VOL. 112

2008

NO. 1

L²-DATA DIRICHLET PROBLEM FOR WEIGHTED FORM LAPLACIANS

ВY

WOJCIECH KOZŁOWSKI (Łódź)

Abstract. We solve the L^2 -data Dirichlet boundary problem for a weighted form Laplacian in the unit Euclidean ball. The solution is given explicitly as a sum of four series.

1. Introduction and preliminaries. We work with weighted form Laplacians $L = L_{a,b} = ad\delta + b\delta d$, a, b > 0, acting on the space of *p*-differential forms in \mathbb{R}^n . These operators give a subclass of so called *non-minimal* operators (cf. [2]). If a = b = 1, $L_{a,b}$ is just the Laplace–Beltrami operator $\Delta = d\delta + \delta d$. If a = (n-1)/n, b = 1/2 and p = 1, then $L_{a,b}$ corresponds to the Ahlfors–Laplace operator S^*S . The correspondence is given by the natural duality between the space of vector fields and one-forms. For more details see [9, 10].

Since $L = (\sqrt{a\delta} + \sqrt{bd})^* (\sqrt{a\delta} + \sqrt{bd})$, L is strongly elliptic, but in contrast to Δ , the principal symbol of L is not of metric type except when a = b. This causes the $L_{a,b}$ theory to be more complicated than the theory of Δ .

In [1] Ahlfors solved the Dirichlet boundary problem for S^*S in the hyperbolic ball. Reimann [11] solved the L^2 -data Dirichlet problem for the Ahlfors-Laplace operator for the Euclidean ball and vector fields; the solution is given as a sum of three series. Next Lipowski [7] solved the equation $S^*S = 0$ for some boundary conditions of Neumann type.

In [5, 4] the author investigated the operator $L_{a,b}$ in the space of polynomial *p*-forms in \mathbb{R}^n and solved the polynomial-data Dirichlet boundary problem for L and the Euclidean ball in [5]. Next in [6] A. Pierzchalski and the author solved the so called *elliptic boundary problems* in the sense of Gilkey and Smith for the operator L in the Euclidean ball for polynomial *p*-forms.

In the present paper we adopt Reimann's method and solve the L^2 -data Dirichlet problem for the operator $L_{a,b}$ in the Euclidean unit ball and for

²⁰⁰⁰ Mathematics Subject Classification: Primary 35J25; Secondary 35J67, 34K10.

Key words and phrases: weighted form Laplacian, Laplace operator, polynomial pform, Dirichlet boundary problem.

differential forms of arbitrary degree. By analogy with [11], our solution is given as a sum of four series. In the special case of p = 1, $L = S^*S$, one of the series degenerates and our solution coincides with that from [11]. The main tool we use is an SO(n)-invariant decomposition of ker L.

1.1. Spherical harmonics—basic facts. We briefly review some basic properties of homogeneous polynomials and spherical harmonics. For more details we refer to [3] and [12, Ch. IV §2].

We work in \mathbb{R}^n , $n \geq 3$. Σ , $d\Sigma$ and $d\sigma$ denote the unit sphere in \mathbb{R}^n , the Lebesgue measure and the normalized Lebesgue measure on Σ , respectively. B and \overline{B} denote the open and closed unit ball in \mathbb{R}^n , respectively. If $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a multi-index then $\alpha! = \alpha_1! \cdots \alpha_n!$, $x^{\alpha} = (x^1)^{\alpha_1} \cdots (x^n)^{\alpha_n}$, $D^{\alpha} = (\partial/\partial x^1)^{\alpha_1} \cdots (\partial/\partial x^n)^{\alpha_n}$. If $f = \sum_{\alpha} a_{\alpha} x^{\alpha}$ is a polynomial in \mathbb{R}^n then $f(D) = \sum_{\alpha} a_{\alpha} D^{\alpha}$.

 \mathcal{P}_k denotes the space of all homogeneous polynomials in \mathbb{R}^n of degree k. Obviously, f(D) maps \mathcal{P}_l into \mathcal{P}_{l-k} . Define an inner product $(\cdot, \cdot) = (\cdot, \cdot)_k$ in \mathcal{P}_k as follows; (f,g) = f(D)g for $f,g \in \mathcal{P}_k$. (Since f and g are both homogeneous polynomials of the same degree, (f,g) = f(D)g is a constant function. We may and we will identify this function with its unique value.) Clearly, for any $f \in \mathcal{P}_k$, $g \in \mathcal{P}_l$ and $h \in \mathcal{P}_{k+l}$, $(gf,h)_{k+l} = (f,g(D)h)_k$.

 $|\cdot| = \sqrt{\langle \cdot, \cdot \rangle}$ denotes the Euclidean norm in \mathbb{R}^n . The polynomial $r^2(x) = |x|^2$ belongs to \mathcal{P}_2 . The differential operator $-r^2(D)$ is the classical Laplace operator $\Delta = -\sum_{j=1}^n (\partial/\partial x^j)^2$.

Let $\mathcal{H}_k = \{h \in \mathcal{P}_k : \Delta h = 0\}$ be the space of all *harmonic* homogeneous polynomials of degree k. The *spherical harmonics* of degree k are the restrictions of the members of \mathcal{H}_k to Σ . For the sake of the homogeneity, we may and will identify the space of spherical harmonics of degree k with \mathcal{H}_k .

Let $L^2(\Sigma)$ denote the Hilbert space of square integrable functions $\Sigma \to \mathbb{R}$ with the inner product $(f,g)_{\sigma} = \int_{\Sigma} fg \, d\sigma$ and the norm $||f||_{\sigma} = \sqrt{(f,f)_{\sigma}}$. The inner products in $L^2(\Sigma)$ and in \mathcal{H}_k are related as follows ([3, p. 147]):

(1.1.1)
$$(f,g)_{\sigma} = (n-2) \prod_{j=0}^{k} \frac{1}{2j+n-2} (f,g)_{k}, \quad f,g \in \mathcal{H}_{k}.$$

It is very well known ([12, Ch. IV, §2]) that if $k \neq l$ then \mathcal{H}_k and \mathcal{H}_l are mutually orthogonal (in $L^2(\Sigma)$) and

(1.1.2)
$$L^{2}(\Sigma) = \bigoplus_{k=0}^{\infty} \mathcal{H}_{k},$$

i.e., if $h_{k,i}$, $i = 1, \ldots, d_k = \dim \mathcal{H}_k$, is an orthonormal (in $L^2(\Sigma)$) basis of \mathcal{H}_k , then $h_{k,i}$, $k = 0, 1, \ldots, i = 1, \ldots, d_k$, is an orthonormal basis of $L^2(\Sigma)$. Suppose $h \in \mathcal{H}_k$, k > 0. Fix $R, R' \in (0, 1)$, R' < R, and put $C(R) = (1 - R^2)(1 - R)^{-n}$ and $\varepsilon = R'/R$. Clearly $\varepsilon < 1$. Then for any |y| < R', (1.1.3) $|h(y)| \le \varepsilon^k C(R) ||h||_{\sigma}$.

Proof of (1.1.3). If y = 0 then (1.1.3) is obvious. Let $y \neq 0$. By the Poisson formula

$$h(y) = \int_{\Sigma} P(x, y) h(x) \, d\sigma(x), \qquad P(x, y) = \frac{1 - |y|^2}{|y - x|^n}.$$

By the above, the homogeneity of h and the estimates

$$|y|R^{-1} < \varepsilon, \quad P(x, R|y|^{-1}y) \le C(R),$$

we obtain

$$\begin{aligned} |h(y)| &\leq \varepsilon^k \Big| \int_{\Sigma} P(x, R|y|^{-1}y) h(x) \, d\sigma(x) \Big| \\ &\leq \varepsilon^k \int_{\Sigma} |C(R)h(x)| \, d\sigma(x) \leq \varepsilon^k C(R) ||h||_{\sigma}. \end{aligned}$$

Let $(g_{k,j}: k \ge 0, 1 \le j \le l_k \le d_k)$ be any sequence of spherical harmonics such that $g_{k,j} \in \mathcal{H}_k$. Suppose that $(g_{k,j})$ is bounded in $L^2(\Sigma)$. Put

$$s = \sum_{k,j} g_{k,j}.$$

LEMMA 1.1.1. Let $a_{k,j}$ be a sequence of reals such that $\sum_{k,j} a_{k,j}^2 < \infty$. Then for any sequence w_k of polynomial growth (i.e., $|w_k| < Mk^N$ for some positive integer N and M > 0) and |x| < R' we have

$$\sum_{k,j} |a_{k,j} w_k g_{k,j}(x)| \le C(R) \Big(\sum_{k,j} a_{k,j}^2 \Big)^{1/2} \Big(\sum_{k,j} \varepsilon^{2k} w_k^2 \|g_{k,j}\|_{\sigma}^2 \Big)^{1/2} < \infty.$$

LEMMA 1.1.2. The series s converges absolutely and uniformly on compact sets in the unit ball to a harmonic function. Moreover, for any multiindex α , the series $\sum_{k,i} D^{\alpha}g_{k,j}$ converges absolutely and uniformly on compact sets to $D^{\alpha}s$.

Lemma 1.1.1 follows from (1.1.3) and the fact that the series $\sum_k d_k k^N \varepsilon^k$ converges. Lemma 1.1.2 also follows from those two properties and the Weierstrass theorem. The details are left to the reader.

1.2. Spaces Λ_k^p and $L^{2,p}(\Sigma)$. Consider any p-form ω defined in a subset $A \subset \mathbb{R}^n$. If p = 0 we identify ω with a function on A. Assume that any p-form, p < 0, is the zero form. If $p \ge 1$ then ω has the unique expression

$$\omega = \frac{1}{p!} \sum_{i_1,\dots,i_p=1}^n \omega_{i_1,\dots,i_p} dx^{i_1} \wedge \dots \wedge dx^{i_p},$$

where the coefficients ω_{i_1,\ldots,i_p} are skew-symmetric with respect to their indices. Let A be any subset of \mathbb{R}^n . We say that ω is a *differential p*-form on A, and we write $\omega \in \Lambda^p(A)$, if ω is defined and smooth, i.e., C^{∞} , on some open set containing A. If α and β are p-forms defined in A, their pointwise inner product is simply the function $\alpha\beta: A \to \mathbb{R}$ given by

(1.2.1)
$$\alpha\beta = \frac{1}{p!} \sum_{i_1,\dots,i_p=1}^n \alpha_{i_1,\dots,i_p} \beta_{i_1,\dots,i_p}.$$

Let d and δ denote the (exterior) differential and co-differential, respectively. Put $\nu^{\star} = (1/2)dr^2$, i.e., $\nu_x^{\star} = x^1 dx^1 + \cdots + x^n dx^n$.

Let $\varepsilon_{\nu} = \nu^* \wedge$ and $\iota_{\nu} = \nu^* \vee$ denote the operators of exterior product and contraction with ν^* . Recall that ι_{ν} is adjoint to ε_{ν} with respect to the pointwise inner product defined above, i.e., $(\varepsilon_{\nu}\alpha)\beta = \alpha(\iota_{\nu}\beta)$. We have

(1.2.2)
$$r^2\omega = (\iota_{\nu}\varepsilon_{\nu} + \varepsilon_{\nu}\iota_{\nu})\omega.$$

Relations between d, δ , ι_{ν} and ε_{ν} will play an important role in our considerations. For example, Theorem 1.2.1 shows that with respect to the inner product $(\cdot|\cdot)$ (introduced below) the adjoint operators to d and δ are ι_{ν} and $-\varepsilon_{\nu}$. Combining Theorem 1.2.1 with (1.1.1) we get in a simple way some orthogonality relations in the space $L^{2,p}(\Sigma)$ (defined below). In fact, the kernel of a weighted form Laplacian (in the space of polynomial forms) can be reconstructed from the space ker $\Delta \cap \ker \delta \cap \ker \iota_{\nu}$.

As a consequence of the above and the Green formula we find that for any smooth $\omega, \eta \in \Lambda^p(\overline{B})$,

(1.2.3)
$$\int_{B} (d\omega)\eta \, dx = \int_{B} \omega(\delta\eta) \, dx + \int_{\Sigma} \omega(\iota_{\nu}\eta) \, d\Sigma,$$

where dx denotes Lebesgue measure in \mathbb{R}^n .

REMARK. (1.2.3) is a very special case of a much more general formula for manifolds with boundary (cf. [8, Ch. IV]).

Let $L^{2,p}(\Sigma)$ be the space of *p*-forms (defined on Σ) with all coefficients in $L^2(\Sigma)$. Equipped with the inner product $(\cdot, \cdot)_{\sigma} = (\cdot, \cdot)_{\sigma,p}$, where

$$(\alpha,\beta)_{\sigma} = \int_{\Sigma} \alpha\beta \, d\sigma, \quad \alpha,\beta \in L^{2,p}(\Sigma),$$

 $L^{2,p}(\Sigma)$ is a Hilbert space. Here $\alpha\beta$ denotes the pointwise inner product (1.2.1).

The proofs of the properties stated below can be found in [5, §2.2]. A *p*-form ω is called a *polynomial p-form* if $A = \mathbb{R}^n$ and the ω_{i_1,\ldots,i_p} 's are polynomials. Denote by Λ^p the vector space of all polynomial *p*-forms in \mathbb{R}^n . A polynomial *p*-form ω is called *homogeneous* if all coefficients are from \mathcal{P}_k , for some *k*. Such a form will also be called a (p/k)-form. Λ^p_k denotes the vector space of all (p/k)-forms. We have $\Lambda_k^0 = \mathfrak{P}^k$, and Λ_k^n is isomorphic to \mathfrak{P}^k in a natural way. Moreover, it is convenient to put $\Lambda_k^p = \{0\}$ if either p < 0 or k < 0. We extend the inner product $(\cdot, \cdot)_k$ to Λ_k^p by setting

(1.2.4)
$$(\omega|\eta)_{p,k} = \frac{1}{p!} \sum_{i_1,\dots,i_p=1}^n (\omega_{i_1,\dots,i_p},\eta_{i_1,\dots,i_p})_k,$$

where $\omega, \eta \in \Lambda_k^p$ while $\omega_{i_1,...,i_p}$'s and $\eta_{i_1,...,i_p}$'s denote their coefficients. Notice that $(\cdot|\cdot)_{0,k}$ and $(\cdot,\cdot)_k$ coincide. We will frequently write $(\cdot|\cdot)$ instead of $(\cdot|\cdot)_{p,k}$ if the values of p and k are evident. We have

(1.2.5)
$$d\varepsilon_{\nu} = -\varepsilon_{\nu}d \text{ and } \delta\iota_{\nu} = -\iota_{\nu}\delta.$$

PROPOSITION 1.2.1. Suppose ω is a (p/k)-form. Then

$$\delta \varepsilon_{\nu} \omega = -\varepsilon_{\nu} \delta \omega - (n - p + k) \omega, \quad d\iota_{\nu} \omega = -\iota_{\nu} d\omega + (p + k) \omega.$$

PROPOSITION 1.2.2. For any polynomial form ω we have

$$d(r^{2}\omega) = r^{2}d\omega + 2\varepsilon_{\nu}\omega, \quad \delta(r^{2}\omega) = r^{2}\delta\omega - 2\iota_{\nu}\omega.$$

THEOREM 1.2.1. Consider d and δ as operators $d : \Lambda_k^p \to \Lambda_{k-1}^{p+1}$ and $\delta : \Lambda_k^p \to \Lambda_{k-1}^{p-1}$. Let d^* and δ^* denote their respective adjoints (with respect to the inner product (\cdot, \cdot)). Then, for any (p/k)-form ω , $\delta^*\omega = -\varepsilon_{\nu}\omega$ and $d^*\omega = \iota_{\nu}\omega$.

1.3. Weighted form Laplacians. We briefly review the relevant facts of $L_{a,b}$ theory. Demonstrations of the assertions listed without proofs in this section can be found in [5, §3]. Consider a weighted form Laplacian $L = L_{a,b} = ad\delta + b\delta d$, a, b > 0. For a = b = 1, $L_{1,1}$ is just the Laplace–Beltrami operator $\Delta = d\delta + \delta d$. Notice that in the case of differential 0-forms, i.e. smooth functions, the Laplace–Beltrami operator $L_{1,1}$ and the classical Laplace operator coincide.

For any differential form ω in \mathbb{R}^n , $(\Delta \omega)_{i_1,\ldots,i_p} = \Delta \omega_{i_1,\ldots,i_p}$; thus ω is harmonic $(\Delta \omega = 0)$ iff its coefficients are harmonic functions. In particular, a (p/k)-form ω is harmonic iff every $\omega_{i_1,\ldots,i_p} \in \mathcal{H}_k$.

Denote by \mathfrak{H}_k^p the space of all harmonic (p/k)-forms, i.e., $\mathfrak{H}_k^p = \ker \Delta \cap \Lambda_k^p$. Consider $L = L_{a,b}$ as an operator $L : \Lambda_k^p \to \Lambda_{k-2}^p$, and let \mathfrak{L}_k^p be its kernel. If k = 0, 1 then $\Lambda_k^p = \mathfrak{L}_k^p = \mathfrak{H}_k^p$. Moreover, $\mathfrak{L}_k^0 = \mathfrak{H}_k$ and \mathfrak{L}_k^n is isomorphic to \mathfrak{H}_k in a natural way.

For any $0 \le p \le n$ and $k \ge 0$ put

$$\chi^0_{p,k} = \mathfrak{H}^p_k \cap \ker \delta \cap \ker \iota_\nu.$$

It is also convenient to put $\chi^0_{q,l} = \{0\}$ if either q < 0 or l < 0. Manifestly, $\mathfrak{H}^0_k = \chi^0_{0,k} = \mathcal{H}_k$ and $\mathfrak{H}^p_0 = \Lambda^0_0$. Next define

$$I_L(p,k) = \varepsilon_{\nu} - c_L(p,k)r^2d : \Lambda_k^p \to \Lambda_{k-1}^{p-1},$$

where

(1.3.1)
$$c_L(p,k) = \begin{cases} \frac{1}{2} \frac{2b - (b-a)(n-p+k)}{a(p+k-2) + b(n-p+k-2)} & \text{if } k \ge 2, \ 0$$

Notice that our assumption $(a, b > 0 \text{ and } n \ge 3)$ ensures that $c_L(p, k)$ is well-defined. Observe that in the very special case a = b = 1, i.e., $L = \Delta$, the above constant is

(1.3.2)
$$c_{\Delta}(p,k) = \begin{cases} 1/(n+2k-4) & \text{if } k \ge 2, \ 0$$

The decomposition below is the key step in the proof of the main theorem. For the proof see [5, Theorem 3.3.1]. For any $0 \le p \le n$ and $k \ge 0$ the space \mathfrak{L}_k^p is the direct sum of four mutually orthogonal $\mathsf{SO}(n)$ -invariant subspaces:

(1.3.3)
$$\mathfrak{L}_k^p = \chi_{p,k}^0 \oplus^{\perp} d\chi_{p-1,k+1}^0 \oplus^{\perp} \varepsilon_{\nu} d\chi_{p-2,k}^0 \oplus^{\perp} I_L(p,k) \chi_{p-1,k-1}^0.$$

Moreover, $\chi^0_{p,k}$, $d\chi^0_{p-1,k+1}$ and $\varepsilon_{\nu} d\chi^0_{p-2,k}$ are subspaces of \mathfrak{H}^p_k . In particular,

(1.3.4)
$$\mathfrak{H}_{k}^{p} = \chi_{p,k}^{0} \oplus^{\perp} d\chi_{p-1,k+1}^{0} \oplus^{\perp} \varepsilon_{\nu} d\chi_{p-2,k}^{0} \oplus^{\perp} I_{\Delta}(p,k) \chi_{p-1,k-1}^{0}$$

Note that in (1.3.3) or (1.3.4) some subspaces may degenerate or split into finer SO(n)-subspaces ([5, §5.2]). In particular,

(1.3.5)
$$\chi^0_{p,0} = \{0\} \text{ for } p > 0,$$

(1.3.6)
$$I_L(n,2)(\chi^0_{n-1,1}) = \{0\}.$$

REMARK. In view of (1.3.6), a natural question is whether $\chi_{n-1,1}^0 = \{0\}$. The answer is: No. Namely, it is easy to observe that the form $\omega = \iota_{\nu}(dx^1 \wedge \cdots \wedge dx^n)$ is in $\chi_{n-1,1}^0$. In fact, $\chi_{n-1,1}^0$ is one-dimensional and is spanned by ω . To see this, we use property (i) from §2.1 below. Since $d: \chi_{n-1,1}^0 \to \mathfrak{H}_0^n$ is one-to-one and obviously dim $\mathfrak{H}_0^n = 1$, we conclude that $\chi_{n-1,1}^0$ must be one-dimensional. Therefore, $\chi_{n-1,1}^0 = \operatorname{span}\{\omega\}$.

2. Dirichlet boundary problem

2.1. Bases of \mathfrak{L}_k^p and $L^{2,p}(\mathfrak{L})$ and relations between them. Assume that $0 \leq p \leq n$ and $k \geq 0$. We identify the spaces Λ_k^p and $\{\omega | \mathfrak{L} : \omega \in \Lambda_k^p\}$, for any $\omega \in \Lambda_k^p$ is uniquely determined by its restriction to \mathfrak{L} . As a direct consequence of (1.1.1) we see that for any $\alpha, \beta \in \mathfrak{H}_k^p$,

(2.1.1)
$$(\alpha, \beta)_{\sigma,p} = s_k(\alpha, \beta)_{p.k}, \quad s_k = (n-2) \prod_{j=0}^k \frac{1}{2j+n-2}.$$

In particular, the decomposition (1.3.4) is orthogonal in $L^{2,p}(\Sigma)$.

Consequently, by (1.1.2) we get

$$L^{2,p}(\Sigma) = \bigoplus_{k=0}^{\infty} {}^{\perp}(\chi^0_{p,k} \oplus {}^{\perp} d\chi^0_{p-1,k+1} \oplus {}^{\perp} \varepsilon_{\nu} d\chi^0_{p-2,k} \oplus {}^{\perp} I_{k,\Delta} \chi^0_{p-1,k-1})$$

Consider now the subspace $\chi_{q,l}^0$ and put $\mu_l^q = \dim \chi_{q,l}^0$. Moreover, let $E_l^q = \{\eta_{l,i}^q : i = 1, \dots, \mu_l^q\}$ be an L^2 -orthonormal basis of $\chi_{q,l}^0$. If $\chi_{q,l}^0 = \{0\}$, it is convenient to treat E_l^q as a set which contains only the zero form. Now we are going to build an L^2 -orthonormal basis of \mathfrak{H}_k^p from E_l^q 's. To do this we will need the following ([5, Proposition 3.2.1, Lemma 3.2.1]):

(i) If
$$0 and $k \ge 0$ then for any $\eta', \eta'' \in \chi^0_{p-1,k+1}$,
 $(d\eta'|d\eta'') = (p+k)(\eta'|\eta'').$$$

In particular, $d: \chi^0_{p-1,k+1} \to \chi_{p,k}$ is one-to-one. (ii) If $2 \le p \le n$ and $k \ge 0$ then for any $\eta', \eta'' \in \chi^0_{p-2,k}$,

$$(\varepsilon_{\nu}d\eta'|\varepsilon_{\nu}d\eta'') = (n-p+k)(d\eta'|d\eta'').$$

In particular, $\varepsilon_{\nu} : d\chi^0_{p-2,k} \to \mathfrak{H}^p_k$ is one-to-one. (iii) If $p \ge 1$ and $k \ge 1$ then for any $\eta', \eta'' \in \chi^0_{p-1,k-1}$,

$$(I_{\Delta}(p,k)\eta'|I_{\Delta}(p,k)\eta'') = \frac{(n+k-p-2)(n+2k-2)}{(n+2k-4)} (\eta'|\eta'').$$

In particular, if $p \neq n$ or $k \neq 2$ then $I_{\Delta}(p,k) : \chi^0_{p-1,k-1} \to \mathfrak{H}^p_k$ is one-to-one.

REMARK. The constant in case (iii) is equal to 0 iff n+k-p-2=0. This implies that p=n-1 and k=1, or p=n and k=2. In the case p=n-1and k=1, $I_{\Delta}(p,k)$ maps the space $\chi^0_{n-2,0}$. But by (1.3.5), $\chi^0_{n-2,0} = \{0\}$ for $n \geq 3$. Therefore, our map is one-to-one. In the case p=n and k=2the situation is quite different. Namely, we have seen (1.3.6) that $I_{\Delta}(n,2)$ is the zero map, but $\chi^0_{n-1,1}$ is one-dimensional (remark below (1.3.6)). Therefore, the case p=n and k=2 must be excluded from the second part of (iii).

Points (a)–(c) below are direct consequences of (i)–(iii) and (2.1.1).

(a) Let p > 0 and $k \ge 0$. If $\mu_{k+1}^{p-1} \ge 1$ then the collection

$$\left\{\alpha_{k,j}^p = \frac{1}{\sqrt{(p+k)(2k+n)}} \, d\eta_{k+1,j}^{p-1} : \eta_{k+1,j}^{p-1} \in E_{k+1}^{p-1}\right\}$$

is an L^2 -orthonormal basis of $d\chi^0_{p-1,k+1}$.

(b) Let $p \ge 2, k \ge 1$. If $\mu_k^{p-2} \ge 1$ then the collection

$$\left\{\beta_{k,j}^{p} = \frac{1}{\sqrt{(n-p+k)(p+k-1)}} \varepsilon_{\nu} d\eta_{k,j}^{p-2} : \eta_{k,j}^{p-2} \in E_{k}^{p-2}\right\}$$

is an L^2 -orthonormal basis of $\varepsilon_{\nu} d\chi^0_{p-2,k}$.

(c) Let $p \ge 1$ and $k \ge 1$. If $\mu_{k-1}^{p-1} \ge 1$ then, except the case p = n and k = 2, the collection

$$\left\{\gamma_{k,j}^p = \sqrt{\frac{n+2k-4}{n+k-p-2}} I_{\Delta}(p,k) \eta_{k-1,j}^{p-1} : \eta_{k-1,j}^{p-1} \in E_{k-1}^{p-1}\right\}$$

is an L^2 -orthonormal basis of $I_{\Delta}(p,k)\chi^0_{p-1,k-1}$.

Moreover, we define $\alpha_{k,j}^p$, $\beta_{k,j}^p$ and $\gamma_{k,j}^p$ to be the zero form, in all the remaining cases. Summarizing we deduce

COROLLARY 2.1.1. The collection of all nonzero p-forms $\eta_{k,j}^p$, $\alpha_{k,j}^p$, $\beta_{k,j}^p$ and $\gamma_{k,j}^p$ is an L^2 -orthonormal basis of $L^{2,p}(\Sigma)$.

Consequently, every $\omega \in L^{2,p}(\Sigma)$ has a unique expression as an L^2 -orthogonal sum

(2.1.2)
$$\omega = \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_k^p} u_{k,j}^p \eta_j^p + \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k+1}^{p-1}} a_{k,j}^p \alpha_{k,j}^p + \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_k^{p-2}} b_{k,j}^p \beta_j^p + \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k-1}^{p-1}} c_{k,j}^p \gamma_{k,j}^p,$$

where, of course, the coefficients are given by

(2.1.3)
$$u_{k,j}^p = (\omega | \eta_{k,j}^p)_{\sigma,p}, \quad a_{k,j}^p = (\omega | \alpha_{k,j}^p)_{\sigma,p}$$
$$b_{k,j}^p = (\omega | \beta_{k,j}^p)_{\sigma,p}, \quad c_{k,j}^p = (\omega | \gamma_{k,j}^p)_{\sigma,p}$$

In particular, the L^2 -norm $\|\omega\|_{\sigma,p}$ is

$$\|\omega\|_{\sigma,p}^{2} = \sum_{k,j} |u_{k,j}^{p}|^{2} + \sum_{k,j} |a_{k,j}^{p}|^{2} + \sum_{k,j} |b_{k,j}^{p}|^{2} + \sum_{k,j} |c_{k,j}^{p}|^{2}.$$

(d) Suppose $\mu_{k-1}^{p-1} \ge 1$. If p < n or $k \neq 2$ then the collection

$$\{\varepsilon_{\nu}\eta_{k-1,j}^{p-1}:\eta_{k-1,j}^{p-1}\in E_{k-1}^{p-1}\}$$

is an L^2 -orthonormal system in $L^{2,p}(\Sigma)$.

Proof of (d). Take any $\eta_{k-1,i}^{p-1}, \eta_{k-1,j}^{p-1} \in E_{k-1}^{p-1}$. Then on Σ we have $\varepsilon_{\nu}\eta_{k-1,i}^{p-1} = A_{p,k}\alpha_{k-2,i}^{p} + C_{p,k}\gamma_{k,i}^{p}, \quad \varepsilon_{\nu}\eta_{k-1,j}^{p-1} = A_{p,k}\alpha_{k-2,j}^{p} + C_{p,k}\gamma_{k,j}^{p},$ where

(2.1.4)
$$A_{p,k} = \sqrt{\frac{p+k-2}{n+2k-4}}, \quad C_{p,k} = \sqrt{\frac{n+k-p-2}{n+2k-4}}.$$

By the orthogonality relations (a) and (c), we obtain

$$(\varepsilon_{\nu}\eta_{k-1,i}^{p-1}|\varepsilon_{\nu}\eta_{k-1,j}^{p-1})_{\sigma,p} = \frac{n+k-p-2}{n+2k-4} (\gamma_{k,i}^{p}|\gamma_{k,j}^{p})_{\sigma,p} + \frac{(p+k-2)(n+2k-4)}{(n+2k-4)^{2}} (\alpha_{k-2,i}^{p}|\alpha_{k-2,j}^{p})_{\sigma,p}$$

$$= \delta_{k+1} (\text{the Kronecker symbol})$$

(the Kronecker symbol). $= \delta_{i,j}$

Our task is to build a collection of polynomial p-forms belonging to the kernel of L such that their restrictions to the unit sphere consist a complete basis in $L^{2,p}(\Sigma)$. By (1.3.3) and the decomposition of $L^{2,p}(\Sigma)$ we may suppose that all *p*-forms $\eta_{k,j}^p$, $\alpha_{k,j}^p$ and $\beta_{k,j}^p$ belong to our basis. The only thing we have to do is to slightly modify the forms $\gamma_{k,i}^p$.

(e) Suppose $\mu_{k-1}^{p-1} \ge 1$. If p < n or $k \ne 2$ then the collection

$$\left\{\tau_{k,j}^{p} = \frac{1}{C_{p,k}} I_{L}(p,k)\eta_{k-1,j}^{p-1} + \frac{c(p,k)}{C_{p,k}} d\eta_{k-1,j}^{p-1} : \eta_{k-1,j}^{p-1} \in E_{k-1}^{p-1}\right\}$$

restricted to Σ is an L^2 -orthonormal system in $L^{2,p}(\Sigma)$. More precisely, $\tau_{k,j}^p = \gamma_{k,j}^p$ on Σ . Each $\tau_{k,j}^p$ is a member of ker L. Here c(p,k) = $(c_L(p,k) - c_\Delta(p,k))$, whereas $C_{p,k}$ is defined in (2.1.4). (f) Suppose $\mu_{k-1}^{p-1} \ge 1$. If p < n or $k \ne 2$ then the collection

$$\{\psi_{k,j}^p = \varepsilon_{\nu} \eta_{k-1,j}^{p-1} + c_L(p,k)(1-r^2) d\eta_{k-1,j}^{p-1} : \eta_{k-1,j}^{p-1} \in E_{k-1}^{p-1}\}$$

restricted to Σ is an L^2 -orthonormal system in $L^2(\Sigma)$. More precisely, $\psi_{k,i}^p = \varepsilon_{\nu} \eta_{k-1,i}^{p-1}$ on Σ . Each $\psi_{k,i}^p$ is a member of ker L.

Points (e) and (f) are direct consequences of (c), (d) and the decomposition (1.3.3). Note that $\tau_{k,j}^p$ and $\psi_{k,j}^p$ are not homogeneous. Moreover, we define $\tau_{k,i}^p$ and $\beta_{k,i}^p$ to be the zero form in all the remaining cases.

Observe that

(2.1.5)
$$\psi_{k,j}^p = C_{p,k} \gamma_{k,j}^p + (c_L(p,k) - c(p,k)r^2) \sqrt{(p+k-2)(2k+n-4)} \alpha_{k-2,j}^p.$$

Consequently, there exists a constant N = N(n, p) > 0 such that for any x and any coefficient $\psi^p_{k,j;i_1,\ldots,i_p}$ of $\psi^p_{k,j}$,

(2.1.6)
$$|\psi_{k,j;i_1,\dots,i_p}^p(x)| \le N |\gamma_{k,j;i_1,\dots,i_p}^p(x)| + Nk |\alpha_{k,j;i_1,\dots,i_p}^p(x)|.$$

Now we are in a position to introduce two collections of forms, \mathcal{E}^p and \mathcal{F}^p , having properties described above. We do this as follows:

- ε^p consists of all non-zero p-forms η^p_{k,j}, α^p_{k,j}, β^p_{k,j} and τ^p_{k,j}.
 F^p consists of all non-zero p-forms η^p_{k,j}, α^p_{k,j}, β^p_{k,j} and ψ^p_{k,j}.
- (A) The members of \mathcal{E}^p lie in ker L. The collection \mathcal{E}^p restricted to Σ is an L^2 -orthonormal basis of $L^{2,p}(\Sigma)$.
- (B) The members of \mathcal{F}^p lie in ker L. The collection \mathcal{F}^p restricted to Σ is an L^2 -complete (but not orthogonal) basis in $L^{2,p}(\Sigma)$.

Proof. (A) is a direct consequence of (c) and (e). Consider (B). Clearly, each member of \mathcal{F}^p lies in ker L. We must show that the restrictions of members of \mathcal{F}^p to Σ are linearly independent and that \mathcal{F}^p restricted to Σ is a complete system in $L^{2,p}(\Sigma)$. By (2.1.5), on Σ we have

$$\psi_{k,j}^p = A_{p,k}\alpha_{k-2,j}^p + C_{p,k}\gamma_{k,j}^p.$$

On the other hand, directly by the definition of \mathcal{E}^p , we have $C_{p,k} \neq 0$, and moreover $\gamma_{k,j}^p = 0$ iff $\eta_{k-1,j}^{p-1} = 0$. This means that on Σ : (1) Each $\gamma_{k,j}^p$ is a linear combination of members of \mathcal{F}^p , thus \mathcal{F}^p restricted to Σ is complete, for \mathcal{E}^p is. (2) The members of \mathcal{F}^p are linearly independent, for the members of \mathcal{E}^p are. Points (1) and (2) together imply (B).

REMARK. The collection \mathcal{F}^p is a generalization of the complete basis found by H. M. Reimann in [11]. Unfortunately, \mathcal{F}^p restricted to Σ is not an orthonormal basis. Of course, any member \mathcal{F}^p has unit length, but $\psi^p_{k,i}$ and $\alpha_{k-2,j}^p$ may not be perpendicular, for $(\psi_{k,j}^p | \alpha_{k-2,j}^p)_{\sigma,p} = A_{p,k} \| \alpha_{k-2,j}^p \|_{\sigma,p}^2$.

Let us conclude this section with the following observation. Let $\omega \in$ $L^{2,p}(\Sigma)$. Then comparing coefficients on each level of homogeneity we conclude that

$$(2.1.7) \qquad \omega = \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_k^p} u_{k,j}^p \eta_j^p + \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k+1}^{p-1}} \widetilde{a}_{k,j}^p \alpha_{k,j}^p + \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_k^{p-2}} b_{k,j}^p \beta_j^p + \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_k^{p-1}} \widetilde{c}_{k,j}^p \psi_{k,j}^p,$$

where $u_{k,j}^p$ and $b_{k,j}^p$ are defined by (2.1.3), whereas

(2.1.8)
$$\widetilde{c}_{k,j}^p = \frac{1}{C_{p,k}} c_{k,j}^p, \quad \widetilde{a}_{k,j}^p = a_{k,j}^p - A_{p,k+2} \widetilde{c}_{k+2,j}^p,$$

i.e.,

$$\widetilde{c}_{k,j}^{p} = \sqrt{\frac{n+2k-4}{n+k-p-2}} c_{k,j}^{p}, \quad \widetilde{a}_{k,j}^{p} = a_{k,j}^{p} - \sqrt{\frac{p+k}{n-p+k}} c_{k+2,j}^{p}.$$

Next by the estimate $2|st| \leq s^2 + t^2$, $s, t \in \mathbb{R}$, we see that (cf. [11, p. 169])

$$\left(1 - \sqrt{\frac{p+k}{n+2k}}\right) (|\widetilde{a}_{k,j}^p|^2 + |\widetilde{c}_{k+2,j}^p|^2)$$

$$\leq |a_{k,j}^p|^2 + |c_{k+2,j}^p|^2 \leq \left(1 + \sqrt{\frac{p+k}{n+2k}}\right) (|\widetilde{a}_{k,j}^p|^2 + |\widetilde{c}_{k+2,j}^p|^2).$$

Consequently, there exists a positive constant M = M(n, p) (depending on p and n only) such that

$$(2.1.9) \quad \frac{1}{M} \|\omega\|_{\sigma}^{2} \leq \sum_{k,j} |u_{k,j}^{p}|^{2} + \sum_{k,j} |\widetilde{a}_{k,j}^{p}|^{2} + \sum_{k,j} |b_{k,j}^{p}|^{2} + \sum_{k,j} |\widetilde{c}_{k,j}^{p}|^{2} \\ \leq M \|\omega\|_{\sigma}^{2}.$$

2.2. L^2 -data Dirichlet boundary problem. Suppose η is any p-form in the unit ball B. For any $0 < t \leq 1$ let η_t be the t-dilatation of η , i.e., $(\eta_t)_{i_1,\ldots,i_p}(x) = \eta_{i_1,\ldots,i_p}(tx)$. Clearly η_t is defined in the open ball (1/t)B. In particular, if η is a (p/k)-form then $\eta_t = t^k \eta$. We say that $\omega \in L^{2,p}(\Sigma)$ is the L^2 -boundary value of η , and we write

$$\eta | \Sigma = \omega \quad \text{in } L^{2,p}(\Sigma),$$

if (1) $\eta_t \in L^{2,p}(\Sigma)$ for any $0 \le t < 1$ and (2) $\lim_{t \to 1} \|\eta_t - \omega\|_{p,\sigma} = 0$.

Fix $\omega \in L^{2,p}(\Sigma)$. Let $a_{k,j}^p$, $\tilde{a}_{k,j}^p$, $b_{k,j}^p$, $c_{k,j}^p$, $\tilde{c}_{k,j}^p$ and $u_{k,j}^p$ be defined as in (2.1.3) and (2.1.8). By (2.1.2) and (2.1.7), ω can be expressed as a sum of four series that converge in $L^{2,p}(\Sigma)$:

$$\omega = \eta + \widetilde{\alpha} + \beta + \psi = \eta + \alpha + \beta + \tau,$$

where

$$\begin{split} \eta &= \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_k^p} u_{k,j}^p \eta_{k,j}^p, \quad \alpha &= \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k+1}^{p-1}} a_{k,j}^p \alpha_{k,j}^p, \quad \widetilde{\alpha} &= \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k+1}^{p-1}} \widetilde{a}_{k,j}^p \alpha_{k,j}^p, \\ \beta &= \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_k^{p-2}} b_{k,j}^p \beta_{k,j}^p, \quad \tau &= \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k-1}^{p-1}} c_{k,j}^p \tau_{k,j}^p, \quad \psi &= \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k-1}^{p-1}} \widetilde{c}_{k,j}^p \psi_{k,j}^p. \end{split}$$

By Lemma 1.1.2 and the local description of d, δ and ε_{ν} it follows that each of the above series converges uniformly on compact sets in the unit ball B to a smooth form belonging to the kernel of $L_{a,b}$. In fact, α , $\tilde{\alpha}$, η , β are even harmonic forms in B. Thus for any $0 \leq t < 1$, $\eta_t = \sum_{k,j} u_{k,j}^p \eta_{k,j,t}^p$, $\alpha_t = \sum_{k,j} a_{k,j}^p \alpha_{k,j,t}^p$, etc., while the series converge uniformly on \overline{B} . Clearly, (2.2.1) $\omega_t = \eta_t + \tilde{\alpha}_t + \beta_t + \psi_t = \eta_t + \alpha_t + \beta_t + \tau_t$.

On the other hand, $\omega_t \in L^{2,p}(\Sigma)$, so in view of (2.1.2) and (2.1.7), ω_t can be

expressed as a sum of four series

(2.2.2)
$$\omega_t = \eta(t) + \widetilde{\alpha}(t) + \beta(t) + \psi(t) = \eta(t) + \alpha(t) + \beta(t) + \tau(t).$$

Let $u_{k,j}^p(t)$, $a_{k,j}^p(t)$ etc. denote the corresponding coefficients of $\eta(t)$, $\alpha(t)$ etc. At first sight it would seem that $u_{k,j}^p(t) = t^k u_{k,j}^p$, $a_{k,j}^p(t) = t^k a_{k,j}^p$ etc. But the inhomogeneity of $\tau_{k,j}^p$ and $\psi_{k,j}^p$ provents that from being the case. Comparing the coefficients of series in (2.2.1) and (2.2.2), we find

$$\begin{split} u_{k,j}^{p}(t) &= t^{k}u_{k,j}^{p}, \quad b_{k,j}^{p}(t) = t^{k}b_{k,j}^{p}, \quad c_{k,j}^{p} = t^{k}c_{k,j}^{p}, \quad \widetilde{c}_{k,j}^{p}(t) = t^{k}\widetilde{c}_{k,j}^{p}, \\ a_{k,j}^{p}(t) &= t^{k}a_{k,j}^{p} + t^{k}(1-t^{2})c_{k+2,j}^{p}\sqrt{(p+k)(n+2k)}c(p,k+2)C_{p,k+2}^{-1}, \\ \widetilde{a}_{k,j}^{p}(t) &= t^{k}\widetilde{a}_{k,j}^{p} + t^{k}(1-t^{2})\widetilde{c}_{k+2,j}^{p}\sqrt{(p+k)(n+2k)}c_{L}(p,k+2), \end{split}$$

where as in (e), $c(p, k+2) = c_L(p, k+2) - c_{\Delta}(p, k+2)$. Moreover, we put

$$\alpha'(t) = \sum_{k,j} t^k a^p_{k,j} \alpha^p_{k,j}, \quad \widetilde{\alpha}'(t) = \sum_{k,j} t^k \widetilde{a}^p_{k,j} \alpha^p_{k,j}.$$

In the proof of the main theorem we will need to show that some series of p-forms has zero L^2 -boundary value. To do this we will follow Reimann's approach (cf. [11, p. 171]).

LEMMA 2.2.1. Let (z_k) be any sequence of real or complex numbers. Then

$$(1-t^2)^2 \sum_{k=0}^{\infty} t^{2k-2}k^2 |z_k|^2 \le \sum_{k=0}^{\infty} |z_k|^2 \quad \text{for any } 0 < t \le 1.$$

THEOREM 2.2.1 (Dirichlet boundary problem). There exists a unique solution φ of $L_{a,b}\varphi = 0$ in the unit ball B with the boundary condition $\varphi | \Sigma = \omega$ in $L^{2,p}(\Sigma)$. The solution may be expressed as follows:

$$\varphi = \eta + \alpha + \beta + \tau = \eta + \widetilde{\alpha} + \beta + \psi.$$

Proof. Let $\varphi' = \eta + \alpha + \beta + \tau$ and $\varphi'' = \eta + \tilde{\alpha} + \beta + \psi$. As we have seen, φ' and φ'' satisfy the differential equation $L_{a,b}\varphi = 0$. We show that they have the same L^2 -boundary value ω .

Standard arguments show that in $L^{2,p}(\Sigma)$ we have

$$\begin{split} &\lim_{t\to 1}\eta(t)=\eta, \quad \lim_{t\to 1}\beta(t)=\beta, \quad \lim_{t\to 1}\psi(t)=\psi, \\ &\lim_{t\to 1}\tau(t)=\tau, \quad \lim_{t\to 1}\alpha'(t)=\alpha, \quad \lim_{t\to 1}\widetilde{\alpha}'(t)=\widetilde{\alpha}. \end{split}$$

Next we show that

$$\lim_{t \to 1} \alpha(t) = \alpha, \quad \lim_{t \to 1} \widetilde{\alpha}(t) = \widetilde{\alpha}.$$

Since $\lim_{t\to 1} \alpha'(t) = \alpha$ and $\lim_{t\to 1} \widetilde{\alpha}'(t) = \widetilde{\alpha}$, it suffices to prove that

$$\lim_{t \to 1} \left(\sum_{k,j} t^k (1 - t^2) c_{k+2,j}^p \sqrt{(p+k)(n+2k)} c(p,k+2) C_{p,k+2}^{-1} \alpha_{k,j}^p \right) = 0,$$
$$\lim_{t \to 1} \left(\sum_{k,j} t^k (1 - t^2) \widetilde{c}_{k+2,j}^p \sqrt{(p+k)(n+2k)} c_L(p,k+2) \alpha_{k,j}^p \right) = 0.$$

For brevity we will only compute the first limit; the second is analogous. For simplicity, let D(t) and D(t, k, j) denote the expression inside the bracket and its components, respectively. Clearly, there exists N > 0 such that

$$c_{k+2,j}^p \sqrt{(p+k)(n+2k)} c(p,k+2) C_{p,k+2}^{-1} \le Nk.$$

Now by Lemma 2.2.1 we easily see that for any positive integer k_0 ,

$$\left\|\sum_{k=k_0+1}^{\infty}\sum_{j=1}^{\mu_{k+1}^{p-1}} D(t,k,j)\right\|_{\sigma,p}^2 \le N^2 \sum_{k=k_0+1}^{\infty}\sum_{j=1}^{\mu_{k+1}^{p-1}} |c_{k+2,j}^p|^2.$$

Take now any $\varepsilon > 0$. There exists an integer K > 0 such that

$$\sum_{k=K+1}^{\infty} \sum_{j=1}^{\mu_{k+1}^{p-1}} |c_{k+2,j}^{p}|^2 < (\varepsilon/N)^2.$$

Since $\lim_{t\to 1} \|D(t,k,j)\|_{\sigma,p} = 0$, we obtain

$$\limsup_{t \to 1} \|D(t)\|_{\sigma,p}^2 \le \lim_{t \to 1} \left(\sum_{k=0}^K \sum_{j=1}^{\mu_{k+1}^{p-1}} \|D(t,k,j)\|_{\sigma,p} + \varepsilon \right) = \varepsilon.$$

Summarizing,

$$\lim_{t \to 1} \varphi'_t = \lim_{t \to 1} \varphi''_t = \omega \quad \text{ in } L^{2,p}(\varSigma).$$

Now we will show that the solution is unique. Suppose φ is a smooth *p*-form in \overline{B} with $L\varphi = L_{a,b}\varphi = 0$ and $\varphi | \Sigma = 0$. We will show that $\varphi = 0$. Since $\varphi | \Sigma = 0$, we have $\iota_{\nu} \varphi | \Sigma = 0$. Therefore, applying the integral formula (1.2.3) we obtain

$$\int_{B} (L\varphi)\varphi \, dx = a \int_{B} (\delta\varphi)^2 \, dx + b \int_{B} (d\varphi)^2 \, dx$$

This implies that φ is both closed and co-closed, so harmonic. Hence each coefficient of φ is a harmonic function in B vanishing on Σ , thus it is the zero function, by the maximum principle. So $\varphi = 0$ in \overline{B} .

Suppose now that φ is a solution to the Dirichlet problem with zero L^2 -boundary value. We have

$$\lim_{t \to 1} \|\varphi_t\|_{\sigma,p}^2 = 0.$$

Since for each 0 < t < 1, φ_t is smooth up to the boundary and satisfies $L\varphi_t = 0$, it can be expressed as a sum of four series from the theorem: $\varphi_t = \eta(t) + \tilde{\alpha}(t) + \beta(t) + \psi(t)$. Denote their coefficients by $u_{k,j}^p(t)$, $\tilde{\alpha}_{k,j}^p(t)$ etc., respectively. Then by (2.1) we obtain

$$\lim_{t \to 1} \left(\sum_{k,j} |u_{k,j}^p(t)|^2 + \sum_{k,j} |\widetilde{a}_{k,j}^p(t)|^2 + \sum_{k,j} |b_{k,j}^p(t)|^2 + \sum_{k,j} |\widetilde{c}_{k,j}^p(t)|^2 \right) = 0.$$

Take any 0 < R' < R < 1. We show that $|\varphi|_{\infty}' = |\varphi|_{\infty}^{R'} = 0$, where $|\cdot|_{\infty}^{R'}$ is the norm of uniform convergence, i.e.,

$$|\varphi|_{\infty}' = |\varphi|_{\infty}^{R'} = \sup_{i_1,\dots,i_p} \sup_{|x| \le R'} |\varphi_{i_1,\dots,i_p}(x)|.$$

We have

(2.2.3)
$$|\varphi|'_{\infty} \le |\varphi - \varphi_t|'_{\infty} + |\eta(t)|'_{\infty} + |\widetilde{\alpha}(t)|'_{\infty} + |\beta(t)|'_{\infty} + |\psi(t)|'_{\infty}.$$

Since φ is uniformly continuous in the ball $|x| \leq R'$, $|\varphi - \varphi_t|'_{\infty}$ tends to zero. It remains to estimate $|\eta(t)|'_{\infty}$, $|\tilde{\alpha}(t)|'_{\infty}$, $|\beta(t)|'_{\infty}$, $|\psi(t)|'_{\infty}$.

We will use the notation from the end of §1.1. Fix a multi-index (i_1, \ldots, i_p) . Take any coefficient $\eta_{k,j;i_1,\ldots,i_p}^p$ of $\eta_{k,j}^p$ and put $g_{k,j} = \eta_{k,j;i_1,\ldots,i_p}^p$. Then $(g_{k,j})$ is a series of spherical harmonics and $||g_{k,j}||_{\sigma} \leq ||\eta_{k,j}^p||_{\sigma,p} = 1$. So for each |x| < R', by Lemma 1.1.1 we have

$$\left|\sum_{k,j} u_{k,j}^{p}(t)g_{k,j}(x)\right| \leq \sum_{k,j} |u_{k,j}^{p}(t)g_{k,j}(x)|$$
$$\leq C(R) \left(\sum_{k,j} |u_{k,j}^{p}(t)|^{2}\right)^{1/2} \left(\sum_{k,j} \varepsilon^{2k}\right)^{1/2}$$

This means that

$$\lim_{t \to 1} |\eta(t)|_{\infty}' \le C(R) \Big(\sum_{k,j} \varepsilon^{2k}\Big)^{1/2} \lim_{t \to 1} \Big(\sum_{k,j} |u_{k,j}^p(t)|^2\Big)^{1/2} = 0.$$

The same arguments show that $\lim_{t\to 1} |\widetilde{\alpha}(t)|'_{\infty} = 0$ and $\lim_{t\to 1} |\beta(t)|'_{\infty} = 0$.

To prove that $\lim_{t\to 1} |\psi(t)|_{\infty}' = 0$ it suffices to apply (2.1.6) and preceding arguments (Lemma 1.1.1 with the sequences $w_k = 1$ and $w_k = k$, resp.).

Consequently, $|\varphi|'_{\infty} = 0$, by (2.2.3). Since 0 < R' < 1 was arbitrary, φ is the zero form.

As announced in the Introduction, under the natural duality given by the canonical inner product $\langle \cdot, \cdot \rangle$ in \mathbb{R}^n , we may identify 1-forms with vector fields. Then we have

$$d \simeq \text{grad}, \quad \delta \simeq -\text{div}, \quad S^* S \simeq -L_{(n-1)/n,1/2},$$

where grad, div and S^*S denote the gradient, divergence and the Ahlfors-Laplace operator, respectively. Denote by $\vec{\mathcal{H}}^k$ the space of vector fields in \mathbb{R}^n with coefficients from \mathcal{H}^k and by $\mathcal{L}^2(\Sigma)$ the space of vector fields on Σ whose coefficients belong to $L^2(\Sigma)$. Moreover, let $\langle \cdot | \cdot \rangle_{\sigma}$ denote the inner product in $\mathcal{L}^2(\Sigma)$ induced from $L^2(\Sigma)$, i.e.,

$$\langle V|W\rangle_{\sigma} = \int_{\Sigma} \langle V(x), W(x)\rangle \, d\sigma(x)$$

for vector fields $V, W \in \mathcal{L}^2(\Sigma)$. Let, as before, $(h_{k,j})$ be an L^2 -orthonormal basis of \mathcal{H}^k . The spaces Ω^k , \mathcal{M}^k and \mathcal{N}^k , and the vector fields q_j^k , m_j^k , n_j^k and p_j^k constructed in [11] correspond to the following:

$$\begin{aligned} \mathcal{Q}^{k} &= \{H = (h_{1}, \dots, h_{n}) \in \vec{\mathcal{H}}^{k} : \operatorname{div} H = 0, \ \langle H(x), x \rangle = 0\} \simeq \chi_{1,k}^{0}, \\ \mathcal{M}^{k} &= \{H = \operatorname{grad} h \in \vec{\mathcal{H}}^{k} : h \in \mathcal{H}_{k+1}\} \simeq d\chi_{0,k+1}^{0}, \\ \mathcal{N}^{k} &= \{H = (n+2k-4)xh - r^{2} \operatorname{grad} h \in \vec{\mathcal{H}}^{k} : h \in \mathcal{H}_{k-1}\} \simeq I_{\Delta}(1,k)\chi_{0,k-1}^{0}, \\ q_{j}^{k} \simeq \eta_{k,j}^{1}, \\ m_{j}^{k} &= \frac{1}{\sqrt{(k+1)(n+2k)}} \operatorname{grad} h_{k+1,j} \simeq \alpha_{k,j}^{1}, \\ n_{j}^{k} &= \sqrt{\frac{n+2k-4}{n+k-3}} xh_{k-1,j} - \frac{r^{2}}{\sqrt{(n+2k-4)(n+k-3)}} \operatorname{grad} h_{k-1,j} \simeq \gamma_{k,j}^{1}, \\ p_{j}^{k} &= xh_{k-1,j} + c_{S^{\star}S}(n,k)(1-r^{2}) \operatorname{grad} h_{k-1,j} \simeq \psi_{k,j}^{1}. \end{aligned}$$

The constant $c_{S^{\star}S}(n,k)$ is equal to $c_L(1,k)$ with $L = L_{(n-1)/n,1/2}$. The following theorem ([11, Theorem 3]) is now a direct consequence of Theorem 2.2.1 and the identity $\beta_{k,i}^1 = 0$.

THEOREM 2.2.2 (Reimann). Given $V \in \mathcal{L}^2(\Sigma)$, $n \geq 3$, there exists a unique solution Φ of $S^*S\Phi = 0$ in the ball B with L²-boundary value V:

$$\lim_{t \to 1} \int_{\Sigma} |\Phi(tx) - V(x)|^2 \, d\sigma(x) = 0.$$

This solution is given by the formula

$$\Phi = \sum_{k=0}^{\infty} \sum_{j=1}^{d_{k+1}} \widetilde{a}_{k,j} m_j^k + \sum_{k=1}^{\infty} \sum_{j=1}^{d_{k-1}} \widetilde{c}_{k,j} p_j^k + \sum_{k=1}^{\infty} \sum_{j=1}^{d_k} u_{k,j} q_j^k,$$

with

$$\begin{split} \widetilde{a}_{k,j} &= \langle V | m_j^k \rangle_{\sigma} - \sqrt{\frac{k+1}{n+k-1}} \, \langle V | n_j^{k+2} \rangle_{\sigma}, \\ \widetilde{c}_{k,j} &= \sqrt{\frac{n+2k-4}{n+k-3}} \, \langle V | n_j^k \rangle_{\sigma}, \\ u_{k,j} &= \langle V | q_j^k \rangle_{\sigma}. \end{split}$$

REFERENCES

- L. V. Ahlfors, Invariant operators and integral representations in hyperbolic spaces, Math. Scand. 36 (1975), 27–43.
- I. G. Avramidi and T. Branson, Heat kernel asymptotics operators with non-Laplace type principal part, Rev. Math. Phys. 13 (2001), 847–890.
- [3] R. R. Coifman and G. Weiss, Representations of compact groups and spherical harmonics, Enseign. Math. 14 (1969), 121–175.
- [4] W. Kozłowski, Hodge type decomposition, Ann. Polon. Math. 90 (2007), 99-104.
- [5] —, Laplace type operators: Dirichlet problem, Ann. Scuola Norm. Sup. Pisa 6 (2007), 53-80.
- [6] W. Kozłowski and A. Pierzchalski, Natural boundary value problems for Laplace type operators, Preprint 2006/04, Faculty of Math., Łódź Univ.
- [7] A. Lipowski, Boundary problems for the Ahlfors operator, Ph.D. Thesis, Łódź Univ., 1996, 55 pp. (in Polish).
- [8] R. Palais, Seminar on the Atiyah-Singer Index Theorem, Ann. of Math. Stud. 57, Princeton Univ. Press, Princeton, NJ, 1965.
- [9] A. Pierzchalski, Geometry of Quasiconformal Deformations of Riemannian Manifolds, Łódź Univ. Press, 1997.
- [10] —, Ricci curvature and Quasiconformal Deformations of a Riemannian Manifold, Manuscripta Math. 66 (1989), 113–127.
- H. M. Reimann, Rotation invariant differential equation for vector fields, Ann. Scuola Norm. Sup. Pisa 9 (1982), 160–174.
- [12] E. M. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.

Faculty of Mathematics and Computer Science Łódź University Banacha 22 90-238 Łódź, Poland E-mail: wojciech@math.uni.lodz.pl

> Received 12 February 2007; revised 19 July 2007

(4870)