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ON DERIVED EQUIVALENCE CLASSIFICATIONOF GENTLE TWO-CYCLE ALGEBRASBYGRZEGORZ BOBI�SKI and PIOTR MALICKI (Toru«)Abstra
t. We 
lassify, up to derived (equivalently, tilting-
otilting) equivalen
e, allnondegenerate gentle two-
y
le algebras. We also give a partial 
lassi�
ation and formulatea 
onje
ture in the degenerate 
ase.
Introdu
tion and the main result. Throughout the paper, k denotesa �xed algebrai
ally 
losed �eld. By an algebra we mean a �nite-dimensionalbasi
 
onne
ted k-algebra and by a module a �nite-dimensional left module.By Z, N, and N+, we denote the sets of integers, nonnegative integers, andpositive integers, respe
tively. Finally, if i, j ∈ Z, then [i, j] = {l ∈ Z | i ≤

l ≤ j}.With an algebra Λ we may asso
iate its bounded derived 
ategory Db(Λ)(in the sense of Verdier [29℄) of bounded 
omplexes of Λ-modules, whi
hhas the stru
ture of a triangulated 
ategory (see [17℄). The bounded derived
ategory is an important homologi
al invariant of the module 
ategory of analgebra and attra
ts a lot of interest (see for example [5, 8, 15, 16, 18, 22,24, 25℄). In parti
ular, the derived equivalen
e 
lasses of algebras have beeninvestigated (see for example [1, 9, 11, 14, 20℄), where two algebras are saidto be derived equivalent if their bounded derived 
ategories are equivalentas triangulated 
ategories.A handy way of proving derived equivalen
e between algebras Λ and Λ′is to 
onstru
t a (
o)tilting Λ-module T su
h that Λ′ is (isomorphi
 to) theopposite of the endomorphism algebra of T . Here a Λ-module T is 
alled(
o)tilting if pdΛ T ≤ 1 (idΛ T ≤ 1, respe
tively), Ext1Λ(T, T ) = 0, and Tis a dire
t sum of pre
isely rk K0(Λ) pairwise nonisomorphi
 inde
ompos-able Λ-modules, where K0(Λ) denotes the Grothendie
k group of the 
ate-gory of Λ-modules. The transitive 
losure of the relation de�ned in this wayis 
alled tilting-
otilting equivalen
e. For many 
lasses of algebras tilting-
otilting equivalen
e and derived equivalen
e 
oin
ide.2000 Mathemati
s Subje
t Classi�
ation: 18E30, 16G20.Key words and phrases: derived 
ategory, gentle algebra, tilting-
otilting equivalen
e.[33℄ 
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Results of this type have been obtained for gentle algebras, introdu
edby Assem and Skowro«ski in [4℄ (see Se
tion 1 for a pre
ise de�nition),whi
h form an important sub
lass of the 
lass of spe
ial biserial algebrasin the sense of [27℄. We note that a representation-in�nite algebra admitsa simply 
onne
ted Galois 
overing all of whose �nite 
onvex sub
ategoriesare representation-�nite if and only if it is a spe
ial biserial algebra and itssimply 
onne
ted Galois 
overing is the repetitive 
ategory of the union of a
ountable 
hain of gentle tree algebras (see [23℄).The 
lass of algebras derived equivalent to a hereditary algebra of Dynkintype An for some n ∈ N+ 
oin
ides with the 
lass of algebras tilting-
otiltingequivalent to a hereditary algebra of type An and 
onsists of the gentlealgebras whose Gabriel quivers have n verti
es and n − 1 arrows (see [2℄).Moreover, for a given n all su
h algebras form one derived equivalen
e 
lass.Similarly, the 
lass of algebras derived equivalent to a hereditary algebraof Eu
lidean type Ãn for some n ∈ N+ 
oin
ides with the 
lass of algebrastilting-
otilting equivalent to a hereditary algebra of type Ãn and 
onsists ofthe gentle algebras whose Gabriel quivers have n verti
es and n arrows andwhi
h satisfy the so-
alled 
lo
k 
ondition on the unique 
y
le. In this 
ase,there are exa
tly ⌊n/2⌋ derived (equivalently, tilting-
otilting) equivalen
e
lasses for a given n.The algebras with the same numbers of verti
es and arrows in the Gabrielquiver are 
alled one-
y
le algebras. The remaining gentle one-
y
le algebrasform the 
lass of derived dis
rete algebras whi
h are not derived (equiva-lently, tilting-
otilting) equivalent to a hereditary algebra of Dynkin type(see [30℄). The derived equivalen
e 
lasses of these algebras were des
ribedin [10℄.The aim of this paper it to extend the above 
lassi�
ation to the 
lassof gentle two-
y
le algebras, where we 
all an algebra a two-
y
le algebraif the number of arrows in the Gabriel quiver ex
eeds the number of ver-ti
es by one. An additional motivation for this resear
h is the proof byS
hröer and Zimmermann in [26℄ that the gentle algebras are 
losed un-der derived equivalen
es. Moreover, for gentle algebras the numbers of ver-ti
es and arrows in the Gabriel quiver are derived invariants (see [7, Corol-lary 15℄). However, we obtain a full 
lassi�
ation only for nondegenerategentle two-
y
le algebras, where we 
all a gentle two-
y
le algebra Λ nonde-generate if ∑

(n,m)∈N×N
φΛ(n, m) = 3. Here φΛ : N × N → N is the derivedinvariant introdu
ed by Avella-Alaminos and Geiss in [7℄ (see Se
tion 3).For the remaining gentle two-
y
le algebras Λ, whi
h we 
all degenerate,we have ∑

(n,m)∈N×N
φΛ(n, m) = 1. Obviously, both these 
lasses of gen-tle two-
y
le algebras are 
losed under derived (hen
e also tilting-
otilting)equivalen
es.
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Before formulating the main results of the paper we de�ne the followingfamilies of algebras.
• Λ0(p, r) for p ∈ N+ and r ∈ [0, p − 1] is the algebra of the quiver
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• Λ1(p1, p2, p3, p4, r1) for p1, p2 ∈ N+, p3, p4 ∈ N, and r1 ∈ [0, p1 − 1]su
h that p2 + p3 ≥ 2 and p4 + r1 ≥ 1 is the algebra of the quiver
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h that p3 + r1 + r2 ≥ 1 is the algebra of the quiver
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bound by αiαi+1 for i ∈ [p1 − r1, p1 − 1], αp1
α1, βiβi+1 for i ∈ [p2 − r2,

p2 − 1], and βp2
β1.The main results of the paper are the following.Theorem 1. If Λ is a nondegenerate gentle two-
y
le algebra, then Λis derived (equivalently , tilting-
otilting) equivalent to one of the followingalgebras :
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• Λ1(p1, p2, p3, p4, r1) for some p1, p2 ∈ N+, p3, p4∈N, and r1 ∈ [0, p1−1]su
h that p2 + p3 ≥ 2, p4 + r1 ≥ 1, and either p3 > p4, or p3 = p4 and

p2 > r1,
• Λ2(p1, p2, p3, r1, r2) for some p1, p2 ∈ N+, p3 ∈ N, r1 ∈ [0, p1 − 1], and

r2 ∈ [0, p2−1] su
h that p3 +r1 +r2 ≥ 1 and either p1 > p2, or p1 = p2and r1 ≥ r2.Moreover , di�erent algebras from the above list are not derived (equivalently ,tilting-
otilting) equivalent.Theorem 2. If Λ is a degenerate gentle two-
y
le algebra, then Λ isderived (equivalently , tilting-
otilting) equivalent to one of the following al-gebras :
• Λ0(p, r) for some p ∈ N+ and r ∈ [0, p − 1],
• Λ′

0(p, 0) for some p ∈ N+.Moreover, we have the following 
onje
ture 
on
erning the minimality ofthe list in the above theorem.Conje
ture. Di�erent algebras from the list in Theorem 2 are not de-rived (equivalently , tilting-
otilting) equivalent.Obviously, if p1, p2 ∈ N+, r1 ∈ [0, p1 − 1], r2 ∈ [0, p2 − 1], and p1 6= p2,then Λ0(p1, r1) and Λ0(p2, r2) (Λ′
0(p1, 0) and Λ′

0(p2, 0), respe
tively) are notderived equivalent. Similarly, if p1, p2 ∈ N+, r1 ∈ [0, p1 − 1], and p1 6= p2 +1,then Λ0(p1, r1) and Λ′
0(p2, 0) are not derived equivalent. Thus it is enough toprove that Λ0(p+1, 0), . . . , Λ0(p+1, p) and Λ′

0(p, 0) are pairwise not derivedequivalent for a �xed p ∈ N+. It follows easily by investigating the Eulerquadrati
 forms that Λ0(p+1, r1) and Λ(p+1, r2) (Λ′
0(p, 0) and Λ0(p+1, r2))are not derived equivalent if r1 6≡ r2 (mod 2) (r2 ≡ 0 (mod 2), respe
tively).The paper is organized as follows. In Se
tion 1 we �rst present basi
de�nitions, then des
ribe main tools used in order to redu
e an arbitrarygentle two-
y
le algebra to one of the algebras listed in Theorems 1 and 2:passing to the opposite algebra, (generalized) APR-(
o)re�e
tions, and HW-(
o)re�e
tions. Finally, we des
ribe an operation of shifting relations, whi
his a basi
 appli
ation of the above operations, and investigate two parti
ularfamilies of gentle two-
y
le algebras. In Se
tion 2, the te
hni
al heart of thepaper, we prove, in a sequen
e of steps, that the lists of representatives ofthe tilting-
otilting equivalen
e 
lasses of gentle two-
y
le algebras given inTheorems 1 and 2 are 
omplete, while in Se
tion 3 we show that di�erentalgebras from the list given in Theorem 1 are not derived equivalent. The lastproperty follows by 
al
ulating the derived invariant introdu
ed by Avella-Alaminos and Geiss in [7℄.For basi
 ba
kground on representation theory of �nite-dimensional al-gebras we refer to [3℄.
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 tools and auxiliary results. By a (�nite) quiver ∆ we meana �nite set ∆0 of verti
es together with a �nite set ∆1 of arrows and twomaps s = s∆, t = t∆ : ∆1 → ∆0 whi
h assign to an arrow α its startingand terminating vertex, respe
tively. We say that an arrow α is adja
ent toa vertex x if either sα = x or tα = x. By a path of length n ∈ N+ we mean asequen
e σ = α1 · · ·αn of arrows su
h that sαi = tαi+1 for all i ∈ [1, n − 1].In the above situation we denote sαn and tα1 by sσ and tσ, respe
tively.We also 
all α1 and αn the terminating and starting arrow of σ, respe
tively.Additionally, for ea
h x ∈ ∆0 we 
onsider the trivial path of length 0, alsodenoted by x, su
h that sx = x = tx. The length of a path σ will be denotedby ℓ(σ). A path σ is 
alled maximal if there exists no arrow α su
h thateither sα = tσ or tα = sσ. Similarly, we de�ne maximal paths starting (orterminating) at a given vertex. A 
onne
ted quiver is said to be a c-
y
le if
|∆1| = |∆0| + c − 1.With a quiver ∆ we asso
iate its path algebra k∆, whi
h as a k-ve
torspa
e has a basis formed by all paths in ∆ and whose multipli
ation isindu
ed by 
omposition of paths. By a relation ̺ in ∆ we mean a linear
ombination of paths of length at least 2 with 
ommon starting and ter-minating verti
es. The 
ommon starting vertex is denoted by s̺ and the
ommon terminating vertex by t̺. A set R of relations is 
alled minimal if
̺ does not belong to the ideal 〈R \ {̺}〉 of k∆ generated by R \ {̺} forevery ̺ ∈ R. A pair (∆, R) 
onsisting of a quiver ∆ and a minimal set ofrelations R su
h that there exists n ∈ N with σ ∈ 〈R〉 for ea
h path σ in
∆ of length at least n is 
alled a bound quiver. If (∆, R) is a bound quiver,then the algebra k∆/〈R〉 is 
alled the bound quiver algebra of (∆, R).Let (∆, R) be a bound quiver and assume that R 
onsists of paths. Apath σ in ∆ is said to be a path in (∆, R) if σ 6∈ 〈R〉 (in other words, none ofthe paths from R is a subpath of σ). A path σ in (∆, R) is said to be maximalif there is no α ∈ ∆1 su
h that either sα = tσ and ασ 6∈ 〈R〉 or tα = sσand σα 6∈ 〈R〉. Again we de�ne maximal paths starting and terminating ata given vertex. If additionally R 
onsists of paths of length two, then we saythat α ∈ ∆1 is a free arrow provided there exists no β ∈ ∆1 su
h that either
sβ = tα and βα ∈ R, or tβ = sα and αβ ∈ R.Following [4℄ we say that a 
onne
ted bound quiver (∆, R) is gentle ifthe following 
onditions are satis�ed:(1) for ea
h x ∈ ∆0 there are at most two arrows α su
h that sα = x(tα = x),(2) R 
onsists of paths of length two,
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(3) for ea
h α ∈ ∆1 there is at most one arrow β su
h that tβ = sα and

αβ 6∈ R (of sβ = tα and βα 6∈ R),(4) for ea
h α ∈ ∆1 there is at most one arrow β su
h that tβ = sα and
αβ ∈ R (sβ = tα and βα ∈ R).An algebra whi
h is isomorphi
 to the bound quiver algebra of a gentle boundquiver is 
alled gentle.With an abelian 
ategory A we may asso
iate its bounded derived 
ategory

Db(A) in the following way (see for example [29℄ for details). The obje
ts of
Db(A) are the bounded 
omplexes of obje
ts of A and the morphisms areobtained from the morphisms in the homotopy 
ategory by formally inversingthe quasi-isomorphisms (more pre
isely, by lo
alizing with respe
t to thequasi-isomorphisms), where by a quasi-isomorphism we mean a morphismof 
omplexes whi
h indu
es an isomorphism of homology groups. The derived
ategory together with the shift fun
tor sending X to the shifted 
omplex
X[1], where X[1]n = Xn+1 and dn

X[1] = −dn+1
X[1] for n ∈ Z, is a triangulated
ategory (see for example [17℄). We say that two abelian 
ategories A and Bare derived equivalent if there exists a triangle equivalen
e

Db(A) → Db(B).We say that two algebras Λ and Λ′ (bound quivers (∆, R) and (∆′, R′))are derived equivalent if their 
ategories of modules (representations, re-spe
tively) are derived equivalent. It follows from [26, Corollary 1.2℄ and [7,Corollary 15℄ that for c ∈ Z the gentle c-
y
le algebras (bound quivers) are
losed under derived equivalen
es.Re
all from [12, 19℄ that if Λ is an algebra, then a Λ-module T is 
alledtilting if pdΛ T ≤ 1, Ext1Λ(T, T ) = 0, and T is a dire
t sum of n pairwise noni-somorphi
 inde
omposable modules, where n is the rank of the Grothendie
kgroup of Λ. Dually, we de�ne the notion of a 
otilting module. Algebras Λ and
Λ′ are said to be tilting-
otilting equivalent if there exists a sequen
e Λ = Λ0,
Λ1, . . . , Λn = Λ′ of algebras su
h that for ea
h i ∈ [0, n − 1] there exists a(
o)tilting Λi−1-module Ti−1 su
h that Λi ≃ EndΛi−1

(Ti−1)
op. It was provedby Happel [16, Corollary 1.7℄ that if Λ and Λ′ are tilting-
otilting equivalent,then they are derived equivalent.A vertex x in a quiver ∆ is 
alled a sink (sour
e) if there is no α ∈ ∆1with sα = x (tα = x, respe
tively). If x is a sink in a gentle bound quiver

(∆, R), then we de�ne a new gentle bound quiver (∆′, R′), 
alled the boundquiver obtained from (∆, R) by applying the APR-re�e
tion at x, in thefollowing way: ∆′
0 = ∆0, ∆′

1 = ∆1,
s∆′α =

{
x if t∆α = x,
s∆α otherwise,
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t∆′α =





s∆α if t∆α = x,
x if ∃β ∈ ∆1 : t∆β = x ∧ s∆β = t∆α ∧ βα ∈ R,
t∆α otherwise,and

R′ = {̺ ∈ R | t∆̺ 6= x} ∪ {αβ | t∆α = x

∧∃γ ∈ ∆1 : γ 6= α ∧ t∆γ = x ∧ s∆γ = t∆β ∧ γβ ∈ R}.It follows that the bound quiver algebra of (∆′, R′) is isomorphi
 to theopposite algebra of the endomorphism algebra of the APR-tilting module(see [6℄) at x de�ned as
⊕

a∈∆0

a 6=x

P (a) ⊕
( ⊕

α∈∆1
tα=x

P (sα)
)
/P (x)

(see [4, 2.1℄).We now present a generalization of the above 
onstru
tion due to Brennerand Butler (see [13, Chapter 2℄). Let x be a vertex in a gentle bound quiver
(∆, R) su
h that there is no α ∈ ∆1 with sα = x = tα and for ea
h α ∈ ∆1with sα = x there exists βα ∈ ∆1 with tβα = x and αβα 6∈ R. We de�ne abound quiver (∆′, R′) in the following way: ∆′

0 = ∆0, ∆′
1 = ∆1,

s∆′α =





x if t∆α = x,
sβα if s∆α = x,
s∆α otherwise,

t∆′α =





s∆α if t∆α = x,
x if ∃β ∈ ∆1 : t∆β = x ∧ s∆β = t∆α ∧ βα ∈ R,
t∆α otherwise,and set

R′ = {αβ ∈ R | t∆α 6= x ∧ s∆α 6= x} ∪ {αβα | s∆α = x}

∪ {αβ | t∆α = x ∧ ∃γ ∈ ∆1 : γ 6= α ∧ t∆γ = x ∧ s∆γ = t∆β ∧ γβ ∈ R}.We will say that (∆′, R′) is obtained from (∆, R) by applying the generalizedAPR-re�e
tion at x. As in the previous situation, it follows easily that thebound quiver algebra of (∆′, R′) is the opposite algebra of the endomorphismalgebra of the tilting module de�ned in the same way as before. Obviouslyall APR-re�e
tions are generalized APR-re�e
tions.We also have a version of the above 
onstru
tion for a vertex x of agentle bound quiver (∆, R) su
h that there exists α ∈ ∆1 with sα = x = tα.Observe that then α2 ∈ R. We additionally assume that there exists β0 ∈ ∆1with sβ0 6= x and tβ0 = x. We de�ne a bound quiver (∆′, R′) in the following
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way: ∆′

0 = ∆0, ∆′
1 = ∆1,

s∆′α =





x if t∆α = x,
s∆β0 if s∆α = x ∧ t∆α 6= x,
s∆α otherwise,

t∆′α =





s∆α if t∆α = x,
x if ∃β ∈ ∆1 : t∆β = x ∧ s∆β = t∆α ∧ βα ∈ R,
t∆α otherwise,and R′ = R. We will say again that (∆′, R′) is obtained from (∆, R) by ap-plying the generalized APR-re�e
tion at x. It follows that the bound quiveralgebra of (∆′, R′) is the opposite algebra of the endomorphism algebra ofthe tilting module

⊕

a∈∆0

a 6=x

P (a) ⊕ (P (y) ⊕ P (y))/P (x),

where y = sβ0 and P (x) is embedded in P (y)⊕P (y) in su
h a way that thequotient module is inde
omposable.Let again x be a sink in a gentle bound quiver (∆, R). We de�ne theHW-re�e
tion of (∆, R) at x as the bound quiver (∆′, R′) 
onstru
ted in thefollowing way. If ∆0 = {x} (equivalently, ∆1 = ∅), then (∆′, R′) = (∆, R),hen
e assume this is not the 
ase. Then we put ∆′
0 = ∆0 and ∆′

1 = ∆1. Forea
h arrow α terminating at x let βα be the starting arrow of the maximalpath in (∆, R) terminating at x whose terminating arrow is α. We put
s∆′α =

{
x if t∆α = x,
s∆α otherwise, t∆′α =

{
s∆βα if t∆α = x,
t∆α otherwise.Finally, let

R′ = {̺ ∈ R | t∆̺ 6= x}

∪ {βα | t∆α = x ∧ s∆β = s∆βα ∧ β 6= βα ∧ t∆β 6= x}.It is known that the bound quiver algebra of (∆′, R′) is (isomorphi
 to)the algebra obtained from the bound quiver algebra of (∆, R) by the HW-re�e
tion at x (de�ned in [21℄), hen
e in parti
ular it is tilting-
otiltingequivalent to (∆, R) (see [28℄). Dually, one de�nes the quiver obtained from
(∆, R) by applying the HW-
ore�e
tion at a sour
e.Before we present basi
 appli
ations of the above transformations, wedes
ribe one more 
onstru
tion. Let Σ be a subquiver of a quiver ∆. Assumethat Σ′ is a quiver su
h that Σ′

0 = Σ0 and Σ′
1 = Σ1 (but, usually, sΣ′ 6= sΣand tΣ′ 6= tΣ). We say that a quiver ∆′ is obtained from ∆ by repla
ing Σ
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by Σ′ if ∆′
0 = ∆0, ∆′

1 = ∆1, and
s∆′α =

{
s∆α if α ∈ ∆1 \ Σ1,
sΣ′α if α ∈ Σ1, t∆′α =

{
t∆α if α ∈ ∆1 \ Σ1,
tΣ′α if α ∈ Σ1,for α ∈ ∆1.We now des
ribe operations of shifting relations.Lemma 1.1. If

Σ = •
u

•
x

α1oo •
y

α2oo •
v

α3oois a subquiver of a gentle bound quiver (∆, R) su
h that α1α2 ∈ R, α2α3 6∈ R,and there are no other arrows adja
ent to y, then (∆, R) is tilting-
otiltingequivalent to the bound quiver (∆′, R′), where R′ = (R \ {α1α2}) ∪ {α2α3}and ∆′ is obtained from ∆ by repla
ing Σ by the quiver
•
u

•
y

α1oo •
x

α2oo •
z

α3oo .Proof. Apply the generalized APR-
ore�e
tion at y.We remark that it may happen that one of the following equalities holds:
u = y, x = v or u = v. Moreover, u = y if and only if x = v, and in this 
ase
α1 = α3. We 
all the above operation shifting the relation α1α2 to the right.Dually, one de�nes the operation of shifting relations to the left.We will need the following generalization of the above lemma.Lemma 1.2. If

Σ = •
u

•
x

α1oo •
yn

α2oo βn // •
yn−1

· · · // •
y1

β1 // •
y0

•
v

α3oo , n ∈ N+,is a subquiver of a gentle bound quiver (∆, R) su
h that α1α2 ∈ R, β1, . . . , βnare free arrows , and there are no other arrows adja
ent to x, y0, . . . , yn, then
(∆, R) is tilting-
otilting equivalent to the bound quiver (∆′, R′), where R′ =
(R \ {α1α2}) ∪ {α2α3} and ∆′ is obtained from ∆ by repla
ing Σ by thequiver

•
u

•
y0

α1oo β1 // •
y1

· · · // •
yn−1

βn // •
yn

•
x

α2oo •
z

α3oo .Proof. We leave it to the reader to verify that the following sequen
e ofoperations leads from (∆, R) to (∆′, R′): �rst for ea
h i = n, . . . , 1 we applythe APR-
ore�e
tions at yi, . . . , yn, x, and next we apply the generalizedAPR-
ore�e
tions at y0, . . . , yn.We will also shift a group of relations in the following sense.Lemma 1.3. Let
Σ = •

y

β // •
x0

•
x1

α1oo •
xn−1

· · ·oo •
xn

αnoo , n ≥ 2,
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be a subquiver of a gentle bound quiver (∆, R) su
h that β is a free arrow ,
αiαi+1 ∈ R for all i ∈ [1, n − 1], and there are no other arrows adja
entto x0, . . . , xn−1. If there is no α ∈ ∆1 with tα = xn and αnα ∈ R, then
(∆, R) is tilting-
otilting equivalent to the bound quiver (∆′, R′), where R′ =
(R \ {αn−1αn}) ∪ {βα1} and ∆′ is obtained from ∆ by repla
ing Σ by thequiver

•
y

•
x1

βoo •
x2

α1oo •
xn−1

· · ·oo •
x0

αn−1oo αn // •
xn

.Proof. We apply the APR-re�e
tion at x0, followed by the 
ompositionof the APR-re�e
tion at xi and the generalized APR-re�e
tion at x0 appliedfor i = 1, . . . , n − 1.Observe that in the above lemma we shift relations to the left. Dually wede�ne the operation of shifting a group of relations to the right.We now present a redu
tion, resulting from the above lemmas, whi
h willappear a few times in our proofs. Let
Σ = •

x0

α1 •
x1

· · · •
xn−1

αn •
xn

, n ∈ N+,be a subquiver of a gentle bound quiver (∆, R) su
h that there are no otherarrows adja
ent to x1, . . . , xn−1 (it may happen that x0 = xn). We divide
Σ1 into two disjoint subsets Σ1,+ and Σ1,− in su
h a way that, for ea
h
i ∈ [1, n − 1], αi and αi+1 belong to the same subset if and only if either
sαi = tαi+1 or tαi = sαi+1. We additionally assume that there exists ε ∈
{−, +} su
h that αβ 6∈ R for all α, β ∈ Σ1,ε with sα = tβ. If x0 = tα1, thenby applying APR-re�e
tions and shifts of relations (we leave the details tothe reader), hen
e by passing to a tilting-
otilting equivalent bound quiver,we may repla
e Σ by the quiver

•
x0

· · ·
α′

1oo •
α′

l1oo
α′′

l2 // · · ·
α′′

1 // • · · ·
α′′′

1oo •
xn

α′′′

l3oofor some l1, l2, l3 ∈ N with l1 + l2 + l3 = n. Moreover, we may additionallyassume that l3 = 0 if either xn = tαn or xn = sαn and there is no α ∈ ∆1with tα = xn and αnα ∈ R. Obviously, we have the dual statement if
x0 = sα1.The next observation is the following.Lemma 1.4. If p1, p2 ∈ N+, p3, p4 ∈ N, and r1 ∈ [0, p1 − 1] are su
h that
p2 +p3 ≥ 2 and p4 +r1 ≥ 1, then Λ1(p1, p2, p3, p4, r1) and Λ1(p1 +p2−r1−1,
r1 + 1, p4, p3, p2 − 1) are tilting-
otilting equivalent.Proof. This follows immediately by shifting relations.In order to formulate the next lemma we introdu
e a new family of alge-bras. Namely, for p1, p2 ∈ N+, p3, p4 ∈ N, r1 ∈ [0, p1 − 1], and r2 ∈ [0, p2 − 1]
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su
h that p3 + p4 + r1 + r2 ≥ 1, let Λ′
2(p1, p2, p3, p4, r1, r2) be the algebra ofthe quiver

•

...
��

•
β1

��~~
~~

~~
~

•

αp1

__@@@@@@@
· · ·

γ1oo •
γp3oo

δp4 // · · ·
δ1 // •

βp2 ��@
@@

@@
@@

•
α1

??~~~~~~~
•

...
OO

bound by αiαi+1 for i ∈ [p1−r1, p1−1], αp1
α1, βiβi+1 for i ∈ [p2−r2, p2−1],and βp2

β1.Lemma 1.5. If p1, p2, p3 ∈ N+, p4 ∈ N, r1 ∈ [0, p1−1], and r2 ∈ [0, p2−1],then Λ′
2(p1, p2, p3, p4, r1, r2) and Λ′

2(p1, p2, p3 − 1, p4 + 1, r1, r2) are tilting-
otilting equivalent.Proof. Put ai = sδi, i ∈ [1, p4], and bi = sβi, i ∈ [1, p2]. We �rst ap-ply the APR-
ore�e
tions at ap4
, . . . , a1, followed by the generalized APR-
ore�e
tion at bp2

(we only apply the generalized APR-
ore�e
tion at bp2if p4 = 0). Next we apply the APR-
ore�e
tion at bp2−i followed by thegeneralized APR-
ore�e
tion at bp2
for i = 1, . . . , r2 (we do nothing in thisstep if r2 = 0, hen
e in parti
ular if p2 = 1), and �nally we apply theAPR-
ore�e
tions at bp2−r2−1, . . . , b1 (there is nothing to do if r2 = p2 − 1,hen
e again if p2 = 1).Corollary 1.6. If p1, p2 ∈ N+, p3 ∈ N, r1 ∈ [0, p1 − 1] and r2 ∈

[0, p2 − 1], are su
h that p3 + r1 + r2 ≥ 1, then Λ2(p1, p2, p3, r1, r2) and
Λ2(p2, p1, p3, r2, r1) are tilting-
otilting equivalent.Proof. This follows immediately from the above lemma, sin
e it is eas-ily seen that Λ2(p1, p2, p3, r1, r2) and Λ2(p2, p1, p3, r2, r1) are isomorphi
 to
Λ′

2(p1, p2, p3, 0, r1, r2) and Λ′
2(p1, p2, 0, p3, r1, r2), respe
tively.Proposition 1.7. If Λ is one of the algebras listed in Theorems 1 and 2,then Λ and Λop are tilting-
otilting equivalent.Proof. If either Λ = Λ0(p, r) for some p ∈ N+ and r ∈ [0, p − 1], or

Λ = Λ′
0(p, 0) for some p ∈ N+, then the 
laim follows immediately by shiftingrelations. If Λ = Λ1(p1, p2, p3, p4, r1) for some p1, p2 ∈ N+, p3, p4 ∈ N, and

r1 ∈ [0, p1] su
h that p2+p3 ≥ 2 and r1+p4 ≥ 1, then we have to additionallyapply APR-
ore�e
tions. Finally, if Λ = Λ2(p1, p2, p3, r1, r2) for some p1, p2 ∈
N+, p3 ∈ N, r1 ∈ [0, p1 − 1], and r2 ∈ [0, p2 − 1] su
h that p3 + r1 + r2 ≥ 1,then the 
laim follows from Corollary 1.6.An important 
onsequen
e of the above lemma is that in our 
onsidera-tions we may always repla
e an algebra by its opposite algebra. Indeed, if foran algebra Γ we are able to prove that Γ op is tilting-
otilting equivalent to
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an algebra Λ listed in Theorems 1 and 2, then obviously Γ is tilting-
otiltingequivalent to Λop, hen
e also to Λ. In parti
ular, on
e Theorems 1 and 2 areproved, we know that if Γ is a gentle two-
y
le algebra, then Γ and Γ op aretilting-
otilting equivalent.We �nish this se
tion by analyzing two parti
ular families of gentle two-
y
le bound quivers. First, we prove the following.Proposition 1.8. If (∆, R) is a gentle bound quiver su
h that

∆ =

•
α1

��~~
~~

~~
~

•· · ·oo •
αp1+1

��~~
~~

~~
~

•· · ·oo

• •
αp1

__@@@@@@@

βq1

��~~
~~

~~
~

•

αp1+p2

__@@@@@@@

βq1+q2��~~
~~

~~
~

•
β1

__@@@@@@@
•· · ·oo •

βq1+1

__@@@@@@@
•· · ·oofor some p1, p2, q1, q2 ∈ N+, then the bound quiver algebra of (∆, R) is tilting-
otilting equivalent to Λ′

0(p, r) for some p ∈ N+ and r ∈ [0, p − 1].We �rst show that also in the proof of this theorem we may pass toopposite algebras.Lemma 1.9. If p ∈ N+ and r ∈ [1, p−1], then Λ′
0(p, r) and Λ0(p+1, r−1)are tilting-
otilting equivalent.Proof. In order to prove this equivalen
e, we put x = tβ, z = sδ and x1 =

sα1, and apply the APR-re�e
tion at x followed by the APR-
ore�e
tion at
z and the APR-re�e
tion at x1 to Λ′

0(p, r). Then the 
laim follows by shiftingrelations.Corollary 1.10. If p ∈ N+ and r ∈ [0, p − 1], then Λ′
0(p, r) and

Λ′
0(p, r)op are tilting-
otilting equivalent.Proof. This follows either from Proposition 1.7 (if r = 0), or from theprevious lemma and Proposition 1.7 (if r > 0).In the proof of Proposition 1.8 we will need the following families ofalgebras:
• Γ0(p, q, r) for p, q ∈ N+ and r ∈ [0, p − 1] is the algebra of the quiver

•
a1

α1

��~~
~~

~~
~

•
ap−1

· · ·oo

•
x

•
y

αp

__@@@@@@@

βq��~~
~~

~~
~

•
z

αp+1

vv

βq+1

hh

•
b1

β1

__@@@@@@@
•

bq−1

· · ·oobound by αiαi+1 for i ∈ [p − r, p] and βqβq+1,
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• Γ1(p, q, r, r′) for p, q ∈ N+, r ∈ [0, p − 1], and r′ ∈ N, is the algebra ofthe quiver
•
a1

α1

��~~
~~

~~
~

•
ap−1

· · ·oo •
ap

αp+1

��~~
~~

~~
~

•
ap+r′−1

· · ·oo

•
x

•
y

αp

__@@@@@@@

βq��~~
~~

~~
~

•
z

αp+r′+1

__@@@@@@@βq+1oo

•
b1

β1

__@@@@@@@
•

bq−1

· · ·oobound by αiαi+1 for i ∈ [p − r, p + r′] and βqβq+1,
• Γ2(p, q, r, r′) for p, q ∈ N+, r ∈ [0, p − 1], and r′ ∈ N is the algebra ofthe quiver

•
a1

α1

��~~
~~

~~
~

•
ap−1

· · ·oo

•
x

•
y

αp

__@@@@@@@

βq��~~
~~

~~
~

•
z

βq+r′+1��~~
~~

~~
~

αp+1oo

•
b1

β1

__@@@@@@@
•

bq−1

· · ·oo •
bq

βq+1

__@@@@@@@
•

bq+r′−1

· · ·oobound by αiαi+1 for i ∈ [p − r, p] and βiβi+1 for i ∈ [q, q + r′],and the following series of lemmas.Lemma 1.11. If p, q ∈ N+, r ∈ [0, p − 1], and q > 1, then Γ0(p, q, r) istilting-
otilting equivalent to Γ0(p + 1, q − 1, r).Proof. It is enough to apply the generalized APR-re�e
tion at bq−1, fol-lowed by the APR-
ore�e
tion at z, the generalized APR-
ore�e
tion at y,and the APR-
ore�e
tions at bq−2, . . . , b1 (we omit the last step if q = 2).Lemma 1.12. If p, q,∈ N+, r ∈ [0, p − 1], r′ ∈ N, and r′ ≥ r, then
Γ1(p, q, r, r′) is tilting-
otilting equivalent to Γ2(q + r′ − r, p, r′ − r, r).Proof. First for ea
h i ∈ [1, r] we apply the HW-
ore�e
tion at z fol-lowed by the APR-re�e
tion at z, and the generalized APR-
orefle
tion at
ap+r′−i applied r + r′ + 1 − i times. Next we apply the HW-
ore�e
tionsat z, ap+r′−r−1, . . . , ap (only at z if r = r′) and we obtain a bound quiverwhose bound quiver algebra is easily seen to be tilting-
otilting equivalentto Γ2(q + r′ − r, p, r′ − r, r).Lemma 1.13. If p, q,∈ N+, r ∈ [0, p − 1], r′ ∈ N, and r ≥ r′, then
Γ1(p, q, r, r′) is tilting-
otilting equivalent to Γ2(p + 2r′ − r, q, r′, r − r′).Proof. Sin
e Γ1(p, q, r, r′) is tilting-
otilting equivalent to Γ1(p + r′ − r,
q, r′, r)op and Γ2(p + 2r′ − r, q, r′, r − r′) is tilting-
otilting equivalent to
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Γ2(q+r−r′, p+r′−r, r−r′, r′)op, hen
e the 
laim follows from the previouslemma.Lemma 1.14. If p, q ∈ N+, r ∈ [0, p − 1], r′ ∈ N, and r ≥ r′, then
Γ2(p, q, r, r′) is tilting-
otilting equivalent to Γ2(p, q, r − r′, r′).Proof. By applying the APR-
ore�e
tion at z followed by the generalizedAPR-
ore�e
tion at z applied r′ times, we repla
e Γ2(p, q, r, r′) by (an algebraisomorphi
 to) the bound quiver algebra of the quiver

•
a′

1

α′

1

��~~
~~

~~
~

•
ap−r′−1′

· · ·oo •
a′

p−r′

α′

p−r′+2

��~~
~~

~~
~

•
a′

p−1

· · ·oo

•
x′

•
y′

α′

p−r′
__@@@@@@@

β′

q��~~
~~

~~
~

•
z

β′

q+r′+1��~~
~~

~~
~

α′

p−r′+1oo

•
b1

β′

1

__@@@@@@@
•

b′q−1

· · ·oo •
b′q

β′

q+1

__@@@@@@@
•

b′
q+r′−1

· · ·oo

bound by α′
iα

′
i+1 for i ∈ [p − r, p] and β′

iβ
′
i+1 for i ∈ [q, q + r′]. It is easilyseen that this algebra is tilting-
otilting equivalent to Γ2(p, q, r − r′, r′) (wejust shift relations su�
iently many times).Lemma 1.15. If p, q ∈ N, r ∈ [0, p − 1], r′ ∈ N, and r′ ≥ r, then

Γ2(p, q, r, r′) is tilting-
otilting equivalent to Γ2(p, q + r, r, r′ − r).Proof. Sin
e Γ2(p, q, r, r′) is tilting-
otilting equivalent to Γ2(q + r′,
p−r, r′, r)op and Γ2(p, q+r, r, r′−r) is tilting-
otilting equivalent to Γ2(q+r′,
p − r, r′ − r, r)op, the 
laim follows from the previous lemma.Proof of Proposition 1.8. Without loss of generality we may assume that
αp1

αp1+1 ∈ R and βq1
βq1+1 ∈ R. We �rst show that either αiαi+1 6∈ Rfor all i ∈ [1, p1 − 1], or βiβi+1 6∈ R for all i ∈ [1, q1 − 1]. Assume this isnot the 
ase. In parti
ular, p1, q1 ≥ 2. By shifting relations we may assumethat α1α2 ∈ R and β1β2 ∈ R. If (∆′, R′) is the quiver obtained from (∆, R)by applying the HW-re�e
tion at x followed by the APR-re�e
tion at x,where x = tα1, then ∆′ = ∆ and R′ = R \ {α1α2, β1β2}, hen
e the 
laimfollows by indu
tion. Similarly, we prove that either αiαi+1 6∈ R for all

i ∈ [p1 + 1, p1 + p2 − 1], or βiβi+1 6∈ R for all i ∈ [q1 + 1, q1 + q2 − 1].Consequently, by shifting relations one easily observes that the bound quiveralgebra of (∆, R) is tilting-
otilting equivalent either to Γ1(p, q, r, r′) or to
Γ2(p, q, r, r′) for some p, q ∈ N+, r ∈ [0, p − 1], and r′ ∈ N. Sin
e

Γ1(p, q, r, 0) = Γ0(p, q, r) = Γ2(p, q, r, 0)for all p, q ∈ N+ and r ∈ N, Γ1(p, q, 0, r′) ≃ Γ0(p + r′, q, r′)op and
Γ2(p, q, 0, r′) ≃ Γ0(q + r′, p, r′)op
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for all p, q ∈ N+ and r′ ∈ N, and Γ0(p, 1, r) is tilting-
otilting equivalent to
Λ′

0(p, r) for all p ∈ N+ and r ∈ [0, p − 1], the 
laim follows from the aboveseries of lemmas.We �nish this se
tion with the following.Proposition 1.16. If (∆, R) is a gentle bound quiver su
h that
∆ =

•
x1

α1

��~~
~~

~~
~

•
xp1−1

· · ·oo

•u
βp2 // •

yp2−1
· · · // •

y1

β1 // •v

αp1

__@@@@@@@

γp3��~~
~~

~~
~

•
z1

γ1

__@@@@@@@
•

zp3−1
· · ·oofor some p1, p2, p3 ∈ N+, and βp2

α1, γp3
β1 ∈ R, then the bound quiver algebraof (∆, R) is tilting-
otilting equivalent to Λ0(p, r) for some p ∈ N+ and r ∈

[0, p − 1].Proof. Let r1 be the number of i ∈ [1, p1 − 1] su
h that αiαi+1 ∈ R,let r2 be the number of i ∈ [1, p2 − 1] su
h that βiβi+1 ∈ R, and let r3 bethe number of i ∈ [1, p3 − 1] su
h that γiγi+1 ∈ R. We prove the 
laim byindu
tion on r1 + r2 + r3.If r1 = 0 = r3, then it follows by shifting relations that the bound quiveralgebra of (∆, R) is tilting-
otilting equivalent to Λ0(p1 + p2 + p3 − 2, r2).If r1 > 0 and r3 = 0, then by shifting relations we may assume that
p3 = 1 and α1α2 ∈ R. If (∆′, R′) is the bound quiver obtained from (∆, R) byapplying the generalized APR-re�e
tion at u followed by the APR-re�e
tionat x1, then R′ = (R \ {α1α2, βp2

α1, γ1β1}) ∪ {γ1α2, βp2
γ1} and

∆′ =

•
x2

α2

��~~
~~

~~
~

•
xp1−1

· · ·oo

•u
γ1 // •v

αp1

__@@@@@@@

βp2��~~
~~

~~
~

•
x1

α1

__@@@@@@@
•
y1

β1oo •
yp2−1

· · ·oohen
e the 
laim follows by indu
tion. Dually, the 
laim follows if r1 = 0 and
r3 > 0.Assume �nally that r1 > 0 and r3 > 0. By shifting relations we mayassume that α1α2 ∈ R and γ1γ2 ∈ R. If (∆′, R′) is obtained from (∆, R) byapplying the generalized APR-re�e
tion at u followed by the APR-re�e
tion
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at x1, then R′ = (R \ {α1α2, βp2

α1, γ1γ2}) ∪ {βp2
γ1, γ1α2} and

∆′ =

•
x2

α2

��~~
~~

~~
~

•
xp1−1

· · ·oo

•u
γ1 // •

z1

βp2 // •
yp2−1

· · · // •
y1

β1 // •v

αp1

__@@@@@@@

γp3��~~
~~

~~
~

•
x1

α1

__@@@@@@@
•
z2

γ2oo •
zp2−1

· · ·ooand the 
laim again follows by indu
tion.2. Completeness of the list. We start our 
onsiderations in this se
-tion by extending the list of algebras in Theorems 1 and 2. Namely, as a 
on-sequen
e of Lemmas 1.4 and 1.9 and Corollary 1.6, to show the 
ompletenessof the lists in Theorems 1 and 2, it is enough to prove the following.Proposition 2.1. If (∆, R) is a gentle two-
y
le bound quiver , then thebound quiver algebra of (∆, R) is tilting-
otilting equivalent to one of thefollowing algebras :
• Λ0(p, r) for some p ∈ N+ and r ∈ [0, p − 1],
• Λ′

0(p, r) for some p ∈ N+ and r ∈ [0, p − 1],
• Λ1(p1, p2, p3, p4, r1) for some p1, p2∈N+, p3, p4∈N, and r1∈ [0, p1 − 1]su
h that p2 + p3 ≥ 2 and p4 + r1 ≥ 1,
• Λ2(p1, p2, p3, r1, r2) for some p1, p2 ∈ N+, p3 ∈ N, r1 ∈ [0, p1 − 1],

r2 ∈ [0, p2 − 1] su
h that p3 + r1 + r2 ≥ 1.For the rest of the se
tion we assume that (∆, R) is a gentle two-
y
lebound quiver. We show, in a sequen
e of steps, that the bound quiver algebraof (∆, R) is tilting-
otilting equivalent to one of the algebras listed in theabove proposition.We divide the arrows in ∆ into three disjoint groups:
• α ∈ ∆1 is 
alled a 
y
le arrow if the quiver (∆0, ∆1\{α}) is 
onne
ted,
• α ∈ ∆1 is 
alled a bran
h arrow if the quiver (∆0, ∆1 \ {α}) has a
onne
ted 
omponent whi
h is a two-
y
le quiver,
• α ∈ ∆1 is 
alled a 
onne
ting arrow if the quiver (∆0, ∆1 \ {α}) hastwo 
onne
ted 
omponents whi
h are one-
y
le quivers.A vertex x of ∆ is 
alled a 
onne
ting vertex if there exist at least threearrows adja
ent to x whi
h are not bran
h arrows. We 
all αβ ∈ R a bran
hrelation if either α or β is a bran
h arrow.Step 1. We may assume that there are no bran
h relations in R.
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Proof. If there exists a bran
h relation in (∆, R), then by passing to theopposite algebra if ne
essary, we may assume that there exists a subquiver
Σ = •

x0
· · ·

α1 •
xn−2

αn−2

•
xn−1

αn−1oo •
xn

αnooof ∆ for some n ≥ 2, where α1, . . . , αn−2 are free arrows, αn−1αn ∈ R,and there are no other arrows adja
ent to x0, . . . , xn−2 (in parti
ular, αn−1is a bran
h arrow, hen
e αn−1αn is a bran
h relation). By applying APR-
ore�e
tions we may assume that sαi = xi for all i ∈ [1, n − 2]. If (∆′, R′)is the bound quiver obtained from (∆, R) by applying the generalized APR-re�e
tions at xn−2, . . . , x1 followed by the APR-re�e
tion at x0, then R′ =
R \ {αn−1αn} and ∆′ is obtained from ∆ by repla
ing Σ by the quiver

•
xn−1

•
x0

α1oo · · ·
α2oo •

xn−2

αn−1oo •
xn

αnoo .In parti
ular, the number of bran
h relations de
reases, hen
e the 
laimfollows by indu
tion.By a bran
h in ∆ we mean a maximal nontrivial (i.e. with nonempty setof arrows) 
onne
ted subquiver of ∆ all of whose arrows are bran
h arrows.We say that a bran
h B in ∆ is rooted at x if x ∈ B0 and there exists α ∈ ∆1adja
ent to x whi
h is not a bran
h arrow. An immediate 
onsequen
e of theassumption made in the above step is that ea
h bran
h B in ∆ is a linearquiver rooted at one of its ends. Moreover, by applying APR-re�e
tions wemay assume that B is equioriented and rooted at its unique sink.Step 2. We may assume that there are no bran
h arrows in ∆.Proof. We say that x ∈ ∆0 is an insertion vertex if either x is a 
on-ne
ting vertex, or there exists α ∈ ∆1 su
h that sα = x, α is not a bran
harrow, and there is no β ∈ ∆1 with tβ = x and αβ ∈ R. Observe that nobran
h is rooted at an insertion vertex. Moreover, for ea
h x ∈ ∆0 thereexists a path in ∆ starting at an insertion vertex and terminating at x. Inparti
ular, if B is a bran
h rooted at x, then we 
all the minimal length ofsu
h a path the distan
e between B and an insertion vertex. We prove our
laim by indu
tion on the number of bran
hes in (∆, R) and, for a givenbran
h B, by indu
tion on the distan
e between B and an insertion vertex.Let
B = •

x0
•
x1

α1oo •
xn−1

· · ·oo •
xn

αnoo , n ∈ N+,be a bran
h in ∆. Let α and β be the arrows in ∆ with sα = x0 = tβ and
β 6= α1. Observe that αβ ∈ R and there are no other arrows adja
ent to x0.Put y = tα and z = sβ.Assume �rst that there is no γ ∈ ∆1 with tγ = z and βγ ∈ R. If (∆′, R′)is the bound quiver obtained from (∆, R) by applying the generalized APR-
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re�e
tions at x0, . . . , xn−1, then R′ = (R\{αβ})∪{ααn} and ∆′ is obtainedfrom ∆ by repla
ing the subquiver

•
y

•
z

β // •
x0

α

OO

•
x1

α1oo •
xn−1

· · ·oo •
xn

αnooby the quiver
•
z

•
x0

βoo •
x1

α1oo •
xn−1

· · ·oo αn // •
xn

α // •
y ,hen
e the 
laim follows in this 
ase.Assume now that there exists γ ∈ ∆1 with tγ = z and βγ ∈ R, and z is a
onne
ting vertex in ∆1. Put v = sγ. If (∆′, R′) is the bound quiver obtainedfrom (∆, R) by applying the generalized APR-re�e
tions at x0, . . . , xn−1,then R′ = (R\{αβ, βγ})∪{ααn, αnγ} and ∆′ is obtained from ∆ by repla
ingthe subquiver

•
y

•
v

γ // •
z

β // •
x0

α

OO

•
x1

α1oo •
xn−1

· · ·oo •
xn

αnooby the quiver
•v

γ

��
•
z

•
x0

βoo •
x1

α1oo •
xn−1

· · ·oo αn // •
xn

α // •
yObserve that the assumption that z is a 
onne
ting vertex in ∆ implies that

β, α1, . . . , αn−1 are not bran
h arrows in ∆′.Finally, assume that there exists γ ∈ ∆1 with tγ = z and βγ ∈ R, but zis not a 
onne
ting vertex in ∆1. By indu
tion we may assume that there isno bran
h rooted at z. If (∆′, R′) is the bound quiver obtained from (∆, R)by applying the HW-
ore�e
tion at xi followed by the APR-re�e
tion at xifor i = n, . . . , 1, then R′ = R and ∆′ is obtained from ∆ by repla
ing thesubquiver
•
z

β // •
x0

•
x1

α1oo •
xn−1

· · ·oo •
xn

αnooby the quiver
•
x0

•
z

βoo •
x1

α1oo •
xn−1

· · ·oo •
xn

αnoo ,and the 
laim follows by indu
tion.
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We say that ∆ is spe
ial if either there is a unique 
onne
ting vertex in
∆, or there is a 
onne
ting arrow in ∆. Otherwise, we 
all ∆ proper. We now
on
entrate on the 
ase when ∆ is spe
ial. We �rst des
ribe its stru
ture morepre
isely. We may divide the 
y
le arrows of ∆ into two disjoint subsets ∆

(1)
1and ∆

(2)
1 in su
h a way that 
y
le arrows α and β belong to the same subsetif and only if the quiver (∆0, ∆1 \ {α, β}) has a 
onne
ted 
omponent whi
his a one-
y
le quiver. For j ∈ [1, 2] we denote by ∆(j) the minimal subquiverof ∆ with the set of arrows ∆

(j)
1 . Observe that ∆(j) is a (not ne
essarilyoriented) 
y
le. We divide the arrows in ∆(j) into disjoint subsets ∆

(j)
1,− and

∆
(j)
1,+ in su
h a way that if α, β ∈ ∆

(j)
1 , α 6= β, are adja
ent to the samevertex, then they belong to the same subset if and only if either sα = tβ or

tα = sβ. For ε ∈ {−, +} we put
R(j)

ε = {αβ ∈ R | α, β ∈ ∆
(j)
1,ε}.Step 3. If ∆ is spe
ial , then we may assume that for ea
h j ∈ [1, 2] thereexists ε ∈ {−, +} su
h that R

(j)
ε = ∅.Proof. If ∆(j) is an oriented 
y
le, then there is nothing to prove, hen
eassume that ∆(j) is not an oriented 
y
le and R

(j)
− 6= ∅ 6= R

(j)
+ . There existsa subquiver

Σ = •
y1

•
y2

α1oo •
x0

α2oo · · ·
γ1 γn

•
xn

β2 // •
z2

β1 // •
z1of ∆ for some n ∈ N su
h that α1α2 ∈ R

(j)
− , β1β2 ∈ R

(j)
+ , there are noother arrows adja
ent to x0, . . . , xn, and γ1, . . . , γn are free arrows. By ap-plying appropriate APR-re�e
tions at x1, . . . , xn−1 (see the dis
ussion afterLemma 1.3) we may assume that

Σ = •
y1

•
y2

α1oo •
x0

α2oo · · ·
γ1oo •

xk

γkoo
γk+1 // · · ·

γn // •
xn

β2 // •
z2

β1 // •
z1for some k ∈ [0, n]. By shifting the relations α1α2 and β1β2 to the right, wemay assume that n = 0, i.e.

Σ = •
y1

•
y2

α1oo •
x

α2oo β2 // •
z2

β1 // •
z1

.Assume �rst that neither y2 nor z2 is a 
onne
ting vertex. If (∆′, R′) is thebound quiver obtained from (∆, R) by applying the APR-
orefle
tions at
x, y2, and z2, then R′ = R \ {α1α2, β1β2} and ∆′ is obtained from ∆ byrepla
ing Σ by the quiver

•
y1

•
z2

α1oo •
x

β2oo α2 // •
y2

β1 // •
z1

,and the 
laim follows by indu
tion. Otherwise, we may assume without loss
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of generality that y2 is a 
onne
ting vertex and z2 is not a 
onne
ting vertex.If (∆′, R′) is the bound quiver obtained from (∆, R) by applying the APR-
ore�e
tions at x and z2, then R′ = (R \ {α1α2, β1β2}) ∪ {β1α2} and ∆′ isobtained from ∆ by repla
ing Σ by the quiver

•
y2

α2

��
•
y1

•
z2

α1oo •
x

β2oo β1 // •
z1Observe that α2 is a 
onne
ting arrow in ∆′, hen
e the 
laim again followsby indu
tion.Step 4. If ∆ is spe
ial , then for ea
h j ∈ [1, 2] we may assume thateither ∆(j) is an oriented 
y
le, or there is a unique sour
e (equivalently ,unique sink) in ∆(j).Proof. This follows easily by applying APR-re�e
tions and shifts of re-lations (see the dis
ussion after Lemma 1.3).Step 5. If ∆ is spe
ial , then we may assume that either there is no
onne
ting arrow in ∆, or , for ea
h j ∈ [1, 2], ∆(j) is an oriented 
y
le and

αβ ∈ R for all α, β ∈ ∆
(j)
1 with sα = tβ.Proof. We prove the 
laim by indu
tion on the sum of the number of
onne
ting arrows and the number of 
onne
ting relations, where we saythat αβ ∈ R is a 
onne
ting relation if both α and β are 
onne
ting arrows.We may assume without loss of generality that either ∆(1) is not an oriented
y
le, or there exist α, β ∈ ∆

(1)
1 with sα = tβ and αβ 6∈ R. Let x ∈ ∆

(1)
0 be a
onne
ting vertex. Let α be the 
onne
ting arrow adja
ent to x. Without lossof generality we may assume that x = sα. Let β and γ be the arrows adja
entto x di�erent from α. Again we may assume without loss of generality that

x = tβ. By symmetry we may also assume that αβ ∈ R if x = tγ. Put y = tαand z = sβ. In order to make it easier to follow the proof we will numberthe 
ases.(1) Assume that αβ 6∈ R. A

ording to our assumptions this implies that
x = sγ and γβ ∈ R. Put v = tγ. If ∆(1) is not an oriented 
y
le, then byapplying APR-re�e
tions and the dual of Lemma 1.2 we may assume that vis a sink. In parti
ular, there is no γ′ ∈ ∆1 with sγ′ = v and γ′γ ∈ R. Byshifting relations we may also assume that this 
ondition is satis�ed if ∆(1)is an oriented 
y
le. Let (∆′, R′) be the bound quiver obtained from (∆, R)by applying the generalized APR-
ore�e
tion at x. If there is no α′ ∈ ∆1with sα′ = y and α′α ∈ R, then R′ = (R \ {γβ})∪ {αβ} and ∆′ is obtained
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from ∆ by repla
ing the subquiver
•z

β

��
•
v

•
x

γoo α // •
yby the quiver

•
v

γ // •
x

•
y

αoo •
z

βoo .On the other hand, if there exists α′ ∈ ∆1 with sα′ = y and α′α ∈ R, then
R = (R \ {γβ, α′α})∪{αβ, α′γ} and ∆′ is obtained from ∆ by repla
ing thesubquiver

•z

β

��
•
v

•
x

γoo α // •
y

α′

// •
y′by the quiver

•
y′

•
v

γ // •
x

α′

OO

•
y

αoo •
z

βoowhere y′ = tα′. Observe that either ∆′ is proper (if y is a 
onne
ting ver-tex in the se
ond 
ase), or we de
rease the number of 
onne
ting arrows(otherwise), hen
e the 
laim follows by indu
tion.(2) Assume that αβ ∈ R.(2.1) Assume that there is no α′ ∈ ∆′
1 with sα′ = y and α′α ∈ R.(2.1.1) Assume that y is a 
onne
ting vertex. If either ∆(2) is not anoriented 
y
le, or there exist δ′, δ′′ ∈ ∆

(2)
1 with sδ′ = tδ′′ and δ′δ′′ 6∈ R, thenthe 
laim follows by symmetry from (1), thus we may assume that ∆(2) isan oriented 
y
le su
h that δ′δ′′ ∈ R for all δ′, δ′′ ∈ ∆

(2)
1 with sδ′ = tδ′′.(2.1.1.1) Assume that |∆(2)

1 | = 1. If (∆′, R′) is the bound quiver obtainedfrom (∆, R) by applying the generalized APR-re�e
tion at y, then R′ = Rand ∆′ is obtained from ∆ by repla
ing the subquiver
•
z

β // •
x

α // •
yby the quiver

•
z

β // •
y

α // •
x

,hen
e the 
laim follows.
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(2.1.1.2) Assume that |∆(2)

1 | > 1. Let α′ and β′ be the arrows in ∆(2) with
sα′ = y = tβ′. Put v′ = tα′ and x′ = sβ′. Let γ′ be the arrow in ∆(2) with
tγ′ = x′. Put z′ = sγ′. Re
all that α′β′, β′γ′ ∈ R. If (∆′, R′) is the boundquiver obtained from (∆, R) by applying the generalized APR-re�e
tion at
y followed by the APR-re�e
tion at x′, then R′ = (R \ {αβ, α′β′, β′γ′})
∪ {αγ′, α′α} and ∆′ is obtained from ∆ by repla
ing the subquiver

•v
′

•
z

β // •
x

α // •
y

α′

OO

•
x′

β′

oo •
z′

γ′

ooby the quiver
•z
′

γ′

��
•
z

β // •
x′

β′

// •
y

α // •
x

α′

// •
v′hen
e the 
laim follows in this 
ase.(2.1.2) Assume that y is not a 
onne
ting vertex.(2.1.2.1) Assume that there exists α′ ∈ ∆1 with sα′ = y. Our assumptionsimply that α′α 6∈ R. Put y′ = tα′. If (∆′, R′) is the bound quiver obtainedfrom (∆, R) by applying the generalized APR-re�e
tion at y, then R′ =

(R \ {αβ}) ∪ {α′α} and ∆′ is obtained from ∆ by repla
ing the subquiver
•
z

β // •
x

α // •
y

α′

// •
y′by the quiver

•
z

β // •
y

α // •
x

α′

// •
y′

,hen
e the 
laim follows by indu
tion.(2.1.2.2) Assume there exists α′ ∈ ∆′ with tα′ = y. Put x′ = sα′.(2.1.2.2.1) Assume that either x′ is a 
onne
ting vertex or α′ is a freearrow. Moreover, if x′ is a 
onne
ting arrow and α′ is not a free arrow, thenlet β′ be the arrow in ∆ with tβ′ = x′ and α′β′ ∈ R, and put z′ = sβ′. Let
(∆′, R′) be the bound quiver obtained from (∆, R) by applying the APR-re�e
tion at y. If α′ is a free arrow, then R′ = (R \ {αβ})∪ {α′β} and ∆′ isobtained from ∆ by repla
ing the subquiver

•
z

β // •
x

α // •
y

•
x′

α′

oo
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by the quiver
•z

β

��
•
x

•
y

αoo α′

// •
x′hen
e the 
laim follows by indu
tion. On the other hand, if x′ is a 
onne
tingarrow and α′ is not a free arrow, then R′ = (R\{αβ, α′β′})∪{αβ′, α′β} and

∆′ is obtained from ∆ by repla
ing the subquiver
•
z

β // •
x

α // •
y

•
x′

α′

oo •
z′

β′

ooby the quiver
•z

β

��@
@@

@@
@@

•z
′

β′

��~~
~~

~~
~

•
x

•
y

αoo α′

// •
x′hen
e the 
laim follows.(2.1.2.2.2) Assume that x′ is not a 
onne
ting vertex and there exists

β′ ∈ ∆1 with tβ′ = x′ and α′β′ ∈ R. Put z′ = sβ′. If (∆′, R′) is the boundquiver obtained from (∆, R) by applying the APR-re�e
tions at y and x′,then R′ = (R \ {αβ, α′β′}) ∪ {αβ′} and ∆′ is obtained from ∆ by repla
ingthe subquiver
•
z

β // •
x

α // •
y

•
x′

α′

oo •
z′

β′

ooby the quiver
•x

•
z

β // •
x′

α′

// •
y

α

OO

•
z′

β′

oohen
e the 
laim follows by indu
tion.(2.2) Assume that there exists α′ ∈ ∆1 with sα′ = y and α′α ∈ R. Put
y′ = tα′.(2.2.1) Assume that x = tγ. Let β1 · · ·βn and γ1 · · · γm be the maximalpaths in ∆ terminating at x with β1 = β and γ1 = γ. Put u = sβn, u′

i = sβifor i ∈ [1, n − 1] and u′′
i = sγi for i ∈ [1, m − 1].(2.2.1.1) Assume that there exists i ∈ [1, m−1] su
h that γiγi+1 ∈ R. Byshifting relations we may assume that γm−1γm ∈ R. Observe that βiβi+1 6∈ Rfor all i ∈ [1, n − 1]. If (∆′, R′) is the bound quiver obtained from (∆, R)by applying the HW-
ore�e
tion at u followed by the 
omposition of theHW-
ore�e
tion at u′

i and the APR-re�e
tion at u′
i for i = n−1, . . . , 1, then
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R′ = (R \ {γm−1γm, αβ}) ∪ {βnγ} and ∆′ is obtained from ∆ by repla
ingthe subquiver

•
u′′

m−1

•
u

γmoo βn // •
u′

n−1

· · · // •
u′

1

β1 // •
xby the quiver

•
u′′

m−1

γm // •
u′

n−1

· · · // •
u′

1

β1 // •
u

•
x

βnoo ,hen
e we redu
e the proof to (1).(2.2.1.2) Assume that γiγi+1 6∈ R for all i ∈ [1, m−1]. Let r be the numberof i ∈ [1, n − 1] su
h that βiβi+1 ∈ R. By shifting relations we may assume
βiβi+1 ∈ R for all i ∈ [n − r, n − 1]. Put β0 = α. If (∆′, R′) is the boundquiver obtained from (∆, R) by applying the generalized APR-
ore�e
tionsat u′

1, . . . , u
′
n−r−1, then R′ = (R \ {αβ})∪ {βn−r−1βn−r} and ∆′ is obtainedfrom ∆ by repla
ing the subquiver

•
u

βn // · · ·
β1 // •

x

β0 // •
yby the quiver

•
u

βn // · · ·
βn−r // •

x

βn−r−1// · · ·
β0 // •

y
.Let γ′

1 · · · γ
′
l be the maximal path in (∆′, R′) with γ′

l = α. Observe that l > 1implies that y is a 
onne
ting vertex. Put
u′ =

{
u′

n−1 if r ≥ 1,
x if r = 0, v′ = tγ′

1.Let (∆′′, R′′) be the bound quiver obtained from (∆′, R′) by applying theHW-
ore�e
tion at u followed by the 
omposition of the HW-
ore�e
tionat u′′
i and the APR-re�e
tion at u′′

i for i = m − 1, . . . , 1. If there exists
δ in ∆ with tδ = v′ and δ 6= γ′

1, then R′′ = (R′ \ {βn−1βn}) ∪ {γmδ},while R′′ = R′ \ {βn−1βn}, otherwise. Moreover, ∆′′ is obtained from ∆′ byrepla
ing the subquiver
•
u′

•
u

βnoo γm // •
u′′

m−1

γm−1 // · · ·
γ1 // •

x

βn−r−1// · · ·
β0 // •

y

γ′

l−1 // · · ·
γ′

1 // •
v′by the quiver

•
u′

βn // •
u′′

m−1

γm−1 // · · ·
γ1 // •

u
•
v′

γmoo · · ·
γ′

1oo •
y

γ′

l−1oo · · ·
β0oo •

x

βn−r−1oo ,and the 
laim follows (by indu
tion if y is not a 
onne
ting vertex).(2.2.2) Assume that x = sγ. Put v = tγ.
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(2.2.2.1) Assume that there exists γ′ ∈ ∆1 with sγ′ = v and γ′γ ∈ R (byshifting relations we may assume that this 
ondition is satis�ed if ∆(1) is anoriented 
y
le). Put v′ = tγ′. If (∆′, R′) is the bound quiver obtained from
(∆, R) by applying the generalized 
ore�e
tion at x followed, if y is not a
onne
ting vertex, by the APR-
ore�e
tion at y, then
R′ =

{
(R \ {α′α, αβ, γ′γ}) ∪ {γ′α, γβ, α′γ} if y is a 
onne
ting vertex,
(R \ {α′α, αβ, γ′γ}) ∪ {γβ, α′γ} otherwiseand ∆′ is obtained from ∆ by repla
ing the subquiver

•z

β

��
•
v′

•
v

γ′

oo •
x

γoo α // •
y

α′

// •
y′by the quiver

•v
′

•
y′

•
z

β // •
v

γ // •
x

α′

??~~~~~~~

γ′

__@@@@@@@
•
y

αooif y is a 
onne
ting vertex, and by
•
y′

•
v′

•
y

γ′

oo •
x

αoo

α′

OO

•
v

γoo •
z

βoootherwise, hen
e the 
laim again follows.(2.2.2.2) Assume that ∆(1) is not an oriented 
y
le. Let γ1 · · · γn be themaximal path in ∆ with γn = γ. We may additionally assume that γiγi+1 6∈
R for all i ∈ [1, n − 1]. Consequently, we may redu
e the proof in this 
aseto (2.2.1) by applying APR-re�e
tions and shifts of relations.Step 6. If ∆ is spe
ial , then we may assume that for ea
h j ∈ [1, 2], ∆(j)is an oriented 
y
le or either the sour
e or the sink in ∆(j) is a 
onne
tingvertex.Proof. If both ∆(1) and ∆(2) are oriented 
y
les, then there is nothingto prove, so without loss of generality we may assume that ∆(1) is not anoriented 
y
le. Observe that our assumptions imply that there are no 
on-ne
ting arrows in ∆. Let x be the 
onne
ting vertex in ∆ and assume that
x is neither a sour
e nor a sink in ∆(1). Observe that x ∈ ∆

(1)
0 ∩∆

(2)
0 . Let α,

β, α′ and β′ be the arrows in ∆ with sα = tβ = x = sα′ = tβ′, α, β ∈ ∆
(1)
1 ,and α′, β′ ∈ ∆

(2)
1 . Put y = tα, y′ = tα′, z = sβ, and z′ = sβ′. By applying
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APR-
ore�e
tions, shifts of relations and Lemma 1.2 we may assume that zis a sour
e in ∆(1).Assume �rst that α′ = β′. Then αβ ∈ R and α′β′ ∈ R. Let γ1 · · · γm bethe maximal path in ∆ starting at z with γm 6= β. Observe that γiγi+1 6∈ Rfor all i ∈ [1, m − 1]. Put vi = sγi for i ∈ [1, m − 1]. The bound quiveralgebra of the bound quiver obtained from (∆, R) by applying the APR-
ore�e
tions at z, vm−1, . . . , v1 is easily seen to be tilting-
otilting equivalentto Λ2(p, 1, m, r, 0) for some p ∈ N+ and r ∈ [0, p−1], hen
e the 
laim followsin this 
ase.Assume now that αβ ∈ R and α′β′ ∈ R, but α′ 6= β′. Let (∆′, R′) bethe bound quiver obtained from (∆, R) by applying the generalized APR-re�e
tion at x. If there exists β′′ ∈ ∆1 with tβ′′ = z′ and β′β′′ ∈ R, then
R′ = (R \ {αβ, α′β′, β′β′′}) ∪ {αβ′, α′β, ββ′′} and ∆′ is obtained from ∆ byrepla
ing the subquiver

•
y

•
y′

•
z

β // •
x

α
__@@@@@@@

α′

??~~~~~~~
•
z′

β′

oo •
z′′

β′′

ooby the quiver
•z
′′

β′′

��
•
y

•
z′

αoo •
x

β′

oo β // •
z

α′

// •
y′where z′′ = sβ′′. Otherwise, R′ = (R \ {αβ, α′β′}) ∪ {αβ′, α′β} and ∆′ isobtained from ∆ by repla
ing the subquiver

•
y

•
y′

•
z

β // •
x

α
__@@@@@@@

α′

??~~~~~~~
•
z′

β′

ooby the quiver
•
y

•
z′

αoo •
x

β′

oo β // •
z

α′

// •
y′

.In parti
ular, in both 
ases ∆′ proper.Assume �nally that αβ′ ∈ R and α′β ∈ R. Let γ be the arrow in ∆with sγ = z and γ 6= β. Put v = tγ. If there exists γ′ ∈ ∆1 with sγ′ = vand γ′γ ∈ R, then let (∆′, R′) be the bound quiver obtained from (∆, R) byapplying the APR-
ore�e
tions at z and v, and let v′ = tγ′. Observe that
R′ = (R \ {α′β, γ′γ}) ∪ {γ′β} and ∆′ is obtained from ∆ by repla
ing the
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subquiver
•
v′

•
v

γ′

oo •
z

γoo β // •
x

α′

// •
y′by the quiver

•x

β

��
•
v′

•
z

γ′

oo γ // •
v

α′

// •
y′Otherwise, if (∆′, R′) is the bound quiver obtained from (∆, R) by applyingthe APR-
ore�e
tion at z, then R′ = (R \ {α′β})∪{α′γ} and ∆′ is obtainedfrom ∆ by repla
ing the subquiver

•
v

•
z

γoo β // •
x

α′

// •
y′by the quiver

•
y′

•
v

γ // •
z

α′

OO

•
x

βooAgain in both 
ases ∆′ is proper and this �nishes the proof.Step 7. We may assume that (∆, R) is proper.Proof. If ∆(1) is not an oriented 
y
le, then neither is ∆(2) and the 
laimfollows from Proposition 1.8; thus assume that ∆(1) (and 
onsequently also
∆(2)) is an oriented 
y
le.Assume �rst that there are no 
onne
ting arrows in ∆ and let x bethe 
onne
ting vertex in ∆. Let α, β, α′ and β′ be the arrows in ∆ with
sα = tβ = x = sα′ = tβ′, α, β ∈ ∆

(1)
1 , and α′, β′ ∈ ∆

(2)
1 . If αβ ∈ Rand α′β′ ∈ R, then it follows by shifting relations that the bound quiveralgebra of (∆, R) is tilting-
otilting equivalent to Λ2(p1, p2, 0, r1, r2) for some

p1, p2 ∈ N+, r1 ∈ [0, p1 − 1], and r2 ∈ [0, p2 − 1] su
h that r1 + r2 ≥ 1. Onthe other hand, if αβ′ ∈ R and α′β ∈ R, then it follows by shifting relationsthat the bound quiver algebra of (∆, R) is tilting-
otilting equivalent to
Λ1(p1, p2, 0, 0, r1) for some p1, p2 ∈ N+, p1, p2 ≥ 2, and r1 ∈ [1, p1 − 1].Now assume that there are 
onne
ting arrows in ∆. Re
all that in this
ase αβ ∈ R for all 
y
le arrows α and β with sα = tβ. Let ∆(0) be theminimal subquiver of ∆ with the set of arrows 
onsisting of the 
onne
tingarrows. Let x ∈ ∆

(1)
0 and y ∈ ∆

(2)
0 be the 
onne
ting verti
es. Observe that

∆(0) is a linear quiver. We show that we may assume that x is a uniquesink in ∆(0), y is a unique sour
e in ∆(0), and there are no α, β ∈ ∆
(0)
1 with
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sα = tβ and αβ ∈ R. This will immediately imply that the bound quiveralgebra of (∆, R) is tilting-
otilting equivalent to Λ2(p1, p2, p3, p1−1, p2 −1)for some p1, p2, p3 ∈ N+.By repeating arguments from the proofs of Steps 3 and 4 and passing tothe opposite algebra if ne
essary, we may assume that

∆ = •
x

•
x1

α1oo •
xn−1

· · ·oo •
z

αnoo βm // •
ym−1

· · · // •
y1

β1 // •
yfor some n ∈ N+ and m ∈ N, and βiβi+1 6∈ R for all i ∈ [1, m − 1]. It isenough to show that we may additionally assume that αiαi+1 6∈ R for all

i ∈ [1, n − 1], sin
e then the 
laim follows from Lemma 1.5. Assume this isnot the 
ase. By shifting relations we may assume that α1α2 ∈ R.If |∆(1)
1 | = 1 and (∆′, R′) is the bound quiver obtained from (∆, R) by ap-plying the generalized APR-re�e
tion at x followed by the APR-re�e
tion at

x1, then R′ = R\{α1α2} and ∆′ = ∆. Otherwise, let γ, δ and δ′ be the arrowsin ∆(1) with sγ = x = tδ and tδ′ = sδ. Observe that our assumptions implythat γδ, δδ′ ∈ R. Put u = tγ, v = sδ and v′ = sδ′. If (∆′, R′) is the bound qui-ver obtained from (∆, R) by applying the generalized APR-re�e
tion at x fol-lowed by the APR-re�e
tion at v, then R′ = (R\{γδ, δδ′, α1α2})∪{γα1, α1δ
′}and ∆′ is obtained from ∆ by repla
ing the subquiver

•u

•
v′

δ′ // •
v

δ // •
x

γ

OO

•
x1

α1oo •
x2

α2ooby the quiver
•v
′

δ′

��
•
u

•
x1

γoo •
x

α1oo •
v

δoo •
x2

α2oowhere x2 = z if n = 2. Consequently, in both 
ases the 
laim follows byindu
tion.We now investigate the 
ase when ∆ is proper. In this 
ase we maydivide the arrows in ∆ into three disjoint subsets ∆
(1)
1 , ∆

(2)
1 , ∆

(3)
1 in su
ha way that α, β ∈ ∆1 belong to the same subset if and only if the quiver

(∆0, ∆1 \ {α, β}) has a 
onne
ted 
omponent whi
h is a one-
y
le quiver.For j ∈ [1, 3] we denote by ∆(j) the minimal subquiver of ∆ with the set ofarrows ∆
(j)
1 . Observe that ∆(j) is a linear quiver. We divide the arrows in

∆(j) into disjoint subsets ∆
(j)
1,− and ∆

(j)
1,+ in su
h a way that if α, β ∈ ∆

(j)
1 ,

α 6= β, are adja
ent to the same vertex then they belong to the same subsetif and only if either sα = tβ or tα = sβ. For j ∈ [1, 3] and ε ∈ {−, +} we
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put
R(j)

ε = {αβ ∈ R | α, β ∈ ∆
(j)
1,ε}.Step 8. We may assume that either R

(j)
+ = ∅ or R

(j)
− = ∅ for ea
h

j ∈ [1, 3].Proof. Analogous to the proof of Step 3.Step 9. We may assume that either there is at most one sink in ∆(j) orthere is at most one sour
e in ∆(j), for ea
h j ∈ [1, 3].Proof. We prove the 
laim by indu
tion on |R| and, for a �xed j, on
|∆

(j)
1 |. Fix j ∈ [1, 3] and assume that there is either a unique sour
e or aunique sink in ∆(l) for ea
h l ∈ [1, j − 1]. Let u and v be the 
onne
tingverti
es in ∆, and let α and β be the arrows in ∆(j) adja
ent to u and v,respe
tively. The 
laim follows by the arguments presented after Lemma 1.3,unless the following 
ondition (or its dual) is satis�ed: sα = u, tβ = v, thereexists α′ ∈ ∆1 with tα′ = u and αα′ ∈ R, and there exists β′ ∈ ∆1 with

sβ′ = v and β′β ∈ R. Assume the above 
ondition is satis�ed. Put x = sβand v′ = tβ′. If ∆(j) is not an equioriented linear quiver, then by applyingAPR-
ore�e
tions, shifts of relations, and Lemma 1.2, we may assume thatthere exists γ ∈ ∆1 with γ 6= β and sγ = x. Put y = tγ.Assume there exists γ′ ∈ ∆1 with sγ′ = y and γ′γ ∈ R. Put y′ = tγ′.If (∆′, R′) is the bound quiver obtained from (∆, R) by applying the APR-
ore�e
tions at x and y, then R′ = (R\{β′β, γ′γ})∪{γ′β} and ∆′ is obtainedfrom ∆ by repla
ing the subquiver
•
y′

•
y

γ′

oo •
x

γoo β // •
v

β′

// •
v′by the quiver

•v

β

��
•
y′

•
x

γ′

oo γ // •
y

β′

// •
v′In parti
ular, |R′| < |R|, hen
e the 
laim follows by indu
tion in this 
ase.Otherwise, if (∆′, R′) is the bound quiver obtained from (∆, R) by ap-plying the APR-
ore�e
tion at x, then R′ = (R \ {β′β}) ∪ {β′γ} and ∆′ isobtained from ∆ by repla
ing the subquiver

•
y

•
x

γoo β // •
v

β′

// •
v′
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by the quiver

•v

β

��
•
y

γ // •
x

β′

// •
v′Observe that if l ∈ [1, j − 1] and there is no δ ∈ ∆

(l)
1 with sδ = v and

δ 6= β′, then there is either a unique sour
e or a unique sink in ∆′(l). On theother hand, if there exists su
h an arrow, then we may assume that there iseither a unique sour
e or a unique sink in ∆′(l), sin
e β is a free arrow in
(∆′, R′). In parti
ular, in both 
ases the 
laim follows again by indu
tion,sin
e |∆

′(j)
1 | < |∆

(j)
1 |.Step 10. We may assume that if either sα = x = sβ or tα = x = tβfor a 
onne
ting vertex x, α ∈ ∆

(j1)
1,ε1

, and β ∈ ∆
(j2)
1,ε2

, with j1 6= j2 and
ε1, ε2 ∈ {−, +}, then either R

(j1)
ε1

= ∅ or R
(j2)
ε2

= ∅.Proof. Without loss of generality we may assume that sα = x = sβ. If
R

(j1)
ε1

6= ∅ or R
(j2)
ε2

6= ∅, then by shifting relations we may assume that thereexist arrows α′ and β′ in ∆ with sα′ = tα, sβ′ = tβ, and α′α, β′β ∈ R.Let γ be the arrow in ∆ with tγ = x. Without loss of generality we mayassume that αγ ∈ R and βγ 6∈ R. Put y′ = tα′, z′ = tβ′, and u = sγ. If
(∆′, R′) is the bound quiver obtained from (∆, R) by applying the generalizedAPR-
ore�e
tions at x and y, then

R′ = R(\{α′α, β′β, αγ}) ∪ {α′β, βγ}and ∆′ is obtained from ∆ by repla
ing the subquiver
•u

γ

��
•
y′

•
y

α′

oo •
x

αoo β // •
z

β′

// •
z′by the quiver

•
y′

•
u

γ // •
z

β // •
x

α //

α′

OO

•
y

β′

// •
z′In parti
ular, |R′(j1)

ε1
| < |R

(j1)
ε1

| and |R
′(j2)
ε2

| < |R
(j2)
ε2

|, hen
e the 
laim followsby indu
tion.Step 11. We may assume that there exists j ∈ [1, 3] su
h that ∆(j) isequioriented.



GENTLE TWO-CYCLE ALGEBRAS 63

Proof. If the above 
ondition is not satis�ed, then without loss of gener-ality we may assume that
∆(1) = •

u
•
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v ,

∆(2) = •
u

βp2 // •
yp2−1

· · · // •
y1

β1 // •
y

•
y′

1

β′

1oo •
y′

q2−1

· · ·oo •
v

β′

q2oo ,

∆(3) = •
u

γp3 // •
zp3−1

· · · // •
z1

γ1 // •
z

•
z′
1

γ′

1oo •
z′q3−1

· · ·oo •
v

γ′

q3oo ,for some p1, p2, p3, q1, q2, q3 ∈ N+. Moreover, we may assume that βp2
α1 ∈ R.Consequently, by shifting relations we may assume that βiβi+1 ∈ R for all

i ∈ [1, p2 − 1]. There are two 
ases to 
onsider.Assume �rst γiγi+1 6∈ R for all i ∈ [1, p3 − 1]. If (∆′, R′) is the boundquiver obtained from (∆, R) by applying the generalized APR-
ore�e
tionat u followed by the 
omposition of the APR-
ore�e
tion at yi and thegeneralized APR-
ore�e
tion at u for i = p2 − 1, . . . , 1, then
R′=

{
(R \ {βp2

α1, β1β2}) ∪ {γp3
α1, βp2

γp3
} if p2 > 1,

(R \ {βp2
α1}) ∪ {γp3

α1} if p2 = 1,
∆′(1) = •

zp3−1
•
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v

,

∆′(2) = •
zp3−1

γp3 // •
yp2−1

βp2 // •
yp2−2

· · · // •
u

•
y

β1oo •
y′

1

β′

1oo •
y′

q2−1

· · ·oo •
v

β′

q2oo ,
∆′(3) = •

zp3−1
· · · // •

z1

γ1 // •
z

•
z′
1

γ′

1oo •
z′q3−1

· · ·oo •
v

γ′

q3oo ,where zp3−1 = z if p3 = 1. Consequently, the 
laim follows by an easyindu
tion.Assume now that there exists i ∈ [1, p3 − 1] su
h that γiγi+1 ∈ R.Consequently, p2 = 1. Moreover, by shifting relations we may assume that
γp3−1γp3

∈ R. If (∆′, R′) is the bound quiver obtained from (∆, R) by ap-plying the generalized APR-
ore�e
tion at u, then
R′ = (R \ {β1α1, γp3−1γp3

}) ∪ {γp3
α1, γp3−1β1},

∆′(1) = •
u

•
zp3−1

γp3oo •
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v
,

∆′(2) = •
u

•
y

β1oo •
y′

1

β′

1oo •
y′

q2−1

· · ·oo •
u

β′

q2oo ,
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∆′(3) = •

u

γp3−1 // •
zp3−2

· · · // •
z

•
z′
1

γ′

1oo •
z′q3−1

· · ·oo •
u

γ′

q3oo ,

thus the 
laim follows.Step 12. We may assume that there is at most one j ∈ [1, 3] su
h that
∆(j) is not equioriented.Proof. If the above 
ondition is not satis�ed, then without loss of gener-ality we may assume that

∆(1) = •
u

•
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v

,

∆(2) = •
u

βp2 // •
yp2−1

· · · // •
y1

β1 // •
y

•
y′

1

β′

1oo •
y′

q2−1

· · ·oo •
v

β′

q2oo ,

∆(3) = •
u

γp3 // •
zp3−1

· · · // •
z1

γ1 // •
v

,for some p1, p2, p3, q1, q2 ∈ N+. In this proof we will again number the 
ases.Up to symmetry, there are three main 
ases to 
onsider: either βp2
α1 ∈ Rand β′

q2
α′

1 ∈ R, or βp2
α1 ∈ R and β′

q2
γ1 ∈ R, or γp3

α1 ∈ R and β′
q2

γ1 ∈ R.(1) Assume βp2
α1 ∈ R and β′

q2
α′

1 ∈ R. In this 
ase we may apply thesame arguments as in the proof of the previous step. Note, however, thatif γiγi+1 6∈ R for all i ∈ [1, p3 − 1], then we obtain a gentle bound quiverwhose bound quiver algebra is tilting-
otilting equivalent to Λ′
0(p, r) for some

p ∈ N+ and r ∈ [0, p − 1] a

ording to Proposition 1.8.(2) Assume that βp2
α1 ∈ R and β′

q2
γ1 ∈ R.(2.1) Assume that α′

iα
′
i+1 6∈ R for all i ∈ [1, q1 − 1] and β′

iβ
′
i+1 6∈ R forall i ∈ [1, q2 − 1]. By shifting the relation β′

q2
γ1 to the left we may assumethat q2 = 1.(2.1.1) Assume that βiβi+1 6∈ R for all i ∈ [1, p2 − 1]. By shifting therelation βp2

α1 to the left we may assume that p2 = 1. Consequently, the pathalgebra of the bound quiver obtained from (∆, R) by appli
ation of the APR-re�e
tions at y, v, x′
1, . . . , x

′
q1−1 is easily seen to be tilting-
otilting equivalentto Λ2(p3 + 1, p1 + 1, q1, r3, r1), where r1 is the number of i ∈ [1, p1 − 1] su
hthat αiαi+1 ∈ R and r3 is the number of i ∈ [1, p3 − 1] su
h that γiγi+1 ∈ R.(2.1.2) Assume that there exists i ∈ [1, p2 − 1] su
h that βiβi+1 ∈ R.By shifting relations we may assume that β1β2 ∈ R. If (∆′, R′) is thebound quiver obtained from (∆, R) by applying the APR-re�e
tions at

y, y1, v, x′
1, . . . , x

′
q1−1, then
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R′ = (R \ {β1β2, β
′
1γ1}) ∪ {α′

q1
β2},

∆′(1) = •
u

•
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo •
x′

q1−1

α′

q1oo ,

∆′(2) = •
u

· · · // •
y2

β2 // •
x′

q1−1

,

∆′(3) = •
u

γp3 // •
zp3−1

· · · // •
z1

γ1 // •
y1

β1 // •
y

•
v

β′

1oo •
x′

1

α′

1oo •· · ·oo
x′

q1−1

,
where x′

q1−1 = v if q1 = 1, hen
e the 
laim follows.(2.2) Assume that there exists i ∈ [1, q2 − 1] su
h that β′
iβ

′
i+1 ∈ R. Byshifting relations we may assume that β′

1β
′
2 ∈ R. Moreover, this 
onditionimplies that βiβi+1 6∈ R for all i ∈ [1, p2 − 1]. By shifting the relation βp2

α1to the left we may assume p2 = 1. If (∆′, R′) is the bound quiver obtainedfrom (∆, R) by applying the APR-re�e
tions at y and y′1, then
R′ = (R \ {β1α1, β

′
1β

′
2}) ∪ {β1β

′
2},

∆′(1) = •
y

•
y′

1

β′

1oo •
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v
,

∆′(2) = •
y

•
y′

2

β′

2oo •
v

· · ·oo ,

∆′(3) = •
y

β1 // •
u

γp3 // •
zp3−1

· · · // •
z1

γ1 // •
v ,hen
e the 
laim follows again.(2.3) Assume that β′

iβ
′
i+1 6∈ R for all i ∈ [1, q2 − 1] and there exists

i ∈ [1, q1−1] su
h that α′
iα

′
i+1 ∈ R. Observe that in this 
ase αiαi+1 6∈ R forall i ∈ [1, p1 − 1], hen
e by shifting the relation βp2

α1 to the right we mayassume that p1 = 1. Similarly, γiγi+1 6∈ R for all i ∈ [1, p3 − 1].(2.3.1) Assume that there exists i ∈ [1, p2−1] su
h that βiβi+1 ∈ R, thenby shifting relations we may assume that β1β2 ∈ R. Moreover, by shiftingthe relation β′
q2

γ1 to the left we may assume that q2 = 1. Additionally, byshifting relations we may assume that α′
1α

′
2 ∈ R. If (∆′, R′) is the boundquiver obtained from (∆, R) by applying the HW-re�e
tion at y followed bythe APR-
ore�e
tion at y and the APR-re�e
tions at v, z1, . . . , zp3−1, then

R′ = (R \ {α′
1α

′
2, β1β2, β

′
1γ1}) ∪ {γp3

α′
2},

∆′(1) = •
u

•
x

α1oo · · · // •
x′

2

α′

2 // •
zp3−1

,
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∆′(2) = •

u

βp2 // •
yp2−1

· · · // •
y1

β1 // •
y

•
x′

1

β′

1oo •
v

α′

1oo •
z1

γ1oo •
zp3−1

· · ·oo ,
∆′(3) = •

u
•

zp3−1

γp3oo ,where zp3−1 = v if p3 = 1. In parti
ular, we redu
e the proof to the situationdual either to (2.1) or to (2.2).(2.3.2) Assume that βiβi+1 6∈ R for all i ∈ [1, p2 − 1]. By shifting therelation β′
q2

γ1 to the right we may assume that p3 = 1. Additionally, byshifting relations we may assume that α′
q1−1α

′
q1

∈ R. The bound quiveralgebra of the bound quiver obtained from (∆, R) by applying the APR-
ore�e
tions at x, x′
q1−1, u, x, x′

q1−1, yp2−1, . . . , y1 is easily seen to be tilting-
otilting equivalent to Λ2(q2 +1, q1, p2 +1, 0, r′1 − 1), where r′1 is the numberof i ∈ [1, q1 − 1] su
h that α′
iα

′
i+1 ∈ R.(3) Assume that γp3

α1 ∈ R and β′
q2

γ1 ∈ R.(3.1) Assume that there exists i ∈ [1, p2 − 1] su
h that βiβi+1 ∈ R.By shifting relations we may assume that βp2−1βp2
∈ R. Sin
e in this 
ase

γiγi+1 6∈ R for all i ∈ [1, p3−1], we may assume, by shifting the relation γp3
α1to the left, that p3 = 1. Consequently, the bound quiver algebra of the boundquiver obtained from (∆, R) by applying the generalized APR-
ore�e
tion at

u is tilting-
otilting equivalent to Λ′
0(p, r) for some p ∈ N+ and r ∈ [0, p− 1]a

ording to Proposition 1.8.(3.2) Assume that βiβi+1 6∈ R for all i ∈ [1, p2 − 1]. By shifting relationswe may also assume that γiγi+1 ∈ R for all i ∈ [1, p3 − 1]. If (∆′, R′) is thebound quiver obtained from (∆, R) by applying the APR-
ore�e
tion at ufollowed by the 
omposition of the APR-
ore�e
tion at zi and the generalizedAPR-
ore�e
tion at u for i = p3 − 1, . . . , 1, then

R′ =

{
(R \ {γp3

α1, γ1γ2, β
′
q2

γ1}) ∪ {βp2
α1, γp3

βp2
, β′

q2
γ2} if p3 > 1,

(R \ {γ1α1, β
′
q2

γ1}) ∪ {βp2
α1, β

′
q2

βp2
} if p3 = 1,

∆′(1) = •
yp2−1

•
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v

γp3 // •
u
,

∆′(2) = •
yp2−1

· · · // •
y1

β1 // •
y

•
y′

1

β′

1oo •
y′

q2−1

· · ·oo •
u

β′

q2oo ,

∆′(3) = •
yp2−1

βp2 // •
zp3−1

· · · // •
z1

γ2 // •
u ,where yp2−1 = y if p2 = 1. Consequently, the 
laim follows by indu
tion.
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For p1, p2, p3 ∈ N+, p2 ≥ 2, r1 ∈ [0, p1 − 1], and r2 ∈ [1, p2 − 1], let
Λ′

2(p1, p2, p3, r1, r2) be the algebra of the quiver
• · · · // •

α1

��@
@@

@@
@@

•

αp1

??~~~~~~~

δp3

��

•

γp2

��

βoo

• ··· // •
δ1 // • •

γ1oo •···oobound by αiαi+1 for i ∈ [p1−r1, p1−1], αp1
β, βα1, γiγi+1 for i ∈ [1, r2]. Ob-serve that Λ′

2(p1, p2, p3, r1, r2) is tilting-
otilting equivalent to Λ2(p2, p1+1,
p3, r2 − 1, r1 + 1). Indeed, it is enough to apply the HW-re�e
tion at xi fol-lowed by the APR-
ore�e
tion at xi for i = 1, . . . , p3, where xi = tδi for
i ∈ [1, p3].Step 13. We may assume that ∆(j) is equioriented for ea
h j ∈ [1, 3].Proof. Suppose that there exists j ∈ [1, 3] su
h that ∆(j) is not equiori-ented. Without loss of generality we may assume that

∆(1) = •
u

•
x1

α1oo •
xp1−1

· · ·oo •
x

αp1oo
α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v

,

∆(2) = •
u

βp2 // •
yp2−1

· · · // •
y1

β1 // •
v ,

∆(3) = •
u

•
z1

γ1oo •
zp3−1

· · ·oo •
v

γp3oo ,for some p1, p2, p3, q1 ∈ N+. We may additionally assume that αi+1αi 6∈ Rfor all i ∈ [1, p1 − 1]. Let r′1 be the number of i ∈ [1, q1 − 1] su
h that
α′

iα
′
i+1 ∈ R, let r2 be the number of i ∈ [1, p2 − 1] su
h that βiβi+1 ∈ R, andlet r3 be the number of i ∈ [1, p3 − 1] su
h that γiγi+1 ∈ R. Observe that bysymmetry we may assume that r′1 > 0 if γp3

α′
1 ∈ R and βp2

α1 6∈ R.Assume �rst that βp2
α1 ∈ R. In this 
ase by shifting the relation βp2

α1 tothe right we may assume that p1 = 1. Observe that either r′1 = 0 or r2 = 0.If r3 ≥ 1, then by shifting relations we may assume that γ1γ2 ∈ R. If
(∆′, R′) is the bound quiver obtained from (∆, R) by applying the generalizedAPR-re�e
tion at u, then

R′ = (R \ {βp2
α1, γ1γ2}) ∪ {α1γ2, βp2

γ1},

∆′(1) = •
u

α1 // •
x

α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v ,

∆′(2) = •
u

γ1 // •
z1

βp2 // •
yp2−1

· · · // •
y1

β1 // •
v ,
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∆′(3) = •

u
•
z2

γ2oo •
v

· · ·oo ,hen
e the 
laim follows in this 
ase.Assume now that r3 = 0. There are two additional possibilities in this
ase. If γp3
α′

1 ∈ R, then r2 ≥ 1 (sin
e (∆, R) is a bound quiver). Conse-quently, r′1 = 0 and we have the situation symmetri
 to the previous one.On the other hand, if γp3
β1 ∈ R, then by shifting the relation γp3

β1 to theleft we may assume that p3 = 1. Consequently, if (∆′, R′) is the bound quiverobtained from (∆, R) by applying the generalized APR-re�e
tion at u, then
R′ = (R \ {βp2

α1, γ1β1}) ∪ {α1β1, βp2
γ1},

∆′(1) = •
u

α1 // •
x

α′

q1 // •
x′

q1−1

· · · // •
x′

1

α′

1 // •
v ,

∆′(2) = •
u

•
y1

β1oo •
yp2−1

· · ·oo •
v

βp2oo ,

∆′(3) = •
u

γ1 // •
v ,hen
e the 
laim follows.Assume now that βp2

γ1 ∈ R. If γp3
β1 ∈ R, then it follows easily that thebound quiver algebra of (∆, R) is tilting-
otilting equivalent either to Λ2(p2+

p3 − r2 − 1, r2 + 1, q1, p1, r3)
op if r′1 = 0, or to Λ′

2(p2 + p3 − 1, q1, p1, r3, r
′
1)

opif r′1 ≥ 1. Sin
e Λ′
2(p2 + p3 − 1, q1, p1, r3, r

′
1) is tilting-
otilting equivalent to

Λ2(q1, p2+p3, p1, r
′
1−1, r3+1), we may assume that γp3

α′
1 ∈ R. Consequently,by shifting relations we may assume that α′

iα
′
i+1 ∈ R for all i ∈ [1, q1 − 1].Re
all that q1 > 1 in this 
ase. If (∆′, R′) is the bound quiver obtained from

(∆, R) by applying the APR-
ore�e
tion at x followed by the 
omposition ofthe HW-
ore�e
tion at x′
q1−1 and the APR-re�e
tion at x′

q1−1 applied q1 −1times, then
R′ = (R \ {α′

q1−1α
′
q1
}) ∪ {α′

q1−1αp1
},

∆′(1) =





•
u

•
x1

α1oo •
xp1−1

· · ·oo
αp1 // •

x

α′

q1−1 // •
x′

q1−2

· · · // •
v

if p1 > 1,
•
u

α1 // •
x

α′

q1−1 // •
x′

q1−2

· · · // •
v if p1 = 1,

∆′(2) = •
u

β1 // •
y1

· · · // •
yp2−1

βp2 // •
x′

q1−1

α′

q1 // •
v

,

∆′(3) = •
u

•
z1

γ1oo •
zp3−1

· · ·oo •
v

γp3oo ,thus the 
laim follows by indu
tion.
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We may now prove Proposition 2.1. A

ording to our 
onsiderations wemay assume that (∆, R) is proper, and
∆(1) = •

u
•
x1

α1oo •
xp1−1

· · ·oo •
v

αp1oo ,

∆(2) = •
u

βp2 // •
yp2−1

· · · // •
y1

β1 // •
v

,

∆(3) = •
u

•
z1

γ1oo •
zp3−1

· · ·oo •
v

γp3oo ,for some p1, p2, p3 ∈ N+. Moreover, we may additionally assume that αiαi+1

6∈ R for all i ∈ [1, p1 − 1]. Let r2 be the number of i ∈ [1, p2 − 1] su
h that
βiβi+1 ∈ R and let r3 be the number of i ∈ [1, p3 − 1] su
h that γiγi+1 ∈ R.Observe that if either βp2

α1 ∈ R and γp3
β1 ∈ R, or βp2

γ1 ∈ R and
αp1

β1 ∈ R, then the 
laim follows from Proposition 1.16, thus we have to
onsider two remaining 
ases.Assume �rst that βp2
α1 ∈ R and αp1

β1 ∈ R. In this 
ase by shiftingthe relation βp2
α1 to the right we may assume that p1 = 1. If r3 = 0,then the bound quiver algebra of (∆, R) is tilting-
otilting equivalent to

Λ1(p2, 1, p3, 0, r2) (observe that r2 ≥ 1 sin
e (∆, R) is a bound quiver).On the other hand, if there exists i ∈ [1, p3 − 1] su
h that γiγi+1 ∈ R,then by shifting relations we may assume that γ1γ2 ∈ R. Consequently,the bound quiver algebra of the bound quiver obtained from (∆, R) by ap-plying the generalized APR-re�e
tion at u is tilting-
otilting equivalent to
Λ2(p2 + 1, p3, 0, r2 + 1, r3 − 1), and this �nishes the proof in this 
ase.Assume now that βp2

γ1 ∈ R and γp3
β1 ∈ R. In this 
ase it follows byshifting relations that the bound quiver algebra of (∆, R) is tilting-
otiltingequivalent to Λ1(p2 + p3 − r3 − 1, r3 + 1, p1, 0, r2) (again r2 ≥ 1 sin
e (∆, R)is a bound quiver), and this �nishes the proof.3. Minimality of the list. In this se
tion we prove that di�erent alge-bras from the list in Theorem 1 are not derived equivalent. We also 
he
k thatthe algebras listed in Theorem 1 are nondegenerate, while the algebras listedin Theorem 2 are degenerate. A tool used in order to distinguish betweenderived equivalen
e 
lasses of these algebras will be the derived invariantintrodu
ed by Avella-Alaminos and Geiss in [7℄.Let (∆, R) be a gentle quiver. By a permitted thread in (∆, R) we meaneither a maximal path in (∆, R), or x ∈ ∆0 su
h that there is at mostone arrow α with sα = x, there is at most one arrow β with tβ = x, and

αβ 6∈ R for all α, β ∈ ∆1 with sα = x = tβ. Similarly, we de�ne the notionof a forbidden thread in (∆, R). Namely, �rst we say that by an anti-pathin (∆, R) we mean a path α1 · · ·αn in ∆ su
h that αiαi+1 ∈ R for all
i ∈ [1, n−1]. In parti
ular, every trivial path is an anti-path. By a forbidden
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thread we mean either a maximal anti-path in (∆, R), or x ∈ ∆0 su
h thatthere is at most one arrow α with sα = x, there is at most one arrow β with
tβ = x, and αβ ∈ R for all α, β ∈ ∆1 with sα = x = tβ.By a 
hara
teristi
 sequen
e in a gentle bound quiver (∆, R) we mean asequen
e (σi, τi)i∈Z of permitted threads σi, i ∈ Z, and forbidden threads τi,
i ∈ Z, su
h that for ea
h i ∈ Z the following 
onditions are satis�ed:(1) tτi = tσi and sσi+1 = sτi,(2) if σi = x = τi for x ∈ ∆0, then σi+1 6= x, unless ∆1 = ∅,(3) if τi = x = σi+1 for x ∈ ∆0, then τi+1 6= x, unless ∆1 = ∅,(4) if neither σi nor τi is a trivial path, then the terminating arrow of τidi�ers from the terminating arrow of σi,(5) if neither τi nor σi+1 is a trivial path, then the starting arrow of σi+1di�ers from the starting arrow of τi.We identify 
hara
teristi
 sequen
es (σi, τi)i∈Z and (σ′

i, τ
′
i)i∈Z if there exists

l ∈ Z su
h that σi = σ′
i+l and τi = τ ′

i+l for all i ∈ Z. By the type of the
hara
teristi
 sequen
e (σi, τi)i∈Z we mean a pair (n, m) ∈ N×N de�ned by
n = min{l ∈ N+ | σl = σ0} and m =

∑
i∈[1,n] ℓ(τi). In the above situation wealso write (σ1, τ1, . . . , σn, τn) instead of (σi, τi)i∈Z. Additionally, we also 
alla sequen
e (αi)i∈Z of arrows in ∆ a 
hara
teristi
 sequen
e if sαi = tαi+1and αiαi+1 ∈ R for all i ∈ Z. Again we identify sequen
es (αi)i∈Z and

(α′
i)i∈Z if there exists l ∈ Z su
h that αi = α′

i+l for all i ∈ Z. The type ofa 
hara
teristi
 sequen
e (αi)i∈Z of the above type is by de�nition (0, m),where m = min{l ∈ N+ | αl = α0}. In the above situation we also write
α1 · · ·αm instead of (αi)i∈Z.If (∆, R) is a gentle bound quiver, then the fun
tion φ∆,R : N × N → N,where φ∆,R(n, m) is the number of the 
hara
teristi
 sequen
es of type (n, m)for (n, m) ∈ N × N, is a derived invariant, i.e. if (∆, R) and (∆′, R′) arederived equivalent gentle bound quivers, then φ∆,R = φ∆′,R′ . If Λ is thebound quiver algebra of a gentle bound quiver (∆, R), then we also write φΛinstead of φ∆,R. We will write φ∆,R as a �multi-set� [(n1, m1), . . . , (nl, ml)],where (n, m) appears φ∆,R(n, m) times.We 
al
ulate the values of the above invariant for algebras appearing inTheorems 1 and 2, and this will �nish the proofs of these theorems. Theproof of the following lemma is left to the reader as an easy exer
ise.Lemma 3.1. We have the following.(1) If p ∈ N+ and r ∈ [0, p − 1], then

φΛ0(p,r) = [(p, p + 2)].(2) If p ∈ N+, then
φΛ′

0
(p,0) = [(p + 1, p + 3)].
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(3) If p1, p2 ∈ N+, p3, p4 ∈ N, and r1 ∈ [0, p1−1] are su
h that p2+p3 ≥ 2and r1 + p4 ≥ 1, then
φΛ1(p1,p2,p3,p4,r1) = [(p1−r1−1, p1+p2), (p2+p3−1, p3), (r1+p4, p4)].(4) If p1, p2 ∈ N+, p3 ∈ N, r1 ∈ [0, p1 − 1], r2 ∈ [0, p2 − 1], are su
h that
p3 + r1 + r2 ≥ 1, then
φΛ2(p1,p2,p3,r1,r2) = [(p1−r1−1, p1), (p2−r2−1, p2), (r1+r2 +p3, p3)].
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