51 51 i3
. “ e . P . DY
xo Tn

for some I1,1ls,l3 € N with [; + I3 + I3 = n. Moreover, we may additionally
assume that 3 = 0 if either x,, = to,, or x, = s«, and there is no o € Ay
with ta = xz, and a,a € R. Obviously, we have the dual statement if
g = SQq.

The next observation is the following.

LEMMA 1.4. Ifp1,p2 € Ny, p3,ps € N, and r1 € [0,p1 — 1] are such that

p2+p3 > 2 and py+r1 > 1, then Ay1(p1, pa, p3,pa, 1) and Ay(p1+p2—r1—1,
r1+ 1, p4, p3, p2 — 1) are tilting-cotilting equivalent.

Proof. This follows immediately by shifting relations. =

In order to formulate the next lemma we introduce a new family of alge-
bras. Namely, for p1,p2 € Ny, p3,ps € N, r; € [0,p1 — 1], and 73 € [0,p2 — 1]
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such that ps +ps + 11 + 72 > 1, let AL(p1, p2, p3, pa,71,72) be the algebra of
the quiver

° °
wl y T
71 Vp3 dpy 01
: . DY . PR . :
l A BE\
° .

bound by a;cit1 for i € [p1 —ri, p1 —1], ap,aq, Bifit1 for i € [po—ra, p2—1],
and 5;;2,31-
LEMMA 1.5. prl,pg,pg € N+,p4 c N, r1 € [0,}?1—1], and ro € [0,}?2—1],

then Ay(p1,p2,p3,pa;T1,72) and Ay(p1,p2,p3 — 1,ps + 1,71,72) are tilting-
cotilting equivalent.

Proof. Put a; = sd;, i € [1,p4], and b; = sf;, i € [1,p2]. We first ap-
ply the APR-coreflections at ap,,..., a1, followed by the generalized APR-
coreflection at by, (we only apply the generalized APR-coreflection at by,
if p4 = 0). Next we apply the APR-coreflection at b,,_; followed by the
generalized APR-coreflection at by, for i = 1,...,r2 (we do nothing in this
step if ro = 0, hence in particular if po = 1), and finally we apply the
APR-coreflections at by,—r,—1,...,b1 (there is nothing to do if rp = py — 1,
hence again if pp =1). m

COROLLARY 1.6. If p1,ps € Ny, ps € N, r; € [0,}?1 - 1] and ro €
[0,p2 — 1], are such that ps + ri + ro > 1, then Ax(pi,p2,ps,71,72) and
Aa(p2,p1,p3,72,71) are tilting-cotilting equivalent.

Proof. This follows immediately from the above lemma, since it is eas-
ily seen that As(p1,p2,ps,r1,72) and Aa(pe,p1,p3,r2,71) are isomorphic to
Aé(p17p27p37 07 T1, 7’2) and A,2 (p17p27 O7p37 1, TQ), respeCtiVGIY' L

PROPOSITION 1.7. If A is one of the algebras listed in Theorems 1 and 2,
then A and A°P are tilting-cotilting equivalent.

Proof. If either A = Ag(p,r) for some p € Ny and r € [0,p — 1], or
A = Aj(p,0) for some p € N4, then the claim follows immediately by shifting
relations. If A = Ay(p1,p2,ps,pa, 1) for some p1,p2 € Ny, p3,ps € N, and
r1 € [0, p1] such that po+ps > 2 and 1 +pg > 1, then we have to additionally
apply APR-coreflections. Finally, if A = Aa(p1, p2, p3, 71, 72) for some p1, p2 €
N4, p3 € N, r € [0,p1 — 1], and 7o € [0,p2 — 1] such that ps +r1 + 72 > 1,
then the claim follows from Corollary 1.6. =

An important consequence of the above lemma is that in our considera-
tions we may always replace an algebra by its opposite algebra. Indeed, if for
an algebra I' we are able to prove that I™°P is tilting-cotilting equivalent to
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an algebra A listed in Theorems 1 and 2, then obviously I is tilting-cotilting
equivalent to A°P, hence also to A. In particular, once Theorems 1 and 2 are
proved, we know that if I is a gentle two-cycle algebra, then I" and I'°P are
tilting-cotilting equivalent.

We finish this section by analyzing two particular families of gentle two-
cycle bound quivers. First, we prove the following.

PROPOSITION 1.8. If (A, R) is a gentle bound quiver such that

o<~ - ° o<~ .. °
Oépl
A= e ° °
\ By \ /
B1 Bgy+1 Bq1+a2
°o<~ ... ° o< .. °

for some p1,p2, q1,q2 € Ny, then the bound quiver algebra of (A, R) is tilting-
cotilting equivalent to Aj(p,r) for some p € Ny and r € [0,p — 1].

We first show that also in the proof of this theorem we may pass to

opposite algebras.

LEMMA 1.9. Ifp € Ny andr € [1,p—1], then Aj(p,r) and Ag(p+1,7—1)
are tilting-cotilting equivalent.

Proof. In order to prove this equivalence, we put = t3, 2 = sd and x1 =
saq, and apply the APR-reflection at x followed by the APR-coreflection at
z and the APR-reflection at 21 to Aj(p, 7). Then the claim follows by shifting
relations. m

COROLLARY 1.10. If p € Ny and r € [0,p — 1], then Ay(p,r) and
Ay (p,)°P are tilting-cotilting equivalent.

Proof. This follows either from Proposition 1.7 (if » = 0), or from the
previous lemma and Proposition 1.7 (if » > 0). =

In the proof of Proposition 1.8 we will need the following families of
algebras:

e Io(p,q,r) for p,q € Ny and r € [0,p — 1] is the algebra of the quiver

al ap—1
o< .- °
[e%} Qp
Ap4-1
P S
[ ] [ ] [ ]
T Y S~—— 2
Bg+1
51 Bq
@ <—- - [ ]
b1 bq—l

bound by ;i for i € [p—r,p] and By64+1,
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e Ii(p,q,r,r") for p,q € Ny, r € [0,p— 1], and 7' € N, is the algebra of

the quiver
ay ap—1 ap Apyr/—1
o< ° o< - °
y ‘\\%%7 w+r’+l
Bg+1

[ ] [ ] [ ]

T Y z
@ <—- - (]
b1 bq—l

bound by oja;q for i € [p —r,p+ '] and 5,84+1,
e Iy(p,q,r,r") for p,qg € Ny, r € [0,p — 1], and v’ € N is the algebra of
the quiver

al ap—1
. [ ]

N
Ap+1
o °
Yy z
;\ A ﬁq:l\ A—M’-&-l
@ <+«
by

[ ° °
by by 1 by g1

bound by a;a; 41 for i € [p —r,p| and 3;3i+1 for i € [q,q+ '],
and the following series of lemmas.

LEMMA 1.11. Ifp,q € Ny, r € [0,p — 1], and q¢ > 1, then Iy(p,q,r) is
tilting-cotilting equivalent to I'y(p+ 1, — 1,7).

Proof. It is enough to apply the generalized APR-reflection at b,_1, fol-
lowed by the APR-coreflection at z, the generalized APR-coreflection at vy,
and the APR-coreflections at by—a,...,b; (we omit the last step if ¢ = 2). w

LEMMA 1.12. If p,q,€ Ny, r € [0,p — 1], ¥ € N, and v’ > r, then
Iy (p,q,r, ") is tilting-cotilting equivalent to I's(q+ 1" —r,p,r" —r,r).

Proof. First for each i € [1,7] we apply the HW-coreflection at z fol-
lowed by the APR-reflection at z, and the generalized APR-coreflection at
apyr—; applied 7 + 7/ + 1 — i times. Next we apply the HW-coreflections
at z,aptp—y_1,...,0ap (only at z if 7 = 7') and we obtain a bound quiver
whose bound quiver algebra is easily seen to be tilting-cotilting equivalent
to In(qg+7r" —r,p,r' —r,r). =

LEMMA 1.13. If p,q,€ Ny, r € [0,p — 1], ¥ € N, and r > 1/, then
Iy (p,q,r, ") is tilting-cotilting equivalent to I'v(p + 2r" —r,q,r',r —17).

Proof. Since I'i(p,q,r,r') is tilting-cotilting equivalent to Iy (p + 7" —r,
q,7’,7)°° and I(p + 21" — r,q,7’,r — r') is tilting-cotilting equivalent to
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Ly(g+r—7r",p+r" —r,r—r',r")°P hence the claim follows from the previous
lemma. =

LEMMA 1.14. If p,g € Ny, r € [0,p — 1], ¥ € N, and r > 1/, then
Ih(p, q,r, ") is tilting-cotilting equivalent to I'x(p,q,r —1r',r").

Proof. By applying the APR-coreflection at z followed by the generalized
APR-coreflection at z applied 7’ times, we replace I»(p, ¢, ,7’) by (an algebra
isomorphic to) the bound quiver algebra of the quiver

! ’
’
a) [NV Ayt a,_q
o <—- - ® o< °
’ ’
’
[e%} ‘Y—r’ ap—rly
’
Oépfr’+1
. .
/Z/ \ /
/ Y ’
A By q+1 ﬁq+r/+l
b. -~ K * < - ~®
1 bq—l bq bq+r’—1

bound by ojaj  for i € [p—r,p|] and Fi5; ; for i € [q,q +1']. It is easily
seen that this algebra is tilting-cotilting equivalent to I»(p,q,r — r/,7’) (we
just shift relations sufficiently many times). m

LeMMA 1.15. If p,g € N, r € [0,p— 1], " € N, and ' > r, then
Iy(p,q,r,r") is tilting-cotilting equivalent to I5(p,q + r,r,r’ —1).

Proof. Since I5(p,q,r,7’) is tilting-cotilting equivalent to Is(q + 7/,
p—r,r’,7r)°? and Is(p, q+r,r,r' —r) is tilting-cotilting equivalent to I (g+7’,
p—r,r" —r,r)°P, the claim follows from the previous lemma. =

Proof of Proposition 1.8. Without loss of generality we may assume that
ap ap,+1 € R and By, 8,41 € R. We first show that either aya;41 & R
for all i € [1,p1 — 1], or Bifit1 € R for all i € [1,q; — 1]. Assume this is
not the case. In particular, p1,q; > 2. By shifting relations we may assume
that ajag € R and 5102 € R. If (A’, R') is the quiver obtained from (A, R)
by applying the HW-reflection at = followed by the APR-reflection at x,
where z = tay, then A" = A and R’ = R\ {a1a9, f102}, hence the claim
follows by induction. Similarly, we prove that either a;a;+1 ¢ R for all
S [p1 + 1,p1 + p2 — 1], or B;8i41 € R for all i € [Q1 + 1,1+ q2 — 1]
Consequently, by shifting relations one easily observes that the bound quiver
algebra of (A, R) is tilting-cotilting equivalent either to I (p,q,r, ') or to
Iy(p,q,r, ") for some p,q € Ny, r € [0,p — 1], and 7’ € N. Since

Fl(pa q,7, 0) = FO(pa Q7T) = FQ(p’Q7T70)
for all p,g e Ny and r € N, I'1(p,q,0,7") =~ Io(p+1',q,7")°P and
FQ(]%(LONJ) ~ FO(q + T’/,p, T/)Op
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for all p,q € Ny and ' € N, and Iy(p, 1,7) is tilting-cotilting equivalent to
Ay(p,r) for all p € Ny and r € [0,p — 1], the claim follows from the above
series of lemmas. u

We finish this section with the following.

PROPOSITION 1.16. If (A, R) is a gentle bound quiver such that

1 Tpy—1
- [ )
jl/ \Y’l
Bpo B1
A= ue ° . ° ov
Ypo—1 Y1
:1\ Ad
o< .- °
z1 Zpg—1

for some p1,p2,p3 € Ny, and By, a1, vp, 01 € R, then the bound quiver algebra
of (A, R) is tilting-cotilting equivalent to Ay(p,r) for some p € Ny and r €
[0,]) - 1]

Proof. Let r1 be the number of i € [1,p; — 1] such that ;41 € R,
let r9 be the number of i € [1,py — 1] such that §;8;+1 € R, and let r3 be
the number of i € [1,ps — 1] such that 7;v;+1 € R. We prove the claim by
induction on 71 4 ro + r3.

If 11 = 0 = r3, then it follows by shifting relations that the bound quiver
algebra of (A, R) is tilting-cotilting equivalent to Ag(p1 + p2 + ps — 2, 7r2).

If 1 > 0 and r3 = 0, then by shifting relations we may assume that
ps = 1land ajag € R. If (A, R') is the bound quiver obtained from (A, R) by
applying the generalized APR-reflection at u followed by the APR-reflection
at x1, then R = (R\ {alag,ﬂmal,’ylﬁl}) U {’7104275132'71} and

o Tp;—1
() .. [
1
A= ue v ov
Z& 61 AQ
[ J @ . [}
z1 Y1 Ypg—1

hence the claim follows by induction. Dually, the claim follows if r; = 0 and
rg > 0.

Assume finally that »; > 0 and r3 > 0. By shifting relations we may
assume that ajag € R and 7172 € R. If (A, R') is obtained from (A, R) by
applying the generalized APR-reflection at u followed by the APR-reflection
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at 1, then R = (R\ {a102, Bp,a1,7172}) U{Bp, 71, 7102} and

o Tpy—1
° . °

7 \apl

’ 71 Bpo 51
A= ue ) ° . ° v

z1 Upy—1 Y1

& Ag

Y2

° ° . °
Tl z2 Zpo—1

and the claim again follows by induction. =

2. Completeness of the list. We start our considerations in this sec-
tion by extending the list of algebras in Theorems 1 and 2. Namely, as a con-
sequence of Lemmas 1.4 and 1.9 and Corollary 1.6, to show the completeness
of the lists in Theorems 1 and 2, it is enough to prove the following.

PROPOSITION 2.1. If (A, R) is a gentle two-cycle bound quiver, then the
bound quiver algebra of (A, R) is tilting-cotilting equivalent to one of the
following algebras:

e Ao(p,r) for somep € Ny and r € [0,p — 1],

o Aj(p,r) for some p e Ny and r € [0,p—1],

o Al(plvp?ap37p4arl) fOT some plapQEN-‘r? p3)p4€Na and e [Oapl - 1]
such that po +p3 > 2 and py +11 > 1,

o Aa(p1,p2,p3,71,72) for some p1,p2 € Ny, p3 € N, rp € [0,p1 — 1],
T € [0,}?2 — 1] such that ps + 11 +19 > 1.

For the rest of the section we assume that (A, R) is a gentle two-cycle
bound quiver. We show, in a sequence of steps, that the bound quiver algebra
of (A, R) is tilting-cotilting equivalent to one of the algebras listed in the
above proposition.

We divide the arrows in A into three disjoint groups:

o a € A is called a cycle arrow if the quiver (Ag, A1 \{a}) is connected,

e a € A is called a branch arrow if the quiver (Ao, A1 \ {a}) has a
connected component which is a two-cycle quiver,

e o € A is called a connecting arrow if the quiver (Ao, A; \ {a}) has
two connected components which are one-cycle quivers.

A vertex x of A is called a connecting vertex if there exist at least three
arrows adjacent to & which are not branch arrows. We call a8 € R a branch
relation if either a or 3 is a branch arrow.

STEP 1. We may assume that there are no branch relations in R.
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Proof. If there exists a branch relation in (A, R), then by passing to the
opposite algebra if necessary, we may assume that there exists a subquiver

[e%) Qn—2 Qn—1 Qn

= @ e [} [ ] [ ]
Z xo Tn—2 Tn—1 Tn
of A for some n > 2, where ay,...,q, o are free arrows, a,_1a, € R,
and there are no other arrows adjacent to zg,...,z,—2 (in particular, a;,_1

is a branch arrow, hence a,,_10,, is a branch relation). By applying APR-
coreflections we may assume that sa; = x; for all i € [1,n — 2]. If (A", R')
is the bound quiver obtained from (A, R) by applying the generalized APR-
reflections at x,,_o,...,x1 followed by the APR-reflection at xg, then R’ =
R\ {an—10p} and A’ is obtained from A by replacing X by the quiver

[ ] (] s [ ] o .
Tn—1 xo Tn—2 Tn

In particular, the number of branch relations decreases, hence the claim
follows by induction. =

By a branch in A we mean a maximal nontrivial (i.e. with nonempty set
of arrows) connected subquiver of A all of whose arrows are branch arrows.
We say that a branch B in A is rooted at = if z € By and there exists a € Ay
adjacent to x which is not a branch arrow. An immediate consequence of the
assumption made in the above step is that each branch B in A is a linear
quiver rooted at one of its ends. Moreover, by applying APR-reflections we
may assume that B is equioriented and rooted at its unique sink.

STEP 2. We may assume that there are no branch arrows in A.

Proof. We say that x € Ag is an insertion vertez if either x is a con-
necting vertex, or there exists o € A; such that sao = x, « is not a branch
arrow, and there is no 8 € A; with t3 = x and a8 € R. Observe that no
branch is rooted at an insertion vertex. Moreover, for each x € Aq there
exists a path in A starting at an insertion vertex and terminating at x. In
particular, if B is a branch rooted at x, then we call the minimal length of
such a path the distance between B and an insertion vertex. We prove our
claim by induction on the number of branches in (A, R) and, for a given
branch B, by induction on the distance between B and an insertion vertex.

Let

aq Qn

B= e . 2, mneNy,

P .
xo xr1 Tn—1

be a branch in A. Let o and 8 be the arrows in A with s = xg = t3 and
0 # a1. Observe that a8 € R and there are no other arrows adjacent to zg.
Put y = ta and z = sf.

Assume first that there is no v € Ay with ty = 2z and 5y € R. If (A", R')
is the bound quiver obtained from (A, R) by applying the generalized APR-
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reflections at g, ..., zn—1, then R’ = (R\ {af}) U{awa,} and A’ is obtained
from A by replacing the subquiver

Yy
®
T o
B a1 an
[ ] [ ] [ ] [ ]
z ilh) xr1 Tn—1 Tn
by the quiver
16} al Qn «
[ ] [ ] [ ] . [ ] (] [ ]
z z0 1 Trn_1 Tn Yy’

hence the claim follows in this case.

Assume now that there exists v € Ay with ¢ty = z and 8y € R, and z is a
connecting vertex in Aq. Put v = sv. If (A’, R’) is the bound quiver obtained
from (A, R) by applying the generalized APR-reflections at xg,...,zy—1,
then R = (R\{ap, 57})U{aan, anv} and A’ is obtained from A by replacing
the subquiver

y
[ ]
Ta
v B aq Qn
[ ] [ ] [ J [ J @
v z o) T Tp—1 Tn
by the quiver
v
[ ]
lw
B a1 Qn @
[ ] [ J [ [ J ( [ ]
z xo 1 Tn—1 Tn Yy

Observe that the assumption that z is a connecting vertex in A implies that
B,a1,...,a,_1 are not branch arrows in A’

Finally, assume that there exists v € Ay with ¢y =z and gy € R, but z
is not a connecting vertex in A;. By induction we may assume that there is
no branch rooted at z. If (A’ R') is the bound quiver obtained from (A, R)
by applying the HW-coreflection at x; followed by the APR-reflection at x;
for i = n,...,1, then R = R and A’ is obtained from A by replacing the
subquiver

B a1 an
° ° ° ° °
z o 1 Tn—1 Tn
by the quiver
8 a1 an
) ° ° ° °
o z 1 Tn—1 Ty !

and the claim follows by induction. =
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We say that A is special if either there is a unique connecting vertex in
A, or there is a connecting arrow in A. Otherwise, we call A proper. We now
concentrate on the case when A is special. We first describe its structure more

1)

precisely. We may divide the cycle arrows of A into two disjoint subsets Ag

and A§2) in such a way that cycle arrows « and § belong to the same subset
if and only if the quiver (Ag, A; \ {«, 5}) has a connected component which
is a one-cycle quiver. For j € [1,2] we denote by AY) the minimal subquiver

of A with the set of arrows Agj ). Observe that AV is a (not necessarily

oriented) cycle. We divide the arrows in AU) into disjoint subsets Ag{ )_ and

Ag{l in such a way that if o, 5 € A(lj), o # [, are adjacent to the same

vertex, then they belong to the same subset if and only if either s =t/ or
ta = sf. For € € {—,+} we put

RY ={af e R|a,Be AV}
STEP 3. If A is special, then we may assume that for each j € [1,2] there
exists € € {—,+} such that RY) =¢.

Proof. If AW is an oriented cycle, then there 1s nothlng to prove, hence

assume that A is not an oriented cycle and R 75 0 # R . There exists
a subquiver

Y1 Tn
Y = o ° ° . ° ° °
Y1 Y2 xo Tn z22 21

of A for some n € N such that ajas € R 516 € R(]), there are no
other arrows adjacent to xg,...,xy, and ¥y, ...,7, are free arrows. By ap-
plying appropriate APR-reflections at xj,...,x,-1 (see the discussion after

Lemma 1.3) we may assume that
a1 az 80! Yk Vk+1 Tn B2 B

= e ° ° cee ) cee ) ° °
Y1 Y2 ) Ty Zn z2 z1

for some k € [0,n]. By shifting the relations ajas and (312 to the right, we

may assume that n =0, i.e.
al as B2 B1

° ) o .
T z9 z1

Y=o °
Y1 Y2
Assume first that neither ys nor z3 is a connecting vertex. If (A’ R') is the
bound quiver obtained from (A, R) by applying the APR-coreflections at
x, Y2, and zg, then R' = R\ {aqag, $152} and A’ is obtained from A by

replacing 2’ by the quiver

aq ,32 Q2 ﬁl
@ [ J [ ] [ ] [ J
Y1 22 x

and the claim follows by induction. Otherwise, we may assume without loss
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of generality that yo is a connecting vertex and z; is not a connecting vertex.
If (A’ R) is the bound quiver obtained from (A, R) by applying the APR-
coreflections at = and z9, then R’ = (R \ {a1ag,102}) U {Biaz} and A’ is
obtained from A by replacing X by the quiver

Observe that asg is a connecting arrow in A’, hence the claim again follows
by induction. =

STEP 4. If A is special, then for each j € [1,2] we may assume that
either AY) is an oriented cycle, or there is a unique source (equivalently,
unique sink) in AU,

Proof. This follows easily by applying APR-reflections and shifts of re-
lations (see the discussion after Lemma 1.3). =

STEP 5. If A is special, then we may assume that either there is no
connecting arrow in A, or, for each j € [1,2], AU s an oriented cycle and

af € R for all a, 8 € Agj) with sa = 3.

Proof. We prove the claim by induction on the sum of the number of
connecting arrows and the number of connecting relations, where we say
that a8 € R is a connecting relation if both o and § are connecting arrows.
We may assume without loss of generality that either A() is not an oriented

cycle, or there exist o, 8 € Agl) with sae = tf and af € R. Let x € A[()l) be a
connecting vertex. Let o be the connecting arrow adjacent to z. Without loss
of generality we may assume that = sa. Let 3 and v be the arrows adjacent
to x different from a. Again we may assume without loss of generality that
x = tf. By symmetry we may also assume that a8 € R if x = ty. Put y = t«
and z = s0. In order to make it easier to follow the proof we will number
the cases.

(1) Assume that a8 € R. According to our assumptions this implies that
z = sy and 78 € R. Put v = tvy. If AM) is not an oriented cycle, then by
applying APR-reflections and the dual of Lemma 1.2 we may assume that v
is a sink. In particular, there is no v € A; with s5/ = v and 7'y € R. By
shifting relations we may also assume that this condition is satisfied if A()
is an oriented cycle. Let (A’, R') be the bound quiver obtained from (A, R)
by applying the generalized APR-coreflection at x. If there is no o/ € A
with sa’ = y and &/a € R, then R’ = (R\ {70}) U{aB} and A’ is obtained
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from A by replacing the subquiver

zZ
[ ]
lﬁ
Y a
O<——0 —>0
v T Y
by the quiver
Y « B
[ [ ] [ ] [ ]
v T Y z

On the other hand, if there exists o/ € Ay with sa/ =y and &’a € R, then
R = (R\ {73, a})U{aB,a’y} and A’ is obtained from A by replacing the

subquiver

4
[ ]
lﬁ
Y @ o
[ ] [ ] [ ] (]
v T Y Y
by the quiver
y/
[J
v o' B
[ ] [ ] [ ] [ )
v T Y z

where y' = ta’. Observe that either A’ is proper (if y is a connecting ver-
tex in the second case), or we decrease the number of connecting arrows
(otherwise), hence the claim follows by induction.

(2) Assume that of € R.

(2.1) Assume that there is no o/ € A} with s/ =y and ¢/« € R.

(2.1.1) Assume that y is a connecting vertex. If either A®) is not an
oriented cycle, or there exist &', 8" € A?) with s¢’ = t6” and §'6” € R, then
the claim follows by symmetry from (1), thus we may assume that A g

an oriented cycle such that ¢'6” € R for all §,6" € A(IQ) with s’ = t6”.
(2.1.1.1) Assume that \A?)] = 1.If (A", R') is the bound quiver obtained

from (A, R) by applying the generalized APR-reflection at y, then R’ = R
and A’ is obtained from A by replacing the subquiver

B a
o —0 —> 0
z T Y
by the quiver
B o
o —— — 0
z x

? )

hence the claim follows.
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(2.1.1.2) Assume that ]A(12)\ > 1. Let o and (' be the arrows in A?) with
sa/ =y =1tf. Put v/ =ta and ' = sf'. Let 4/ be the arrow in A®) with
ty" = 2/. Put 2/ = sv/. Recall that o/3', 3+ € R. If (A’ R') is the bound
quiver obtained from (A, R) by applying the generalized APR-reflection at
y followed by the APR-reflection at 2/, then R’ = (R \ {af,a/3,5v'})
U{ay/,d’a} and A’ is obtained from A by replacing the subquiver

,Ul
[ ]
B a G’ v
[ ) [ ] [ ] [ ] [ )
z T Y 2 2!
by the quiver
Zl
[ ]
B e @ o
[ [ ] [ ] [ ] [ ]
z z Y T v

hence the claim follows in this case.
(2.1.2) Assume that y is not a connecting vertex.

(2.1.2.1) Assume that there exists o’ € A; with s/ = y. Our assumptions
imply that &’a € R. Put v/ = to/. If (A’ R) is the bound quiver obtained
from (A, R) by applying the generalized APR-reflection at y, then R =
(R\ {apf})U{d/a} and A’ is obtained from A by replacing the subquiver

B a o’
° ° ° °
z z Y o

by the quiver

B e o

[ J [ ]
z Y

51 J
]

<

hence the claim follows by induction.

(2.1.2.2) Assume there exists o/ € A’ with to/ = y. Put 2’ = sa/.

(2.1.2.2.1) Assume that either 2’ is a connecting vertex or o’ is a free
arrow. Moreover, if ' is a connecting arrow and o is not a free arrow, then
let 3’ be the arrow in A with t3 = 2/ and /3’ € R, and put 2/ = s/3’. Let
(A’, R') be the bound quiver obtained from (A, R) by applying the APR-
reflection at y. If o is a free arrow, then R’ = (R \ {af}) U{d/S} and A’ is
obtained from A by replacing the subquiver

B o o
° ° °
z T Y

&\
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by the quiver

.
lﬂ
o o
[ ]
)

o <— —_—
xT I/

hence the claim follows by induction. On the other hand, if 2 is a connecting
arrow and o is not a free arrow, then R' = (R\ {af3,d/'f'}) U{af’, o/} and
A’ is obtained from A by replacing the subquiver

B @ o 6’
[ ) [ ] [ ) [ ) [ )
z z Y I p
by the quiver
z z
[} [ )
x ﬂ/
«a o’
o< o —>0
x Y I

hence the claim follows.

(2.1.2.2.2) Assume that z’ is not a connecting vertex and there exists
B € Ay with ¢ = 2’ and /" € R. Put 2/ = sf'. If (A, R’) is the bound
quiver obtained from (A, R) by applying the APR-reflections at y and 2/,
then R’ = (R\ {af,d/8'}) U{af'} and A’ is obtained from A by replacing
the subquiver

B8 « o B’
[ ) [ ] [ ] [ ) [ )
z T Y 2 2!
by the quiver
X
o
Ta
B8 o B
[ ] [ ] [ ] [ ]
z 2 Y M

hence the claim follows by induction.

(2.2) Assume that there exists o/ € A; with so/ = y and &’ € R. Put
y =td.

(2.2.1) Assume that x = tv. Let 51 --- [, and 71 - - -y, be the maximal
paths in A terminating at « with 8, = 8 and v = v. Put u = sf,, u, = s3;
for i € [1,n — 1] and u = sv; for i € [1,m — 1].

(2.2.1.1) Assume that there exists ¢ € [1,m — 1] such that v;7;+1 € R. By
shifting relations we may assume that v,,,—1vm, € R. Observe that 3;6;11 € R
for all ¢ € [1,n — 1]. If (A’, R’) is the bound quiver obtained from (A, R)
by applying the HW-coreflection at u followed by the composition of the
HW-coreflection at u} and the APR-reflection at u; for i =n—1,...,1, then
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R = (R\ {Ym-1Ym,aB}) U{Bny} and A’ is obtained from A by replacing
the subquiver

Ym ﬁn ﬁl
" b e w ?
Um—1 Up—1 Uy
by the quiver
Ym ﬂl /Bn
//. /. ’ ./ 1’ % ’
Um—1 Up—1 Uy

hence we reduce the proof to (1).

(2.2.1.2) Assume that v;v;41 ¢ R for all 7 € [1, m—1]. Let r be the number
of i € [1,n — 1] such that ;8,41 € R. By shifting relations we may assume
Bifit1 € R for all i € [n —r,n —1]. Put By = «a. If (A", R') is the bound
quiver obtained from (A, R) by applying the generalized APR-coreflections
at uy,...,ul,_,. 1, then R' = (R\{af}) U{Bn—r—10n—r} and A’ is obtained

from A by replacing the subquiver

ﬂn ﬁl ﬁO
° cee ) °
U z Yy
by the quiver
ﬁn ﬁnfr ﬁnfrfl ﬁO
° PPN [ o o
u T Yy

Let ] - - -7/ be the maximal path in (A’, R") with 7] = a. Observe that [ > 1
implies that y is a connecting vertex. Put

, u, 4 ifr>1, , ,
u_{x if r =0, V=

Let (A”, R"”) be the bound quiver obtained from (A’, R') by applying the
HW-coreflection at u followed by the composition of the HW-coreflection
at v/ and the APR-reflection at u for i = m — 1,...,1. If there exists
d in A with t§ = o' and § # ~{, then R” = (R'\ {Bn-16n}) U {vmd},
while R” = R'\ {n-10n}, otherwise. Moreover, A” is obtained from A’ by
replacing the subquiver

/ /

ﬂn TYm Ym—1 Y1 ﬁ'nfrfl ﬂO V-1 Y1
./ a //. e g . ° e ./
u ul 4 Y )

by the quiver
!

ﬁn Ym—1 Y1 Ym 'Yi V-1 ﬁO ﬁn—r—l
./ ”. e z ., e ° e e,
u ull 4 v Y

and the claim follows (by induction if y is not a connecting vertex).
(2.2.2) Assume that z = sv. Put v = t.
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(2.2.2.1) Assume that there exists v/ € Ay with sy = v and 7/ € R (by
shifting relations we may assume that this condition is satisfied if A" is an
oriented cycle). Put v’ = tv/. If (A’, R') is the bound quiver obtained from
(A, R) by applying the generalized coreflection at z followed, if y is not a
connecting vertex, by the APR-coreflection at g, then

, [ (BR\{da,aB,9'v}) U{¥ ,v8,/v} if y is a connecting vertex,
(R\{da,aB,v'v}) U{vB,a'v} otherwise
and A’ is obtained from A by replacing the subquiver

4
[}
l/@
v Y «a o
[ ] [ ] [ ] [
o v z y Y
by the quiver
v’ Yy’
[ ] [
\*\,\// V
B Y o
[ ] [ ] [ ] [ ]
z v T Y
if y is a connecting vertex, and by
y/
[ ]
7' o ¥ B
[ ] [ ] [ ] [ ] [ ]
’ y x v z

v

otherwise, hence the claim again follows.

(2.2.2.2) Assume that A®) is not an oriented cycle. Let 7y - - -y, be the
maximal path in A with v, = 7. We may additionally assume that ~v;7y;+1 &
R for all ¢ € [1,n — 1]. Consequently, we may reduce the proof in this case
to (2.2.1) by applying APR-reflections and shifts of relations. =

STEP 6. If A is special, then we may assume that for each j € [1,2], AW
is an oriented cycle or either the source or the sink in AU) is a connecting
vertex.

Proof. If both A®M and A®) are oriented cycles, then there is nothing
to prove, so without loss of generality we may assume that A is not an
oriented cycle. Observe that our assumptions imply that there are no con-
necting arrows in A. Let x be the connecting vertex in A and assume that

 is neither a source nor a sink in A(Y). Observe that z € A[()l) N A[()2). Let a,
B3, o and 3 be the arrows in A with sa =t =2 =sd' =t3, o, € Agl),
and o/, 3 € Agm. Put y = ta, ¥y = ta/, 2 = 53, and 2’ = sf'. By applying
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APR-coreflections, shifts of relations and Lemma 1.2 we may assume that z
is a source in AM),

Assume first that o/ = 3. Then a8 € R and /3’ € R. Let -+, be
the maximal path in A starting at z with ~,,, # 3. Observe that v;v;11 € R
for all i € [1,m — 1]. Put v; = s7; for i € [1,m — 1]. The bound quiver
algebra of the bound quiver obtained from (A, R) by applying the APR-
coreflections at z,v,,—1,...,v1 is easily seen to be tilting-cotilting equivalent
to Aa(p, 1, m,r,0) for some p € Ny and r € [0, p— 1], hence the claim follows
in this case.

Assume now that a8 € R and o/3' € R, but o # . Let (A", R") be
the bound quiver obtained from (A, R) by applying the generalized APR-
reflection at z. If there exists 8" € Ay with t3” = 2/ and 3’3" € R, then
R = (R\{ap, 3,3 p"}) u{ap’,o/B,35"} and A’ is obtained from A by

replacing the subquiver
y y
(] [ ]
‘X V
,8 IB/ B//
[ ] [ ] [ ]
z x Z/

by the quiver

[ ]
lﬂ//

@ B’ B o’
?

[ ] [ ]
Y 2! Y

where 2" = sp”. Otherwise, R’ = (R \ {af,d/3'}) U{af,d/3} and A is
obtained from A by replacing the subquiver

Y
[}
Y V
B 6’

Yy
[ ]
O —— 0 <——
z x

N @

by the quiver
@ B’ B o

[ ] [ ] [ ] [ ] o .
y G x z y

In particular, in both cases A’ proper.

Assume finally that a3’ € R and o/3 € R. Let v be the arrow in A
with sy = z and v # 3. Put v = tv. If there exists 7' € Ay with s7y/ = v
and 7'y € R, then let (A’, R") be the bound quiver obtained from (A, R) by
applying the APR-coreflections at z and v, and let v/ = t/. Observe that
R = (R\{dB,7'v}) U{y'B} and A’ is obtained from A by replacing the
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subquiver

IS4
5L J
8L J
Y )

<.e

by the quiver

B

vy o
[ ] [ )
v 7

[ )
v’ y

Otherwise, if (A’, R') is the bound quiver obtained from (A, R) by applying
the APR-coreflection at z, then R' = (R\ {&/3})U{a/y} and A’ is obtained
from A by replacing the subquiver

Q\
NG <—— 08

Y B o
[ ] o
v z

51 J
- ®

<

by the quiver

~

<

Oé,

B

<~ 0
x

o
o ——
v

N —> @

Again in both cases A’ is proper and this finishes the proof. =
STEP 7. We may assume that (A, R) is proper.

Proof. It AD) is not an oriented cycle, then neither is A and the claim
follows from Proposition 1.8; thus assume that A (and consequently also
A®)) is an oriented cycle.

Assume first that there are no connecting arrows in A and let = be
the connecting vertex in A. Let «, 3, ¢ and ' be the arrows in A with
sa =t =x = sa/ = tf, a,f € Agl), and o/, € A?). If af € R
and o3 € R, then it follows by shifting relations that the bound quiver
algebra of (A, R) is tilting-cotilting equivalent to Az (p1,p2,0,r1,72) for some
p1,p2 € Ny, m € [0,p1 — 1], and 72 € [0,p2 — 1] such that r; + 72 > 1. On
the other hand, if a3’ € R and o/f3 € R, then it follows by shifting relations
that the bound quiver algebra of (A, R) is tilting-cotilting equivalent to
A1(p1,p2,0,0,71) for some p1,p2 € Ny, p1,p2 > 2, and r1 € [1,p1 — 1].

Now assume that there are connecting arrows in A. Recall that in this
case afl € R for all cycle arrows o and 8 with s = t3. Let A be the
minimal subquiver of A with the set of arrows consisting of the connecting
arrows. Let x € Aél) and y € Aé2) be the connecting vertices. Observe that
A©) ig a linear quiver. We show that we may assume that x is a unique

sink in A©)| y is a unique source in A, and there are no «, 8 € Ago) with



60 G. BOBINSKI AND P. MALICKI

sa = tf and af € R. This will immediately imply that the bound quiver
algebra of (A, R) is tilting-cotilting equivalent to As(p1, p2,p3,p1 —1,p2 — 1)
for some p1,p2, p3 € Ny

By repeating arguments from the proofs of Steps 3 and 4 and passing to
the opposite algebra if necessary, we may assume that

(e%) (079 ﬁm ﬁl
A= o ° . ° ° ° . ° °
T 1 Tn—1 z Ym—1 Y1 Y

for some n € Ny and m € N, and §;6i+1 ¢ R for all ¢ € [1,m — 1]. It is
enough to show that we may additionally assume that a;a; 11 € R for all

€ [1,n — 1], since then the claim follows from Lemma 1.5. Assume this is
not the case By shifting relations we may assume that ajag € R.

If ]A \ =1and (4A', R') is the bound quiver obtained from (A, R) by ap-
plying the generalized APR-reflection at x followed by the APR-reflection at
x1, then R' = R\{a1as} and A" = A. Otherwise, let v, 0 and ¢’ be the arrows
in A with sy = 2 = té and 6’ = sd. Observe that our assumptions imply
that 49, 0" € R. Put u = ty,v = sé and v’ = s¢'. If (A", R') is the bound qui-
ver obtained from (A, R) by applying the generalized APR-reflection at x fol-
lowed by the APR-reflection at v, then R’ = (R\{74, §¢', a1 })U{vaq, 10’}
and A’ is obtained from A by replacing the subquiver

u
'
T'Y
& ) ai az
° ° ° ° °
G v x 1 xr2
by the quiver
,Ul
°
l&’
0l [e3} 1 a2
[ ] [ ] [ ] [ ] [ ]
u T1 v T2

where 9 = z if n = 2. Consequently, in both cases the claim follows by
induction. m

We now investigate the case when A is proper. In this case we may
divide the arrows in A into three disjoint subsets Agl), Agz), Ag?’) in such
a way that o, 3 € Ay belong to the same subset if and only if the quiver
(Ao, A1 \ {a, 8}) has a connected component which is a one-cycle quiver.
For j € [1,3] we denote by AY) the minimal subquiver of A with the set of
arrows Agj ). Observe that AY) is a linear quiver. We divide the arrows in

AW into disjoint subsets A(]l and A(j) in such a way that if o, 3 € A1 ),
« # 3, are adjacent to the same vertex then they belong to the same subset
if and only if either sa = ¢t or taw = sf3. For j € [1,3] and € € {—,+} we
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put
RY ={af e R|a,feAY)}.

STEP 8. We may assume that either RS{) =0 or R(_j) = () for each
j€1,3].

Proof. Analogous to the proof of Step 3.

STEP 9. We may assume that either there is at most one sink in AY) or
there is at most one source in AY), for each j € [1,3].

Proof. We prove the claim by induction on |R| and, for a fixed j, on

|Agj)|. Fix j € [1,3] and assume that there is either a unique source or a
unique sink in A® for each I € [1,7 — 1]. Let u and v be the connecting
vertices in A, and let o and 3 be the arrows in AW adjacent to u and v,
respectively. The claim follows by the arguments presented after Lemma 1.3,
unless the following condition (or its dual) is satisfied: saw = u, 3 = v, there
exists o' € Ay with to’ = u and o’ € R, and there exists 5’ € A; with
sf' = v and §/8 € R. Assume the above condition is satisfied. Put z = s(3
and v = tf. If AU is not an equioriented linear quiver, then by applying
APR-coreflections, shifts of relations, and Lemma 1.2, we may assume that
there exists v € Ay with v # 8 and sy = x. Put y = tv.

Assume there exists v/ € A; with s7/ = y and v’y € R. Put ¢ = /.
If (A’ R) is the bound quiver obtained from (A, R) by applying the APR-
coreflections at x and y, then R’ = (R\{0'8,~'v})U{y/8} and A’ is obtained
from A by replacing the subquiver

' ¥ B I3
[ ] [ ] [ ] [ ] [ ]
y' Y T v v
by the quiver
v
[
lﬁ
v v o4
[ ) [ ] [ ] [ )
Y T Y N

In particular, |R'| < |R|, hence the claim follows by induction in this case.

Otherwise, if (A’, R') is the bound quiver obtained from (A, R) by ap-
plying the APR-coreflection at x, then R’ = (R\ {#'8}) U {37} and A’ is
obtained from A by replacing the subquiver

v g 6’

[ ] [ ]
xT (2

[ ] [ ]
Yy v’
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by the quiver

[ ]
Y

Observe that if [ € [1,5 — 1] and there is no § € Agl) with s0 = v and
8 # [, then there is either a unique source or a unique sink in A’®. On the
other hand, if there exists such an arrow, then we may assume that there is
either a unique source or a unique sink in A’®), since 3 is a free arrow in
(A" R). In particular, in both cases the claim follows again by induction,

since ]A | < ]A(] |. m

STEP 10. We may assume that if either s = x = s or ta = x = tf8
for a connecting verter x, « 6 AYY " and g € AY2) yith Jj1 # je and

112 l,e2

e1,e2 € {—,+}, theneztherR —(Z)orR 2) ¢,

Proof Wlthout loss of generality we may assume that sao = z = sf. If

7é (0 or R 7é (), then by shlftlng relations we may assume that there

ex1st arrows o' and B in A with sa/ = ta, sf = t3, and d'a, 38 € R.

Let v be the arrow in A with ¢ty = x. Without loss of generality we may

assume that ay € R and 8y € R. Put 3/ = td/, 2/ = tf', and u = sv. If

(A", R') is the bound quiver obtained from (A, R) by applying the generalized
APR-coreflections at x and y, then

= R(\{d'a, BB, a}) U{a'B, B}
and A’ is obtained from A by replacing the subquiver

g
Vl
o «a B Jed
[ ] [ ] [ ] [ ] [ ]
Y Y T z g
by the quiver
y/
[}
Y B a 6’
[ ] [ ] [ ] [ ] [ ]
U z T Y 5!

In particular, |RY"| < |RYY| and |RY?| < |RY?)|, hence the claim follows
by induction. =

STEP 11. We may assume that there exists j € [1,3] such that AU) is
equioriented.
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Proof. If the above condition is not satisfied, then without loss of gener-
ality we may assume that

/ /
ai Apy %qy a
AW = o< ; g ey,
1 p1—1 T 1 ]
Bpy B 81 Bas
A(2) = e ° . [ ° ° . . ® o
Ypo—1 A ) Yy yq2_1
7 !
(3) p3 7 7 Vaz
A = 8 z g ) z. g ./ ’ /. v
p3—1 1 2] Zga—1

for some p1, p2,p3, q1, g2, g3 € Ny. Moreover, we may assume that 3,,a1 € R.
Consequently, by shifting relations we may assume that 3;0,+1 € R for all
i € [1,p2 — 1]. There are two cases to consider.

Assume first v;vi+1 € R for all i € [1,p3 — 1]. If (A’ R’) is the bound
quiver obtained from (A, R) by applying the generalized APR-coreflection
at u followed by the composition of the APR-coreflection at y; and the
generalized APR-coreflection at u for i = py — 1,...,1, then

R — { (R\ {ﬂpzalaﬂlﬂQ}) U {'ngal,ﬁpz')/p:a} if po > 1,

(R {Bpocn}) U{pson} if pp =1,
/
@ a ah
A/(l): z g - x. ) x he = % - /. : ./ - g’
p3—1 1 p1—1 T 1 x)
’(2 g B B &
A(2) = 3 po . b1 L 2
Zp3—1 Ypo—1 Ypg—2 u Yy vi y;271 v
" Ya
A= oy e ey,
p3—1 1 k4 Zga—1
where z,,_1 = z if p3 = 1. Consequently, the claim follows by an easy

induction.

Assume now that there exists ¢ € [1,p3 — 1] such that 7,71 € R.
Consequently, po = 1. Moreover, by shifting relations we may assume that
Yps—17ps € R. If (A, R') is the bound quiver obtained from (A, R) by ap-
plying the generalized APR-coreflection at u, then

R = (R\ {,31@1, ’7103—1’7173}) U {’7p30417'7p3—1ﬁ1}7

/ /
(1) _ Yp3 a1 Qpq Qg o
AW = ° ° ° . ° ° ° . ° 'Y
U Zpg—1 1 Tpy—1 T m;1_1 ! Y
/
B1 61 Bay
A(2) — . ° ° s o
v Yy yqul
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Yp3—1 Y .
A/(?’) — e rs ° . ! . ° i ,
u Zp3—2 2 o U

thus the claim follows. =

STEP 12. We may assume that there is at most one j € [1,3] such that
AY) s not equioriented.

Proof. If the above condition is not satisfied, then without loss of gener-
ality we may assume that

o Qap Qg e’
A(l) — e ! o ! o 'S e ° ! o
U T Tp;—1 x x;171 x/l v
Bp . B P
A(Q) _ ﬁ 2y y. B ; 1 . , 2 .,
po—1 1 Yy Y
qp—1
(3) — o3 . m
A - g Zps.,l Z.l g?

for some p1, p2, p3, q1, g2 € No. In this proof we will again number the cases.
Up to symmetry, there are three main cases to consider: either 3,,a1 € R
and 3,01 € R, or Bp,a1 € Rand 3,71 € R, or yp,a1 € R and §i,7 € R.

(1) Assume fBp,a1 € R and (,a; € R. In this case we may apply the
same arguments as in the proof of the previous step. Note, however, that
if viviy1 € R for all i € [1,ps — 1], then we obtain a gentle bound quiver
whose bound quiver algebra is tilting-cotilting equivalent to Aj(p, r) for some
p € Ny and r € [0, p — 1] according to Proposition 1.8.

(2) Assume that 3),a1 € R and 3,71 € R.
(2.1) Assume that ajaj,; & R for all i € [1,q1 — 1] and 33 ; € R for

i

all i € [1,q2 — 1]. By shifting the relation 3,71 to the left we may assume
that g = 1.

(2.1.1) Assume that 3;6;11 € R for all i € [1,ps — 1]. By shifting the
relation 3,,aq to the left we may assume that p, = 1. Consequently, the path
algebra of the bound quiver obtained from (A, R) by application of the APR-
reflections at y,v, 2}, ..., ZL‘; ,—1 1s easily seen to be tilting-cotilting equivalent
to Aa(ps + 1,p1 + 1,q1,73,71), where r1 is the number of ¢ € [1,p; — 1] such

that ;41 € R and rg is the number of i € [1, p3 — 1] such that v;vi+1 € R.

(2.1.2) Assume that there exists ¢ € [1,ps — 1] such that §;6;+1 € R.
By shifting relations we may assume that (18, € R. If (A, R’) is the
bound quiver obtained from (A, R) by applying the APR-reflections at
Y, Y1,V, T, - -, g, _q, then



GENTLE TWO-CYCLE ALGEBRAS 65

R = (R\ {B1f2, Bim}) U{ag, Ba},

a1 Qpy gy
A = gt g e e e
1 p1—1 To 1
B2
A/(2) — 1’ . y. /. R
2 T
q1—1
A/(3) — Vp3 71 B1 B oy
e e e Tt e A o
p3—1 1 Y1 Yy 7 xq171

where 33211—1 = v if ¢ = 1, hence the claim follows.

(2.2) Assume that there exists i € [1,¢2 — 1] such that 83, ; € R. By
shifting relations we may assume that ;35 € R. Moreover, this condition
implies that ;3,11 ¢ R for all i € [1,ps — 1]. By shifting the relation (,,0q
to the left we may assume py = 1. If (A’ R) is the bound quiver obtained
from (A, R) by applying the APR-reflections at y and v/, then

R = (R\ {Brou, B135}) U{B153},

’
A — B aq Qpy Yqy o
R e et Sl e
Y Y 1 p1—1 Ty 4 xq
1
/
(2) _ o
AN = . yoé .,
1 Tp 1
NG — o p o3 o . oo o
Yy U Zpg—1 21 v

hence the claim follows again.

(2.3) Assume that §i3;, ; ¢ R for all i € [1,¢2 — 1] and there exists
i € [1,q1 —1] such that ojaj, | € R. Observe that in this case o;a;41 ¢ R for
all i € [1,p1 — 1], hence by shifting the relation £y, to the right we may

assume that p; = 1. Similarly, v;viy1 € R for all i € [1,p3 — 1].

(2.3.1) Assume that there exists i € [1, po — 1] such that ;5,11 € R, then
by shifting relations we may assume that 512 € R. Moreover, by shifting
the relation 5(3271 to the left we may assume that go = 1. Additionally, by
shifting relations we may assume that ooty € R. If (A’ R’) is the bound
quiver obtained from (A, R) by applying the HW-reflection at y followed by
the APR-coreflection at y and the APR-reflections at v, 21,..., 2p,—1, then

R, = (R \ {0/10/2’/&1/62516171}) U {'Vp30/2}v

o (03
A/(l) — @ ! [ . [ ] 2 [ ] s
u @ ,  Zpg-
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A@) Bps B1 B oy 7
— e ° . ° ° ° ° ° . °
u Ypo—1 Y1 Y z) v 21 Zp3—1
v,
NGB — ¢ o
Uu Zp3—1 ?

where z,,_1 = v if p3 = 1. In particular, we reduce the proof to the situation
dual either to (2.1) or to (2.2).

(2.3.2) Assume that §;5,11 ¢ R for all i € [1,pa — 1]. By shifting the
relation ﬂ;Q’yl to the right we may assume that ps = 1. Additionally, by
shifting relations we may assume that 0411—10‘:11 € R. The bound quiver
algebra of the bound quiver obtained from (A, R) by applying the APR-
coreflections at @, xy, _1,u, T, 1, Ypy—1,--, Y1 is easily seen to be tilting-
cotilting equivalent to As(g2+1,¢1,p2+1,0,77 — 1), where 7} is the number
of i € [1,q1 — 1] such that ojaj,; € R.

(3) Assume that y,,01 € R and (3,71 € R.

(3.1) Assume that there exists ¢ € [1,p2 — 1] such that 3;8;+1 € R.
By shifting relations we may assume that 3,,_18,, € R. Since in this case
Vivi+1 € Rforalli € [1,p3—1], we may assume, by shifting the relation vp, o
to the left, that ps = 1. Consequently, the bound quiver algebra of the bound
quiver obtained from (A, R) by applying the generalized APR-coreflection at
u is tilting-cotilting equivalent to Afj(p,r) for some p € Ny and r € [0,p — 1]
according to Proposition 1.8.

(3.2) Assume that 3;0;+1 ¢ R for all i € [1,ps — 1]. By shifting relations
we may also assume that v;vi41 € R for all i € [1,p3 — 1]. If (A", R') is the
bound quiver obtained from (A, R) by applying the APR-coreflection at u
followed by the composition of the APR-coreflection at z; and the generalized
APR-coreflection at u for : = p3 —1,...,1, then

o { (R\ {vps 157172, By 11 }) U A Bpa 1, Vs Bpas B2} if p3 > 1,

/ / : _
(R\ a1, Bym}) U{Bpe, By, Bpo t if p3 =1,
!
(6% Otl v,
A’(l) — (e%1 ) pq a1 ) 1 P3
o) R ¢ —>g—>9>
p2 p1 mql_l 7
/
A o o b1 o B . By .
Ypo—1 A Yy A y(/12—1 ’
B
AB) = ¢ 2 o . o7 o
Ypo—1 Zp3—1 21 u

where yp,,—1 = y if po = 1. Consequently, the claim follows by induction. =
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For p1,p2,ps € Ny, p2 > 2, 11 € [0,p1 — 1], and 72 € [1,p2 — 1], let
AL(p1,p2, p3,r1,72) be the algebra of the quiver

° ree——> @
QV Y
B
[ ] [ ]
l l’yp?
01 7
o —- —>.—>.<—.<— — @

bound by a;a;11 for i € [p1 —r1,p1 — 1], ap, B, Bau, Vivit1 for i € [1,72]. Ob-
serve that A5 (p1, p2, p3, 1, 72) is tilting-cotilting equivalent to As(p2, p1+1,
p3, T2 — 1,71 + 1). Indeed, it is enough to apply the HW-reflection at z; fol-
lowed by the APR-coreflection at x; for ¢ = 1,...,ps, where x; = tJ; for

(S [17]73]
STEP 13. We may assume that AU) is equioriented for each j € [1,3].

Proof. Suppose that there exists j € [1, 3] such that AU) is not equiori-
ented. Without loss of generality we may assume that

’ !
(0% «
(1) _ a1 . *pq a1 . 1
AV =22 A Rl Aamne 2
q1—1 1
B
A(Q) — o2 o . ° AL °
u Ypo—1 Y1 v
1 p
AB) = o RSN . . 5 o
U 21 Zpg—1 v

for some p1,p2,p3, 1 € Ni. We may additionally assume that o;10 € R
for all i € [1,p1 — 1]. Let 7} be the number of i € [1,¢q; — 1] such that
ajog | € R, let ro be the number of i € [1,ps — 1] such that 3;3;11 € R, and
let r3 be the number of i € [1, ps — 1] such that v;y,+1 € R. Observe that by
symmetry we may assume that rj > 0 if y,,0f € R and Sp,on & R.
Assume first that 3,,c1 € R. In this case by shifting the relation 3,,a1 to
the right we may assume that p; = 1. Observe that either r{ = 0 or ro = 0.
If r3 > 1, then by shifting relations we may assume that y,v9 € R. If
(A’, R') is the bound quiver obtained from (A, R) by applying the generalized
APR-reflection at u, then

R = (R\ {Bp,c1,1172}) U {172, Bpo11 }

(0% a/
A/(l) _ a aq z a1 o . . 1 8,
Tgp-1 1
1 Bp 1
A2 — ¢ Tt g 2 o . ® P °
u zZ1 Ypy—1 Y1 v
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(3) — 2 .
A =2 s

hence the claim follows in this case.

Assume now that r3 = 0. There are two additional possibilities in this
case. If yp,a) € R, then rp > 1 (since (A, R) is a bound quiver). Conse-
quently, { = 0 and we have the situation symmetric to the previous one.
On the other hand, if v,,81 € R, then by shifting the relation v,,3: to the
left we may assume that p3 = 1. Consequently, if (A’ R') is the bound quiver

obtained from (A, R) by applying the generalized APR-reflection at u, then
R = (R\ {Bpyc1,7151}) U{a1B1, Bpym1},

(0% (6%
A/(l):z [e51 . a1 o ) . 1 .,
Tgr—1 E31
A g, o
u Y1 Ypo—1 v
JAYC)
U v

hence the claim follows.

Assume now that 3,,71 € R. If v,,81 € R, then it follows easily that the
bound quiver algebra of (A, R) is tilting-cotilting equivalent either to Aa(pa+
p3—r2—1,r2+1,q1,p1,73)P if 1] = 0, or to Ay(p2 +p3 — 1,q1,p1,73,77)°P
if 4 > 1. Since A, (p2 + ps — 1, q1,p1,73,7}) is tilting-cotilting equivalent to
Aa(q1, p2+ps3, p1,ri—1,73+1), we may assume that v,,0; € R. Consequently,
by shifting relations we may assume that o), | € R for all i € [1,¢q1 — 1].
Recall that ¢; > 1 in this case. If (A", R) is the bound quiver obtained from
(A, R) by applying the APR-coreflection at x followed by the composition of
the HW-coreflection at z;, _; and the APR-reflection at j _; applied ¢ —1
times, then

R, = (R\ {agl—lagl}) U {agl—lap1}7

/
ai Qpq g1 -1 .
. . . —e. . X o ifp >1,
1 p1—1 x
A,(l) - q1—2
[e%1 a;1—1 .
b e ] if p1 =1,
q1—2
!
B Bpa Qqy
NP — o ° . ° . °
u Y1 Ypo—1 z! . v
1
~
AB) — o<t o . o< o
U 21 Zp3—1 v

thus the claim follows by induction. =
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We may now prove Proposition 2.1. According to our considerations we
may assume that (A, R) is proper, and

a

A — ¢ Y . o<1 o
U xr1 Tpy—1 v

B

A(2) — o2 o . ) AL °

u Ypgy—1 Y1 v
~

AB) — ot o . o< o

u Z1 Zpg—1 v

for some p1, p2, p3s € N1. Moreover, we may additionally assume that a;o;41
¢ R for all i € [1,p; — 1]. Let r3 be the number of i € [1, ps — 1] such that
Bifi+1 € R and let r3 be the number of i € [1, ps — 1] such that v;y,41 € R.

Observe that if either 8p,a1 € R and 7,61 € R, or 8,71 € R and
ap, /1 € R, then the claim follows from Proposition 1.16, thus we have to
consider two remaining cases.

Assume first that 3,,a1 € R and oy, 41 € R. In this case by shifting
the relation (3,,a1 to the right we may assume that p; = 1. If r3 = 0,
then the bound quiver algebra of (A, R) is tilting-cotilting equivalent to
Ai(p2,1,p3,0,r2) (observe that ro > 1 since (A, R) is a bound quiver).
On the other hand, if there exists i € [1,ps — 1] such that 7,71 € R,
then by shifting relations we may assume that y,7 € R. Consequently,
the bound quiver algebra of the bound quiver obtained from (A, R) by ap-
plying the generalized APR-reflection at u is tilting-cotilting equivalent to
Aa(p2 + 1,ps3,0,72 + 1,73 — 1), and this finishes the proof in this case.

Assume now that §,,71 € R and v,,31 € R. In this case it follows by
shifting relations that the bound quiver algebra of (A, R) is tilting-cotilting
equivalent to Aj(pe2 +p3 —r3— 1,73+ 1,p1,0,72) (again 7o > 1 since (4, R)
is a bound quiver), and this finishes the proof.

3. Minimality of the list. In this section we prove that different alge-
bras from the list in Theorem 1 are not derived equivalent. We also check that
the algebras listed in Theorem 1 are nondegenerate, while the algebras listed
in Theorem 2 are degenerate. A tool used in order to distinguish between
derived equivalence classes of these algebras will be the derived invariant
introduced by Avella-Alaminos and Geiss in |7].

Let (A, R) be a gentle quiver. By a permitted thread in (A, R) we mean
either a maximal path in (A, R), or x € Ap such that there is at most
one arrow « with sa = x, there is at most one arrow 3 with ¢ = z, and
af € R for all o, € Ay with s« = ¢ = t3. Similarly, we define the notion
of a forbidden thread in (A, R). Namely, first we say that by an anti-path
in (A,R) we mean a path aj---a, in A such that a;a;41 € R for all
i € [1,n—1]. In particular, every trivial path is an anti-path. By a forbidden
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thread we mean either a maximal anti-path in (A, R), or x € Ag such that
there is at most one arrow « with sa = x, there is at most one arrow § with
t6 ==z, and af € R for all o, § € Ay with saa =z = .

By a characteristic sequence in a gentle bound quiver (A, R) we mean a
sequence (04, 7 )iz of permitted threads oy, i € Z, and forbidden threads 7;,
1 € 7, such that for each ¢ € Z the following conditions are satisfied:

(1) tr; = to; and soj41 = s,

(2) if o; =2 =7 for © € Ay, then 0,41 # x, unless Ay = ),

(3) if 7, =2 = 0441 for z € A, then 7,41 # x, unless Ay = (),

(4) if neither o; nor 7; is a trivial path, then the terminating arrow of 7
differs from the terminating arrow of o,

(5) if neither 7; nor o4 is a trivial path, then the starting arrow of o,
differs from the starting arrow of ;.

We identify characteristic sequences (04, 7;)iez and (o}, 7/)icz if there exists
I € Z such that 0; = 0}, and 7; = 77, for all i € Z. By the type of the
characteristic sequence (0, 7;);cz we mean a pair (n,m) € N x N defined by
n=min{l € Ny [ oy =00} and m =3,y ,; £(7i). In the above situation we
also write (o1, 71,...,0p,Ty) instead of (04, 7;)icz. Additionally, we also call
a sequence (o );ez of arrows in A a characteristic sequence if sa; = tayi1
and a4 € R for all i € Z. Again we identify sequences (o;);cz and
(o)iez if there exists [ € Z such that o; = ] ; for all i € Z. The type of
a characteristic sequence (o;);cz of the above type is by definition (0,m),
where m = min{l € N1 | a; = ap}. In the above situation we also write
a1 -y instead of (a)iez.

If (A, R) is a gentle bound quiver, then the function ¢po g : N x N — N,
where ¢4 r(n,m) is the number of the characteristic sequences of type (n,m)
for (n,m) € N x N, is a derived invariant, i.e. if (A, R) and (A", R') are
derived equivalent gentle bound quivers, then ¢ r = ¢a r. If A is the
bound quiver algebra of a gentle bound quiver (A, R), then we also write ¢,
instead of ¢ r. We will write ¢ r as a “multi-set” [(n1,m1),..., (n;, m)],
where (n, m) appears ¢ g(n,m) times.

We calculate the values of the above invariant for algebras appearing in
Theorems 1 and 2, and this will finish the proofs of these theorems. The
proof of the following lemma is left to the reader as an easy exercise.

LEMMA 3.1. We have the following.
(1) Ifpe Ny and r € [0,p — 1], then
¢Ao(p,r) = [(p7p =+ 2)]
(2) If p € Ny, then
by p0) = [(p+ 1,p+3)].
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(3) Ifpi,p2 € Ny, p3,ps € N, and ry € [0,p1—1] are such that po+ps > 2
and r1 + pg > 1, then

DAy (o1 papspar) = [(P1—T1—1,p1+p2), (p2+p3—1,p3), (r1+pa, pa)]-

(4) If p1,p2 € Ny, p3 €N, ry € [0,p1 — 1], 72 € [0,p2 — 1], are such that
ps+ri+1r9 > 1, then

¢A2(p1,p2,p3,r1,r2) = [(pl T _Lpl)a (p2—7“2 - 1’p2)7 (7‘1 +72 +p37p3)]-
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