COLLOQUIUM MATHEMATICUM

L^{2}-DATA DIRICHLET PROBLEM FOR
 WEIGHTED FORM LAPLACIANS

BY
 WOJCIECH KOZŁOWSKI (Łódź)

Abstract

We solve the L^{2}-data Dirichlet boundary problem for a weighted form Laplacian in the unit Euclidean ball. The solution is given explicitly as a sum of four series.

1. Introduction and preliminaries. We work with weighted form Laplacians $L=L_{a, b}=a d \delta+b \delta d, a, b>0$, acting on the space of p-differential forms in \mathbb{R}^{n}. These operators give a subclass of so called non-minimal operators (cf. [2]). If $a=b=1, L_{a, b}$ is just the Laplace-Beltrami operator $\Delta=d \delta+\delta d$. If $a=(n-1) / n, b=1 / 2$ and $p=1$, then $L_{a, b}$ corresponds to the Ahlfors-Laplace operator $S^{*} S$. The correspondence is given by the natural duality between the space of vector fields and one-forms. For more details see $[9,10]$.

Since $L=(\sqrt{a} \delta+\sqrt{b} d)^{*}(\sqrt{a} \delta+\sqrt{b} d), L$ is strongly elliptic, but in contrast to Δ, the principal symbol of L is not of metric type except when $a=b$. This causes the $L_{a, b}$ theory to be more complicated than the theory of Δ.

In [1] Ahlfors solved the Dirichlet boundary problem for $S^{*} S$ in the hyperbolic ball. Reimann [11] solved the L^{2}-data Dirichlet problem for the Ahlfors-Laplace operator for the Euclidean ball and vector fields; the solution is given as a sum of three series. Next Lipowski [7] solved the equation $S^{*} S=0$ for some boundary conditions of Neumann type.

In [5, 4] the author investigated the operator $L_{a, b}$ in the space of polynomial p-forms in \mathbb{R}^{n} and solved the polynomial-data Dirichlet boundary problem for L and the Euclidean ball in [5]. Next in [6] A. Pierzchalski and the author solved the so called elliptic boundary problems in the sense of Gilkey and Smith for the operator L in the Euclidean ball for polynomial p-forms.

In the present paper we adopt Reimann's method and solve the L^{2}-data Dirichlet problem for the operator $L_{a, b}$ in the Euclidean unit ball and for

[^0]differential forms of arbitrary degree. By analogy with [11], our solution is given as a sum of four series. In the special case of $p=1, L=S^{*} S$, one of the series degenerates and our solution coincides with that from [11]. The main tool we use is an $\mathrm{SO}(n)$-invariant decomposition of $\operatorname{ker} L$.
1.1. Spherical harmonics-basic facts. We briefly review some basic properties of homogeneous polynomials and spherical harmonics. For more details we refer to [3] and [12, Ch. IV §2].

We work in $\mathbb{R}^{n}, n \geq 3$. $\Sigma, d \Sigma$ and $d \sigma$ denote the unit sphere in \mathbb{R}^{n}, the Lebesgue measure and the normalized Lebesgue measure on Σ, respectively. B and \bar{B} denote the open and closed unit ball in \mathbb{R}^{n}, respectively. If $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multi-index then $\alpha!=\alpha_{1}!\cdots \alpha_{n}!, x^{\alpha}=\left(x^{1}\right)^{\alpha_{1}} \cdots\left(x^{n}\right)^{\alpha_{n}}$, $D^{\alpha}=\left(\partial / \partial x^{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial x^{n}\right)^{\alpha_{n}}$. If $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$ is a polynomial in \mathbb{R}^{n} then $f(D)=\sum_{\alpha} a_{\alpha} D^{\alpha}$.
\mathcal{P}_{k} denotes the space of all homogeneous polynomials in \mathbb{R}^{n} of degree k. Obviously, $f(D)$ maps \mathcal{P}_{l} into \mathcal{P}_{l-k}. Define an inner product $(\cdot, \cdot)=(\cdot, \cdot)_{k}$ in \mathcal{P}_{k} as follows; $(f, g)=f(D) g$ for $f, g \in \mathcal{P}_{k}$. (Since f and g are both homogeneous polynomials of the same degree, $(f, g)=f(D) g$ is a constant function. We may and we will identify this function with its unique value.) Clearly, for any $f \in \mathcal{P}_{k}, g \in \mathcal{P}_{l}$ and $h \in \mathcal{P}_{k+l},(g f, h)_{k+l}=(f, g(D) h)_{k}$.
$|\cdot|=\sqrt{\langle\cdot, \cdot\rangle}$ denotes the Euclidean norm in \mathbb{R}^{n}. The polynomial $r^{2}(x)$ $=|x|^{2}$ belongs to \mathcal{P}_{2}. The differential operator $-r^{2}(D)$ is the classical Laplace operator $\Delta=-\sum_{j=1}^{n}\left(\partial / \partial x^{j}\right)^{2}$.

Let $\mathcal{H}_{k}=\left\{h \in \mathcal{P}_{k}: \Delta h=0\right\}$ be the space of all harmonic homogeneous polynomials of degree k. The spherical harmonics of degree k are the restrictions of the members of \mathcal{H}_{k} to Σ. For the sake of the homogeneity, we may and will identify the space of spherical harmonics of degree k with \mathcal{H}_{k}.

Let $L^{2}(\Sigma)$ denote the Hilbert space of square integrable functions $\Sigma \rightarrow \mathbb{R}$ with the inner product $(f, g)_{\sigma}=\int_{\Sigma} f g d \sigma$ and the norm $\|f\|_{\sigma}=\sqrt{(f, f)_{\sigma}}$. The inner products in $L^{2}(\Sigma)$ and in \mathcal{H}_{k} are related as follows ([3, p. 147]):

$$
\begin{equation*}
(f, g)_{\sigma}=(n-2) \prod_{j=0}^{k} \frac{1}{2 j+n-2}(f, g)_{k}, \quad f, g \in \mathcal{H}_{k} \tag{1.1.1}
\end{equation*}
$$

It is very well known ($\left[12\right.$, Ch. IV, §2]) that if $k \neq l$ then \mathcal{H}_{k} and \mathcal{H}_{l} are mutually orthogonal (in $L^{2}(\Sigma)$) and

$$
\begin{equation*}
L^{2}(\Sigma)=\bigoplus_{k=0}^{\infty} \mathcal{H}_{k} \tag{1.1.2}
\end{equation*}
$$

i.e., if $h_{k, i}, i=1, \ldots, d_{k}=\operatorname{dim} \mathcal{H}_{k}$, is an orthonormal (in $L^{2}(\Sigma)$) basis of \mathcal{H}_{k}, then $h_{k, i}, k=0,1, \ldots, i=1, \ldots, d_{k}$, is an orthonormal basis of $L^{2}(\Sigma)$.

Suppose $h \in \mathcal{H}_{k}, k>0$. Fix $R, R^{\prime} \in(0,1), R^{\prime}<R$, and put $C(R)=$ $\left(1-R^{2}\right)(1-R)^{-n}$ and $\varepsilon=R^{\prime} / R$. Clearly $\varepsilon<1$. Then for any $|y|<R^{\prime}$,

$$
\begin{equation*}
|h(y)| \leq \varepsilon^{k} C(R)\|h\|_{\sigma} . \tag{1.1.3}
\end{equation*}
$$

Proof of (1.1.3). If $y=0$ then (1.1.3) is obvious. Let $y \neq 0$. By the Poisson formula

$$
h(y)=\int_{\Sigma} P(x, y) h(x) d \sigma(x), \quad P(x, y)=\frac{1-|y|^{2}}{|y-x|^{n}} .
$$

By the above, the homogeneity of h and the estimates

$$
|y| R^{-1}<\varepsilon, \quad P\left(x, R|y|^{-1} y\right) \leq C(R),
$$

we obtain

$$
\begin{aligned}
|h(y)| & \leq \varepsilon^{k}\left|\int_{\Sigma} P\left(x, R|y|^{-1} y\right) h(x) d \sigma(x)\right| \\
& \leq \varepsilon^{k} \int_{\Sigma}|C(R) h(x)| d \sigma(x) \leq \varepsilon^{k} C(R)\|h\|_{\sigma} .
\end{aligned}
$$

Let ($g_{k, j}: k \geq 0,1 \leq j \leq l_{k} \leq d_{k}$) be any sequence of spherical harmonics such that $g_{k, j} \in \mathcal{H}_{k}$. Suppose that $\left(g_{k, j}\right)$ is bounded in $L^{2}(\Sigma)$. Put

$$
s=\sum_{k, j} g_{k, j} .
$$

Lemma 1.1.1. Let $a_{k, j}$ be a sequence of reals such that $\sum_{k, j} a_{k, j}^{2}<\infty$. Then for any sequence w_{k} of polynomial growth (i.e., $\left|w_{k}\right|<M k^{N}$ for some positive integer N and $M>0$) and $|x|<R^{\prime}$ we have

$$
\sum_{k, j}\left|a_{k, j} w_{k} g_{k, j}(x)\right| \leq C(R)\left(\sum_{k, j} a_{k, j}^{2}\right)^{1 / 2}\left(\sum_{k, j} \varepsilon^{2 k} w_{k}^{2}\left\|g_{k, j}\right\|_{\sigma}^{2}\right)^{1 / 2}<\infty
$$

Lemma 1.1.2. The series s converges absolutely and uniformly on compact sets in the unit ball to a harmonic function. Moreover, for any multiindex α, the series $\sum_{k, i} D^{\alpha} g_{k, j}$ converges absolutely and uniformly on compact sets to D^{α} s.

Lemma 1.1.1 follows from (1.1.3) and the fact that the series $\sum_{k} d_{k} k^{N} \varepsilon^{k}$ converges. Lemma 1.1.2 also follows from those two properties and the Weierstrass theorem. The details are left to the reader.
1.2. Spaces Λ_{k}^{p} and $L^{2, p}(\Sigma)$. Consider any p-form ω defined in a subset $A \subset \mathbb{R}^{n}$. If $p=0$ we identify ω with a function on A. Assume that any p-form, $p<0$, is the zero form. If $p \geq 1$ then ω has the unique expression

$$
\omega=\frac{1}{p!} \sum_{i_{1}, \ldots, i_{p}=1}^{n} \omega_{i_{1}, \ldots, i_{p}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}
$$

where the coefficients $\omega_{i_{1}, \ldots, i_{p}}$ are skew-symmetric with respect to their indices. Let A be any subset of \mathbb{R}^{n}. We say that ω is a differential p-form on A, and we write $\omega \in \Lambda^{p}(A)$, if ω is defined and smooth, i.e., C^{∞}, on some open set containing A. If α and β are p-forms defined in A, their pointwise inner product is simply the function $\alpha \beta: A \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
\alpha \beta=\frac{1}{p!} \sum_{i_{1}, \ldots, i_{p}=1}^{n} \alpha_{i_{1}, \ldots, i_{p}} \beta_{i_{1}, \ldots, i_{p}} \tag{1.2.1}
\end{equation*}
$$

Let d and δ denote the (exterior) differential and co-differential, respectively. Put $\nu^{\star}=(1 / 2) d r^{2}$, i.e., $\nu_{x}^{\star}=x^{1} d x^{1}+\cdots+x^{n} d x^{n}$.

Let $\varepsilon_{\nu}=\nu^{\star} \wedge$ and $\iota_{\nu}=\nu^{\star} \vee$ denote the operators of exterior product and contraction with ν^{\star}. Recall that ι_{ν} is adjoint to ε_{ν} with respect to the pointwise inner product defined above, i.e., $\left(\varepsilon_{\nu} \alpha\right) \beta=\alpha\left(\iota_{\nu} \beta\right)$. We have

$$
\begin{equation*}
r^{2} \omega=\left(\iota_{\nu} \varepsilon_{\nu}+\varepsilon_{\nu} \iota_{\nu}\right) \omega \tag{1.2.2}
\end{equation*}
$$

Relations between d, δ, ι_{ν} and ε_{ν} will play an important role in our considerations. For example, Theorem 1.2 .1 shows that with respect to the inner product $(\cdot \mid \cdot)$ (introduced below) the adjoint operators to d and δ are ι_{ν} and $-\varepsilon_{\nu}$. Combining Theorem 1.2 .1 with (1.1.1) we get in a simple way some orthogonality relations in the space $L^{2, p}(\Sigma)$ (defined below). In fact, the kernel of a weighted form Laplacian (in the space of polynomial forms) can be reconstructed from the space $\operatorname{ker} \Delta \cap \operatorname{ker} \delta \cap \operatorname{ker} \iota_{\nu}$.

As a consequence of the above and the Green formula we find that for any smooth $\omega, \eta \in \Lambda^{p}(\bar{B})$,

$$
\begin{equation*}
\int_{B}(d \omega) \eta d x=\int_{B} \omega(\delta \eta) d x+\int_{\Sigma} \omega\left(\iota_{\nu} \eta\right) d \Sigma, \tag{1.2.3}
\end{equation*}
$$

where $d x$ denotes Lebesgue measure in \mathbb{R}^{n}.
REMARK. (1.2.3) is a very special case of a much more general formula for manifolds with boundary (cf. [8, Ch. IV]).

Let $L^{2, p}(\Sigma)$ be the space of p-forms (defined on Σ) with all coefficients in $L^{2}(\Sigma)$. Equipped with the inner product $(\cdot, \cdot)_{\sigma}=(\cdot, \cdot)_{\sigma, p}$, where

$$
(\alpha, \beta)_{\sigma}=\int_{\Sigma} \alpha \beta d \sigma, \quad \alpha, \beta \in L^{2, p}(\Sigma)
$$

$L^{2, p}(\Sigma)$ is a Hilbert space. Here $\alpha \beta$ denotes the pointwise inner product (1.2.1).

The proofs of the properties stated below can be found in [5, §2.2]. A p-form ω is called a polynomial p-form if $A=\mathbb{R}^{n}$ and the $\omega_{i_{1}, \ldots, i_{p}}$'s are polynomials. Denote by Λ^{p} the vector space of all polynomial p-forms in \mathbb{R}^{n}. A polynomial p-form ω is called homogeneous if all coefficients are from \mathcal{P}_{k}, for some k. Such a form will also be called a (p / k)-form. Λ_{k}^{p} denotes the
vector space of all (p / k)-forms. We have $\Lambda_{k}^{0}=\mathcal{P}^{k}$, and Λ_{k}^{n} is isomorphic to \mathcal{P}^{k} in a natural way. Moreover, it is convenient to put $\Lambda_{k}^{p}=\{0\}$ if either $p<0$ or $k<0$. We extend the inner product $(\cdot, \cdot)_{k}$ to Λ_{k}^{p} by setting

$$
\begin{equation*}
(\omega \mid \eta)_{p, k}=\frac{1}{p!} \sum_{i_{1}, \ldots, i_{p}=1}^{n}\left(\omega_{i_{1}, \ldots, i_{p}}, \eta_{i_{1}, \ldots, i_{p}}\right)_{k}, \tag{1.2.4}
\end{equation*}
$$

where $\omega, \eta \in \Lambda_{k}^{p}$ while $\omega_{i_{1}, \ldots, i_{p}}$'s and $\eta_{i_{1}, \ldots, i_{p}}$'s denote their coefficients. Notice that $(\cdot \mid \cdot)_{0, k}$ and $(\cdot, \cdot)_{k}$ coincide. We will frequently write $(\cdot \mid \cdot)$ instead of $(\cdot \mid \cdot)_{p, k}$ if the values of p and k are evident. We have

$$
\begin{equation*}
d \varepsilon_{\nu}=-\varepsilon_{\nu} d \quad \text { and } \quad \delta \iota_{\nu}=-\iota_{\nu} \delta . \tag{1.2.5}
\end{equation*}
$$

Proposition 1.2.1. Suppose ω is a (p / k)-form. Then

$$
\delta \varepsilon_{\nu} \omega=-\varepsilon_{\nu} \delta \omega-(n-p+k) \omega, \quad d \iota_{\nu} \omega=-\iota_{\nu} d \omega+(p+k) \omega .
$$

Proposition 1.2.2. For any polynomial form ω we have

$$
d\left(r^{2} \omega\right)=r^{2} d \omega+2 \varepsilon_{\nu} \omega, \quad \delta\left(r^{2} \omega\right)=r^{2} \delta \omega-2 \iota_{\nu} \omega .
$$

Theorem 1.2.1. Consider d and δ as operators $d: \Lambda_{k}^{p} \rightarrow \Lambda_{k-1}^{p+1}$ and $\delta: \Lambda_{k}^{p} \rightarrow \Lambda_{k-1}^{p-1}$. Let d^{\star} and δ^{\star} denote their respective adjoints (with respect to the inner product $(\cdot, \cdot))$. Then, for any (p / k)-form $\omega, \delta^{\star} \omega=-\varepsilon_{\nu} \omega$ and $d^{\star} \omega=\iota_{\nu} \omega$.
1.3. Weighted form Laplacians. We briefly review the relevant facts of $L_{a, b}$ theory. Demonstrations of the assertions listed without proofs in this section can be found in [5, §3]. Consider a weighted form Laplacian $L=L_{a, b}=$ $a d \delta+b \delta d, a, b>0$. For $a=b=1, L_{1,1}$ is just the Laplace-Beltrami operator $\Delta=d \delta+\delta d$. Notice that in the case of differential 0 -forms, i.e. smooth functions, the Laplace-Beltrami operator $L_{1,1}$ and the classical Laplace operator coincide.

For any differential form ω in $\mathbb{R}^{n},(\Delta \omega)_{i_{1}, \ldots, i_{p}}=\Delta \omega_{i_{1}, \ldots, i_{p}}$; thus ω is harmonic ($\Delta \omega=0$) iff its coefficients are harmonic functions. In particular, a (p / k)-form ω is harmonic iff every $\omega_{i_{1}, \ldots, i_{p}} \in \mathcal{H}_{k}$.

Denote by \mathfrak{H}_{k}^{p} the space of all harmonic (p / k)-forms, i.e., $\mathfrak{H}_{k}^{p}=\operatorname{ker} \Delta \cap \Lambda_{k}^{p}$. Consider $L=L_{a, b}$ as an operator $L: \Lambda_{k}^{p} \rightarrow \Lambda_{k-2}^{p}$, and let \mathfrak{L}_{k}^{p} be its kernel. If $k=0,1$ then $\Lambda_{k}^{p}=\mathfrak{L}_{k}^{p}=\mathfrak{H}_{k}^{p}$. Moreover, $\mathfrak{L}_{k}^{0}=\mathscr{H}_{k}$ and \mathfrak{L}_{k}^{n} is isomorphic to \mathcal{H}_{k} in a natural way.

For any $0 \leq p \leq n$ and $k \geq 0$ put

$$
\chi_{p, k}^{0}=\mathfrak{H}_{k}^{p} \cap \operatorname{ker} \delta \cap \operatorname{ker} \iota_{\nu} .
$$

It is also convenient to put $\chi_{q, l}^{0}=\{0\}$ if either $q<0$ or $l<0$. Manifestly, $\mathfrak{H}_{k}^{0}=\chi_{0, k}^{0}=\mathcal{H}_{k}$ and $\mathfrak{H}_{0}^{p}=\Lambda_{0}^{p}$. Next define

$$
I_{L}(p, k)=\varepsilon_{\nu}-c_{L}(p, k) r^{2} d: \Lambda_{k}^{p} \rightarrow \Lambda_{k-1}^{p-1},
$$

where

$$
c_{L}(p, k)= \begin{cases}\frac{1}{2} \frac{2 b-(b-a)(n-p+k)}{a(p+k-2)+b(n-p+k-2)} & \text { if } k \geq 2,0<p \leq n \tag{1.3.1}\\ 0 & \text { otherwise }\end{cases}
$$

Notice that our assumption $(a, b>0$ and $n \geq 3)$ ensures that $c_{L}(p, k)$ is well-defined. Observe that in the very special case $a=b=1$, i.e., $L=\Delta$, the above constant is

$$
c_{\Delta}(p, k)= \begin{cases}1 /(n+2 k-4) & \text { if } k \geq 2,0<p \leq n \tag{1.3.2}\\ 0 & \text { otherwise }\end{cases}
$$

The decomposition below is the key step in the proof of the main theorem. For the proof see [5, Theorem 3.3.1]. For any $0 \leq p \leq n$ and $k \geq 0$ the space \mathfrak{L}_{k}^{p} is the direct sum of four mutually orthogonal $\mathrm{SO}(n)$-invariant subspaces:

$$
\begin{equation*}
\mathfrak{L}_{k}^{p}=\chi_{p, k}^{0} \oplus^{\perp} d \chi_{p-1, k+1}^{0} \oplus^{\perp} \varepsilon_{\nu} d \chi_{p-2, k}^{0} \oplus^{\perp} I_{L}(p, k) \chi_{p-1, k-1}^{0} \tag{1.3.3}
\end{equation*}
$$

Moreover, $\chi_{p, k}^{0}, d \chi_{p-1, k+1}^{0}$ and $\varepsilon_{\nu} d \chi_{p-2, k}^{0}$ are subspaces of \mathfrak{H}_{k}^{p}. In particular,

$$
\begin{equation*}
\mathfrak{H}_{k}^{p}=\chi_{p, k}^{0} \oplus^{\perp} d \chi_{p-1, k+1}^{0} \oplus^{\perp} \varepsilon_{\nu} d \chi_{p-2, k}^{0} \oplus^{\perp} I_{\Delta}(p, k) \chi_{p-1, k-1}^{0} . \tag{1.3.4}
\end{equation*}
$$

Note that in (1.3.3) or (1.3.4) some subspaces may degenerate or split into finer $\mathrm{SO}(n)$-subspaces ($[5, \S 5.2])$. In particular,

$$
\begin{align*}
\chi_{p, 0}^{0} & =\{0\} \quad \text { for } p>0, \tag{1.3.5}\\
I_{L}(n, 2)\left(\chi_{n-1,1}^{0}\right) & =\{0\} .
\end{align*}
$$

REMARK. In view of (1.3.6), a natural question is whether $\chi_{n-1,1}^{0}$ $=\{0\}$. The answer is: No. Namely, it is easy to observe that the form $\omega=\iota_{\nu}\left(d x^{1} \wedge \cdots \wedge d x^{n}\right)$ is in $\chi_{n-1,1}^{0}$. In fact, $\chi_{n-1,1}^{0}$ is one-dimensional and is spanned by ω. To see this, we use property (i) from $\S 2.1$ below. Since $d: \chi_{n-1,1}^{0} \rightarrow \mathfrak{H}_{0}^{n}$ is one-to-one and obviously $\operatorname{dim} \mathfrak{H}_{0}^{n}=1$, we conclude that $\chi_{n-1,1}^{0}$ must be one-dimensional. Therefore, $\chi_{n-1,1}^{0}=\operatorname{span}\{\omega\}$.

2. Dirichlet boundary problem

2.1. Bases of \mathfrak{L}_{k}^{p} and $L^{2, p}(\Sigma)$ and relations between them. Assume that $0 \leq p \leq n$ and $k \geq 0$. We identify the spaces Λ_{k}^{p} and $\left\{\omega \mid \Sigma: \omega \in \Lambda_{k}^{p}\right\}$, for any $\omega \in \Lambda_{k}^{p}$ is uniquely determined by its restriction to Σ. As a direct consequence of (1.1.1) we see that for any $\alpha, \beta \in \mathfrak{H}_{k}^{p}$,

$$
\begin{equation*}
(\alpha, \beta)_{\sigma, p}=s_{k}(\alpha, \beta)_{p . k}, \quad s_{k}=(n-2) \prod_{j=0}^{k} \frac{1}{2 j+n-2} \tag{2.1.1}
\end{equation*}
$$

In particular, the decomposition (1.3.4) is orthogonal in $L^{2, p}(\Sigma)$.

Consequently, by (1.1.2) we get

$$
L^{2, p}(\Sigma)=\bigoplus_{k=0}^{\infty} \perp\left(\chi_{p, k}^{0} \oplus^{\perp} d \chi_{p-1, k+1}^{0} \oplus^{\perp} \varepsilon_{\nu} d \chi_{p-2, k}^{0} \oplus^{\perp} I_{k, \Delta} \chi_{p-1, k-1}^{0}\right)
$$

Consider now the subspace $\chi_{q, l}^{0}$ and put $\mu_{l}^{q}=\operatorname{dim} \chi_{q, l}^{0}$. Moreover, let $E_{l}^{q}=\left\{\eta_{l, i}^{q}: i=1, \ldots, \mu_{l}^{q}\right\}$ be an L^{2}-orthonormal basis of $\chi_{q, l}^{0}$. If $\chi_{q, l}^{0}=\{0\}$, it is convenient to treat E_{l}^{q} as a set which contains only the zero form. Now we are going to build an L^{2}-orthonormal basis of \mathfrak{H}_{k}^{p} from E_{l}^{q},s. To do this we will need the following ([5, Proposition 3.2.1, Lemma 3.2.1]):
(i) If $0<p \leq n$ and $k \geq 0$ then for any $\eta^{\prime}, \eta^{\prime \prime} \in \chi_{p-1, k+1}^{0}$,

$$
\left(d \eta^{\prime} \mid d \eta^{\prime \prime}\right)=(p+k)\left(\eta^{\prime} \mid \eta^{\prime \prime}\right)
$$

In particular, $d: \chi_{p-1, k+1}^{0} \rightarrow \chi_{p, k}$ is one-to-one.
(ii) If $2 \leq p \leq n$ and $k \geq 0$ then for any $\eta^{\prime}, \eta^{\prime \prime} \in \chi_{p-2, k}^{0}$,

$$
\left(\varepsilon_{\nu} d \eta^{\prime} \mid \varepsilon_{\nu} d \eta^{\prime \prime}\right)=(n-p+k)\left(d \eta^{\prime} \mid d \eta^{\prime \prime}\right) .
$$

In particular, $\varepsilon_{\nu}: d \chi_{p-2, k}^{0} \rightarrow \mathfrak{H}_{k}^{p}$ is one-to-one.
(iii) If $p \geq 1$ and $k \geq 1$ then for any $\eta^{\prime}, \eta^{\prime \prime} \in \chi_{p-1, k-1}^{0}$,

$$
\left(I_{\Delta}(p, k) \eta^{\prime} \mid I_{\Delta}(p, k) \eta^{\prime \prime}\right)=\frac{(n+k-p-2)(n+2 k-2)}{(n+2 k-4)}\left(\eta^{\prime} \mid \eta^{\prime \prime}\right) .
$$

In particular, if $p \neq n$ or $k \neq 2$ then $I_{\Delta}(p, k): \chi_{p-1, k-1}^{0} \rightarrow \mathfrak{H}_{k}^{p}$ is one-to-one.

Remark. The constant in case (iii) is equal to 0 iff $n+k-p-2=0$. This implies that $p=n-1$ and $k=1$, or $p=n$ and $k=2$. In the case $p=n-1$ and $k=1, I_{\Delta}(p, k)$ maps the space $\chi_{n-2,0}^{0}$. But by (1.3.5), $\chi_{n-2,0}^{0}=\{0\}$ for $n \geq 3$. Therefore, our map is one-to-one. In the case $p=n$ and $k=2$ the situation is quite different. Namely, we have seen (1.3.6) that $I_{\Delta}(n, 2)$ is the zero map, but $\chi_{n-1,1}^{0}$ is one-dimensional (remark below (1.3.6)). Therefore, the case $p=n$ and $k=2$ must be excluded from the second part of (iii).

Points (a)-(c) below are direct consequences of (i)-(iii) and (2.1.1).
(a) Let $p>0$ and $k \geq 0$. If $\mu_{k+1}^{p-1} \geq 1$ then the collection

$$
\left\{\alpha_{k, j}^{p}=\frac{1}{\sqrt{(p+k)(2 k+n)}} d \eta_{k+1, j}^{p-1}: \eta_{k+1, j}^{p-1} \in E_{k+1}^{p-1}\right\}
$$

is an L^{2}-orthonormal basis of $d \chi_{p-1, k+1}^{0}$.
(b) Let $p \geq 2, k \geq 1$. If $\mu_{k}^{p-2} \geq 1$ then the collection

$$
\left\{\beta_{k, j}^{p}=\frac{1}{\sqrt{(n-p+k)(p+k-1)}} \varepsilon_{\nu} d \eta_{k, j}^{p-2}: \eta_{k, j}^{p-2} \in E_{k}^{p-2}\right\}
$$

is an L^{2}-orthonormal basis of $\varepsilon_{\nu} d \chi_{p-2, k}^{0}$.
(c) Let $p \geq 1$ and $k \geq 1$. If $\mu_{k-1}^{p-1} \geq 1$ then, except the case $p=n$ and $k=2$, the collection

$$
\left\{\gamma_{k, j}^{p}=\sqrt{\frac{n+2 k-4}{n+k-p-2}} I_{\Delta}(p, k) \eta_{k-1, j}^{p-1}: \eta_{k-1, j}^{p-1} \in E_{k-1}^{p-1}\right\}
$$

is an L^{2}-orthonormal basis of $I_{\Delta}(p, k) \chi_{p-1, k-1}^{0}$.
Moreover, we define $\alpha_{k, j}^{p}, \beta_{k, j}^{p}$ and $\gamma_{k, j}^{p}$ to be the zero form, in all the remaining cases. Summarizing we deduce

Corollary 2.1.1. The collection of all nonzero p-forms $\eta_{k, j}^{p}, \alpha_{k, j}^{p}, \beta_{k, j}^{p}$ and $\gamma_{k, j}^{p}$ is an L^{2}-orthonormal basis of $L^{2, p}(\Sigma)$.

Consequently, every $\omega \in L^{2, p}(\Sigma)$ has a unique expression as an L^{2} orthogonal sum

$$
\begin{align*}
\omega= & \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k}^{p}} u_{k, j}^{p} \eta_{j}^{p}+\sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k+1}^{p-1}} a_{k, j}^{p} \alpha_{k, j}^{p}+\sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k}^{p-2}} b_{k, j}^{p} \beta_{j}^{p} \tag{2.1.2}\\
& +\sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k-1}^{p-1}} c_{k, j}^{p} \gamma_{k, j}^{p},
\end{align*}
$$

where, of course, the coefficients are given by

$$
\begin{align*}
& u_{k, j}^{p}=\left(\omega \mid \eta_{k, j}^{p}\right)_{\sigma, p}, \quad a_{k, j}^{p}=\left(\omega \mid \alpha_{k, j}^{p}\right)_{\sigma, p}, \\
& b_{k, j}^{p}=\left(\omega \mid \beta_{k, j}^{p}\right)_{\sigma, p}, \quad c_{k, j}^{p}=\left(\omega \mid \gamma_{k, j}^{p}\right)_{\sigma, p} . \tag{2.1.3}
\end{align*}
$$

In particular, the L^{2}-norm $\|\omega\|_{\sigma, p}$ is

$$
\|\omega\|_{\sigma, p}^{2}=\sum_{k, j}\left|u_{k, j}^{p}\right|^{2}+\sum_{k, j}\left|a_{k, j}^{p}\right|^{2}+\sum_{k, j}\left|b_{k, j}^{p}\right|^{2}+\sum_{k, j}\left|c_{k, j}^{p}\right|^{2} .
$$

(d) Suppose $\mu_{k-1}^{p-1} \geq 1$. If $p<n$ or $k \neq 2$ then the collection

$$
\left\{\varepsilon_{\nu} \eta_{k-1, j}^{p-1}: \eta_{k-1, j}^{p-1} \in E_{k-1}^{p-1}\right\}
$$

is an L^{2}-orthonormal system in $L^{2, p}(\Sigma)$.
Proof of (d). Take any $\eta_{k-1, i}^{p-1}, \eta_{k-1, j}^{p-1} \in E_{k-1}^{p-1}$. Then on Σ we have

$$
\varepsilon_{\nu} \eta_{k-1, i}^{p-1}=A_{p, k} \alpha_{k-2, i}^{p}+C_{p, k} \gamma_{k, i}^{p}, \quad \varepsilon_{\nu} \eta_{k-1, j}^{p-1}=A_{p, k} \alpha_{k-2, j}^{p}+C_{p, k} \gamma_{k, j}^{p}
$$

where

$$
\begin{equation*}
A_{p, k}=\sqrt{\frac{p+k-2}{n+2 k-4}}, \quad C_{p, k}=\sqrt{\frac{n+k-p-2}{n+2 k-4}} \tag{2.1.4}
\end{equation*}
$$

By the orthogonality relations (a) and (c), we obtain

$$
\begin{aligned}
\left(\varepsilon_{\nu} \eta_{k-1, i}^{p-1} \mid \varepsilon_{\nu} \eta_{k-1, j}^{p-1}\right)_{\sigma, p}= & \frac{n+k-p-2}{n+2 k-4}\left(\gamma_{k, i}^{p} \mid \gamma_{k, j}^{p}\right)_{\sigma, p} \\
& +\frac{(p+k-2)(n+2 k-4)}{(n+2 k-4)^{2}}\left(\alpha_{k-2, i}^{p} \mid \alpha_{k-2, j}^{p}\right)_{\sigma, p} \\
= & \delta_{i, j} \quad \text { (the Kronecker symbol) }
\end{aligned}
$$

Our task is to build a collection of polynomial p-forms belonging to the kernel of L such that their restrictions to the unit sphere consist a complete basis in $L^{2, p}(\Sigma)$. By (1.3.3) and the decomposition of $L^{2, p}(\Sigma)$ we may suppose that all p-forms $\eta_{k, j}^{p}, \alpha_{k, j}^{p}$ and $\beta_{k, j}^{p}$ belong to our basis. The only thing we have to do is to slightly modify the forms $\gamma_{k, j}^{p}$.
(e) Suppose $\mu_{k-1}^{p-1} \geq 1$. If $p<n$ or $k \neq 2$ then the collection

$$
\left\{\tau_{k, j}^{p}=\frac{1}{C_{p, k}} I_{L}(p, k) \eta_{k-1, j}^{p-1}+\frac{c(p, k)}{C_{p, k}} d \eta_{k-1, j}^{p-1}: \eta_{k-1, j}^{p-1} \in E_{k-1}^{p-1}\right\}
$$

restricted to Σ is an L^{2}-orthonormal system in $L^{2, p}(\Sigma)$. More precisely, $\tau_{k, j}^{p}=\gamma_{k, j}^{p}$ on Σ. Each $\tau_{k, j}^{p}$ is a member of ker L. Here $c(p, k)=$ $\left(c_{L}(p, k)-c_{\Delta}(p, k)\right)$, whereas $C_{p, k}$ is defined in (2.1.4).
(f) Suppose $\mu_{k-1}^{p-1} \geq 1$. If $p<n$ or $k \neq 2$ then the collection

$$
\left\{\psi_{k, j}^{p}=\varepsilon_{\nu} \eta_{k-1, j}^{p-1}+c_{L}(p, k)\left(1-r^{2}\right) d \eta_{k-1, j}^{p-1}: \eta_{k-1, j}^{p-1} \in E_{k-1}^{p-1}\right\}
$$

restricted to Σ is an L^{2}-orthonormal system in $L^{2}(\Sigma)$. More precisely, $\psi_{k, j}^{p}=\varepsilon_{\nu} \eta_{k-1, j}^{p-1}$ on Σ. Each $\psi_{k, i}^{p}$ is a member of ker L.
Points (e) and (f) are direct consequences of (c), (d) and the decomposition (1.3.3). Note that $\tau_{k, j}^{p}$ and $\psi_{k, j}^{p}$ are not homogeneous. Moreover, we define $\tau_{k, j}^{p}$ and $\beta_{k, j}^{p}$ to be the zero form in all the remaining cases.

Observe that

$$
\begin{align*}
\psi_{k, j}^{p}= & C_{p, k} \gamma_{k, j}^{p} \tag{2.1.5}\\
& +\left(c_{L}(p, k)-c(p, k) r^{2}\right) \sqrt{(p+k-2)(2 k+n-4)} \alpha_{k-2, j}^{p}
\end{align*}
$$

Consequently, there exists a constant $N=N(n, p)>0$ such that for any x and any coefficient $\psi_{k, j ; i_{1}, \ldots, i_{p}}^{p}$ of $\psi_{k, j}^{p}$,

$$
\begin{equation*}
\left|\psi_{k, j ; i_{1}, \ldots, i_{p}}^{p}(x)\right| \leq N\left|\gamma_{k, j ; i_{1}, \ldots, i_{p}}^{p}(x)\right|+N k\left|\alpha_{k, j ; i_{1}, \ldots, i_{p}}^{p}(x)\right| . \tag{2.1.6}
\end{equation*}
$$

Now we are in a position to introduce two collections of forms, \mathcal{E}^{p} and \mathcal{F}^{p}, having properties described above. We do this as follows;

- \mathcal{E}^{p} consists of all non-zero p-forms $\eta_{k, j}^{p}, \alpha_{k, j}^{p}, \beta_{k, j}^{p}$ and $\tau_{k, j}^{p}$.
- \mathcal{F}^{p} consists of all non-zero p-forms $\eta_{k, j}^{p}, \alpha_{k, j}^{p}, \beta_{k, j}^{p}$ and $\psi_{k, j}^{p}$.
(A) The members of \mathcal{E}^{p} lie in ker L. The collection \mathcal{E}^{p} restricted to Σ is an L^{2}-orthonormal basis of $L^{2, p}(\Sigma)$.
(B) The members of \mathcal{F}^{p} lie in ker L. The collection \mathcal{F}^{p} restricted to Σ is an L^{2}-complete (but not orthogonal) basis in $L^{2, p}(\Sigma)$.
Proof. (A) is a direct consequence of (c) and (e). Consider (B). Clearly, each member of \mathcal{F}^{p} lies in ker L. We must show that the restrictions of members of \mathcal{F}^{p} to Σ are linearly independent and that \mathcal{F}^{p} restricted to Σ is a complete system in $L^{2, p}(\Sigma)$. By (2.1.5), on Σ we have

$$
\psi_{k, j}^{p}=A_{p, k} \alpha_{k-2, j}^{p}+C_{p, k} \gamma_{k, j}^{p}
$$

On the other hand, directly by the definition of \mathcal{E}^{p}, we have $C_{p, k} \neq 0$, and moreover $\gamma_{k, j}^{p}=0$ iff $\eta_{k-1, j}^{p-1}=0$. This means that on Σ : (1) Each $\gamma_{k, j}^{p}$ is a linear combination of members of \mathcal{F}^{p}, thus \mathcal{F}^{p} restricted to Σ is complete, for \mathcal{E}^{p} is. (2) The members of \mathcal{F}^{p} are linearly independent, for the members of \mathcal{E}^{p} are. Points (1) and (2) together imply (B).

Remark. The collection \mathcal{F}^{p} is a generalization of the complete basis found by H. M. Reimann in [11]. Unfortunately, \mathcal{F}^{p} restricted to Σ is not an orthonormal basis. Of course, any member \mathcal{F}^{p} has unit length, but $\psi_{k, j}^{p}$ and $\alpha_{k-2, j}^{p}$ may not be perpendicular, for $\left(\psi_{k, j}^{p} \mid \alpha_{k-2, j}^{p}\right)_{\sigma, p}=A_{p, k}\left\|\alpha_{k-2, j}^{p}\right\|_{\sigma, p}^{2}$.

Let us conclude this section with the following observation. Let $\omega \in$ $L^{2, p}(\Sigma)$. Then comparing coefficients on each level of homogeneity we conclude that

$$
\begin{align*}
\omega= & \sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k}^{p}} u_{k, j}^{p} \eta_{j}^{p}+\sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k+1}^{p-1}} \widetilde{a}_{k, j}^{p} \alpha_{k, j}^{p}+\sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k}^{p-2}} b_{k, j}^{p} \beta_{j}^{p} \tag{2.1.7}\\
& +\sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k-1}^{p-1}} \widetilde{c}_{k, j}^{p} \psi_{k, j}^{p}
\end{align*}
$$

where $u_{k, j}^{p}$ and $b_{k, j}^{p}$ are defined by (2.1.3), whereas

$$
\begin{equation*}
\widetilde{c}_{k, j}^{p}=\frac{1}{C_{p, k}} c_{k, j}^{p}, \quad \widetilde{a}_{k, j}^{p}=a_{k, j}^{p}-A_{p, k+2} \widetilde{c}_{k+2, j}^{p}, \tag{2.1.8}
\end{equation*}
$$

i.e.,

$$
\widetilde{c}_{k, j}^{p}=\sqrt{\frac{n+2 k-4}{n+k-p-2}} c_{k, j}^{p}, \quad \widetilde{a}_{k, j}^{p}=a_{k, j}^{p}-\sqrt{\frac{p+k}{n-p+k}} c_{k+2, j}^{p} .
$$

Next by the estimate $2|s t| \leq s^{2}+t^{2}, s, t \in \mathbb{R}$, we see that (cf. [11, p. 169])

$$
\begin{aligned}
& \left(1-\sqrt{\frac{p+k}{n+2 k}}\right)\left(\left|\widetilde{a}_{k, j}^{p}\right|^{2}+\left|\widetilde{c}_{k+2, j}^{p}\right|^{2}\right) \\
& \quad \leq\left|a_{k, j}^{p}\right|^{2}+\left|c_{k+2, j}^{p}\right|^{2} \leq\left(1+\sqrt{\frac{p+k}{n+2 k}}\right)\left(\left|\widetilde{a}_{k, j}^{p}\right|^{2}+\left|\widetilde{c}_{k+2, j}^{p}\right|^{2}\right)
\end{aligned}
$$

Consequently, there exists a positive constant $M=M(n, p)$ (depending on p and n only) such that

$$
\begin{align*}
\frac{1}{M}\|\omega\|_{\sigma}^{2} & \leq \sum_{k, j}\left|u_{k, j}^{p}\right|^{2}+\sum_{k, j}\left|\widetilde{a}_{k, j}^{p}\right|^{2}+\sum_{k, j}\left|b_{k, j}^{p}\right|^{2}+\sum_{k, j}\left|\widetilde{c}_{k, j}^{p}\right|^{2} \tag{2.1.9}\\
& \leq M\|\omega\|_{\sigma}^{2}
\end{align*}
$$

2.2. L^{2}-data Dirichlet boundary problem. Suppose η is any p-form in the unit ball B. For any $0<t \leq 1$ let η_{t} be the t-dilatation of η, i.e., $\left(\eta_{t}\right)_{i_{1}, \ldots, i_{p}}(x)=\eta_{i_{1}, \ldots, i_{p}}(t x)$. Clearly η_{t} is defined in the open ball $(1 / t) B$. In particular, if η is a (p / k)-form then $\eta_{t}=t^{k} \eta$. We say that $\omega \in L^{2, p}(\Sigma)$ is the L^{2}-boundary value of η, and we write

$$
\eta \mid \Sigma=\omega \quad \text { in } L^{2, p}(\Sigma)
$$

if (1) $\eta_{t} \in L^{2, p}(\Sigma)$ for any $0 \leq t<1$ and (2) $\lim _{t \rightarrow 1}\left\|\eta_{t}-\omega\right\|_{p, \sigma}=0$.
Fix $\omega \in L^{2, p}(\Sigma)$. Let $a_{k, j}^{p}, \widetilde{a}_{k, j}^{p}, b_{k, j}^{p}, c_{k, j}^{p}, \widetilde{c}_{k, j}^{p}$ and $u_{k, j}^{p}$ be defined as in (2.1.3) and (2.1.8). By (2.1.2) and (2.1.7), ω can be expressed as a sum of four series that converge in $L^{2, p}(\Sigma)$:

$$
\omega=\eta+\widetilde{\alpha}+\beta+\psi=\eta+\alpha+\beta+\tau
$$

where

$$
\begin{aligned}
& \eta=\sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k}^{p}} u_{k, j}^{p} \eta_{k, j}^{p}, \quad \alpha=\sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k+1}^{p-1}} a_{k, j}^{p} \alpha_{k, j}^{p}, \quad \widetilde{\alpha}=\sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k+1}^{p-1}} \widetilde{a}_{k, j}^{p} \alpha_{k, j}^{p} \\
& \beta=\sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k}^{p-2}} b_{k, j}^{p} \beta_{k, j}^{p}, \quad \tau=\sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k-1}^{p-1}} c_{k, j}^{p} \tau_{k, j}^{p}, \quad \psi=\sum_{k=0}^{\infty} \sum_{j=1}^{\mu_{k-1}^{p-1}} \widetilde{c}_{k, j}^{p} \psi_{k, j}^{p}
\end{aligned}
$$

By Lemma 1.1.2 and the local description of d, δ and ε_{ν} it follows that each of the above series converges uniformly on compact sets in the unit ball B to a smooth form belonging to the kernel of $L_{a, b}$. In fact, $\alpha, \widetilde{\alpha}, \eta, \beta$ are even harmonic forms in B. Thus for any $0 \leq t<1, \eta_{t}=\sum_{k, j} u_{k, j}^{p} \eta_{k, j, t}^{p}$, $\alpha_{t}=\sum_{k, j} a_{k, j}^{p} \alpha_{k, j, t}^{p}$, etc., while the series converge uniformly on \bar{B}. Clearly,

$$
\begin{equation*}
\omega_{t}=\eta_{t}+\widetilde{\alpha}_{t}+\beta_{t}+\psi_{t}=\eta_{t}+\alpha_{t}+\beta_{t}+\tau_{t} \tag{2.2.1}
\end{equation*}
$$

On the other hand, $\omega_{t} \in L^{2, p}(\Sigma)$, so in view of (2.1.2) and (2.1.7), ω_{t} can be
expressed as a sum of four series

$$
\begin{equation*}
\omega_{t}=\eta(t)+\widetilde{\alpha}(t)+\beta(t)+\psi(t)=\eta(t)+\alpha(t)+\beta(t)+\tau(t) \tag{2.2.2}
\end{equation*}
$$

Let $u_{k, j}^{p}(t), a_{k, j}^{p}(t)$ etc. denote the corresponding coefficients of $\eta(t), \alpha(t)$ etc. At first sight it would seem that $u_{k, j}^{p}(t)=t^{k} u_{k, j}^{p}, a_{k, j}^{p}(t)=t^{k} a_{k, j}^{p}$ etc. But the inhomogeneity of $\tau_{k, j}^{p}$ and $\psi_{k, j}^{p}$ provents that from being the case. Comparing the coefficients of series in (2.2.1) and (2.2.2), we find

$$
\begin{aligned}
& u_{k, j}^{p}(t)=t^{k} u_{k, j}^{p}, \quad b_{k, j}^{p}(t)=t^{k} b_{k, j}^{p}, \quad c_{k, j}^{p}=t^{k} c_{k, j}^{p} \quad \widetilde{c}_{k, j}^{p}(t)=t^{k} \widetilde{c}_{k, j}^{p} \\
& a_{k, j}^{p}(t)=t^{k} a_{k, j}^{p}+t^{k}\left(1-t^{2}\right) c_{k+2, j}^{p} \sqrt{(p+k)(n+2 k)} c(p, k+2) C_{p, k+2}^{-1} \\
& \widetilde{a}_{k, j}^{p}(t)=t^{k} \widetilde{a}_{k, j}^{p}+t^{k}\left(1-t^{2}\right) \widetilde{c}_{k+2, j}^{p} \sqrt{(p+k)(n+2 k)} c_{L}(p, k+2)
\end{aligned}
$$

where as in (e), $c(p, k+2)=c_{L}(p, k+2)-c_{\Delta}(p, k+2)$. Moreover, we put

$$
\alpha^{\prime}(t)=\sum_{k, j} t^{k} a_{k, j}^{p} \alpha_{k, j}^{p}, \quad \widetilde{\alpha}^{\prime}(t)=\sum_{k, j} t^{k} \widetilde{a}_{k, j}^{p} \alpha_{k, j}^{p}
$$

In the proof of the main theorem we will need to show that some series of p-forms has zero L^{2}-boundary value. To do this we will follow Reimann's approach (cf. [11, p. 171]).

Lemma 2.2.1. Let $\left(z_{k}\right)$ be any sequence of real or complex numbers. Then

$$
\left(1-t^{2}\right)^{2} \sum_{k=0}^{\infty} t^{2 k-2} k^{2}\left|z_{k}\right|^{2} \leq \sum_{k=0}^{\infty}\left|z_{k}\right|^{2} \quad \text { for any } 0<t \leq 1
$$

ThEOREM 2.2.1 (Dirichlet boundary problem). There exists a unique solution φ of $L_{a, b} \varphi=0$ in the unit ball B with the boundary condition $\varphi \mid \Sigma=\omega$ in $L^{2, p}(\Sigma)$. The solution may be expressed as follows:

$$
\varphi=\eta+\alpha+\beta+\tau=\eta+\widetilde{\alpha}+\beta+\psi
$$

Proof. Let $\varphi^{\prime}=\eta+\alpha+\beta+\tau$ and $\varphi^{\prime \prime}=\eta+\widetilde{\alpha}+\beta+\psi$. As we have seen, φ^{\prime} and $\varphi^{\prime \prime}$ satisfy the differential equation $L_{a, b} \varphi=0$. We show that they have the same L^{2}-boundary value ω.

Standard arguments show that in $L^{2, p}(\Sigma)$ we have

$$
\begin{array}{ll}
\lim _{t \rightarrow 1} \eta(t)=\eta, & \lim _{t \rightarrow 1} \beta(t)=\beta, \\
\lim _{t \rightarrow 1} \tau(t)=\tau, & \lim _{t \rightarrow 1} \alpha^{\prime}(t)=\alpha, \\
\lim _{t \rightarrow 1} \widetilde{\alpha}^{\prime}(t)=\widetilde{\alpha}
\end{array}
$$

Next we show that

$$
\lim _{t \rightarrow 1} \alpha(t)=\alpha, \quad \lim _{t \rightarrow 1} \widetilde{\alpha}(t)=\widetilde{\alpha}
$$

Since $\lim _{t \rightarrow 1} \alpha^{\prime}(t)=\alpha$ and $\lim _{t \rightarrow 1} \widetilde{\alpha}^{\prime}(t)=\widetilde{\alpha}$, it suffices to prove that

$$
\begin{aligned}
\lim _{t \rightarrow 1}\left(\sum_{k, j} t^{k}\left(1-t^{2}\right) c_{k+2, j}^{p} \sqrt{(p+k)(n+2 k)} c(p, k+2) C_{p, k+2}^{-1} \alpha_{k, j}^{p}\right) & =0 \\
\lim _{t \rightarrow 1}\left(\sum_{k, j} t^{k}\left(1-t^{2}\right) \widetilde{c}_{k+2, j}^{p} \sqrt{(p+k)(n+2 k)} c_{L}(p, k+2) \alpha_{k, j}^{p}\right) & =0
\end{aligned}
$$

For brevity we will only compute the first limit; the second is analogous. For simplicity, let $D(t)$ and $D(t, k, j)$ denote the expression inside the bracket and its components, respectively. Clearly, there exists $N>0$ such that

$$
c_{k+2, j}^{p} \sqrt{(p+k)(n+2 k)} c(p, k+2) C_{p, k+2}^{-1} \leq N k
$$

Now by Lemma 2.2 .1 we easily see that for any positive integer k_{0},

$$
\left\|\sum_{k=k_{0}+1}^{\infty} \sum_{j=1}^{\mu_{k+1}^{p-1}} D(t, k, j)\right\|_{\sigma, p}^{2} \leq N^{2} \sum_{k=k_{0}+1}^{\infty} \sum_{j=1}^{\mu_{k+1}^{p-1}}\left|c_{k+2, j}^{p}\right|^{2}
$$

Take now any $\varepsilon>0$. There exists an integer $K>0$ such that

$$
\sum_{k=K+1}^{\infty} \sum_{j=1}^{\mu_{k+1}^{p-1}}\left|c_{k+2, j}^{p}\right|^{2}<(\varepsilon / N)^{2}
$$

Since $\lim _{t \rightarrow 1}\|D(t, k, j)\|_{\sigma, p}=0$, we obtain

$$
\limsup _{t \rightarrow 1}\|D(t)\|_{\sigma, p}^{2} \leq \lim _{t \rightarrow 1}\left(\sum_{k=0}^{K} \sum_{j=1}^{\mu_{k+1}^{p-1}}\|D(t, k, j)\|_{\sigma, p}+\varepsilon\right)=\varepsilon
$$

Summarizing,

$$
\lim _{t \rightarrow 1} \varphi_{t}^{\prime}=\lim _{t \rightarrow 1} \varphi_{t}^{\prime \prime}=\omega \quad \text { in } L^{2, p}(\Sigma)
$$

Now we will show that the solution is unique. Suppose φ is a smooth p form in \bar{B} with $L \varphi=L_{a, b} \varphi=0$ and $\varphi \mid \Sigma=0$. We will show that $\varphi=0$. Since $\varphi \mid \Sigma=0$, we have $\iota_{\nu} \varphi \mid \Sigma=0$. Therefore, applying the integral formula (1.2.3) we obtain

$$
\int_{B}(L \varphi) \varphi d x=a \int_{B}(\delta \varphi)^{2} d x+b \int_{B}(d \varphi)^{2} d x .
$$

This implies that φ is both closed and co-closed, so harmonic. Hence each coefficient of φ is a harmonic function in B vanishing on Σ, thus it is the zero function, by the maximum principle. So $\varphi=0$ in \bar{B}.

Suppose now that φ is a solution to the Dirichlet problem with zero L^{2}-boundary value. We have

$$
\lim _{t \rightarrow 1}\left\|\varphi_{t}\right\|_{\sigma, p}^{2}=0
$$

Since for each $0<t<1, \varphi_{t}$ is smooth up to the boundary and satisfies $L \varphi_{t}=0$, it can be expressed as a sum of four series from the theorem: $\varphi_{t}=\eta(t)+\widetilde{\alpha}(t)+\beta(t)+\psi(t)$. Denote their coefficients by $u_{k, j}^{p}(t), \widetilde{\alpha}_{k, j}^{p}(t)$ etc., respectively. Then by (2.1) we obtain

$$
\lim _{t \rightarrow 1}\left(\sum_{k, j}\left|u_{k, j}^{p}(t)\right|^{2}+\sum_{k, j}\left|\widetilde{a}_{k, j}^{p}(t)\right|^{2}+\sum_{k, j}\left|b_{k, j}^{p}(t)\right|^{2}+\sum_{k, j}\left|\widetilde{c}_{k, j}^{p}(t)\right|^{2}\right)=0
$$

Take any $0<R^{\prime}<R<1$. We show that $|\varphi|_{\infty}^{\prime}=|\varphi|_{\infty}^{R^{\prime}}=0$, where $\left.|\cdot|\right|_{\infty} ^{R^{\prime}}$ is the norm of uniform convergence, i.e.,

$$
|\varphi|_{\infty}^{\prime}=|\varphi|_{\infty}^{R^{\prime}}=\sup _{i_{1}, \ldots, i_{p}} \sup _{|x| \leq R^{\prime}}\left|\varphi_{i_{1}, \ldots, i_{p}}(x)\right|
$$

We have

$$
\begin{equation*}
|\varphi|_{\infty}^{\prime} \leq\left|\varphi-\varphi_{t}\right|_{\infty}^{\prime}+|\eta(t)|_{\infty}^{\prime}+|\widetilde{\alpha}(t)|_{\infty}^{\prime}+|\beta(t)|_{\infty}^{\prime}+|\psi(t)|_{\infty}^{\prime} \tag{2.2.3}
\end{equation*}
$$

Since φ is uniformly continuous in the ball $|x| \leq R^{\prime},\left|\varphi-\varphi_{t}\right|_{\infty}^{\prime}$ tends to zero. It remains to estimate $|\eta(t)|_{\infty}^{\prime},|\widetilde{\alpha}(t)|_{\infty}^{\prime},|\beta(t)|_{\infty}^{\prime},|\psi(t)|_{\infty}^{\prime}$.

We will use the notation from the end of §1.1. Fix a multi-index $\left(i_{1}, \ldots, i_{p}\right)$. Take any coefficient $\eta_{k, j ; i_{1}, \ldots, i_{p}}^{p}$ of $\eta_{k, j}^{p}$ and put $g_{k, j}=\eta_{k, j ; i_{1}, \ldots, i_{p}}^{p}$. Then $\left(g_{k, j}\right)$ is a series of spherical harmonics and $\left\|g_{k, j}\right\|_{\sigma} \leq\left\|\eta_{k, j}^{p}\right\|_{\sigma, p}=1$. So for each $|x|<R^{\prime}$, by Lemma 1.1.1 we have

$$
\begin{aligned}
\left|\sum_{k, j} u_{k, j}^{p}(t) g_{k, j}(x)\right| & \leq \sum_{k, j}\left|u_{k, j}^{p}(t) g_{k, j}(x)\right| \\
& \leq C(R)\left(\sum_{k, j}\left|u_{k, j}^{p}(t)\right|^{2}\right)^{1 / 2}\left(\sum_{k, j} \varepsilon^{2 k}\right)^{1 / 2}
\end{aligned}
$$

This means that

$$
\lim _{t \rightarrow 1}|\eta(t)|_{\infty}^{\prime} \leq C(R)\left(\sum_{k, j} \varepsilon^{2 k}\right)^{1 / 2} \lim _{t \rightarrow 1}\left(\sum_{k, j}\left|u_{k, j}^{p}(t)\right|^{2}\right)^{1 / 2}=0
$$

The same arguments show that $\lim _{t \rightarrow 1}|\widetilde{\alpha}(t)|_{\infty}^{\prime}=0$ and $\lim _{t \rightarrow 1}|\beta(t)|_{\infty}^{\prime}=0$.
To prove that $\lim _{t \rightarrow 1}|\psi(t)|_{\infty}^{\prime}=0$ it suffices to apply (2.1.6) and preceding arguments (Lemma 1.1.1 with the sequences $w_{k}=1$ and $w_{k}=k$, resp.).

Consequently, $|\varphi|_{\infty}^{\prime}=0$, by (2.2.3). Since $0<R^{\prime}<1$ was arbitrary, φ is the zero form.

As announced in the Introduction, under the natural duality given by the canonical inner product $\langle\cdot, \cdot\rangle$ in \mathbb{R}^{n}, we may identify 1 -forms with vector fields. Then we have

$$
d \simeq \operatorname{grad}, \quad \delta \simeq-\operatorname{div}, \quad S^{\star} S \simeq-L_{(n-1) / n, 1 / 2}
$$

where grad, div and $S^{\star} S$ denote the gradient, divergence and the AhlforsLaplace operator, respectively. Denote by $\overrightarrow{\mathcal{H}}^{k}$ the space of vector fields in
\mathbb{R}^{n} with coefficients from \mathcal{H}^{k} and by $\mathcal{L}^{2}(\Sigma)$ the space of vector fields on Σ whose coefficients belong to $L^{2}(\Sigma)$. Moreover, let $\langle\cdot \mid \cdot\rangle_{\sigma}$ denote the inner product in $\mathcal{L}^{2}(\Sigma)$ induced from $L^{2}(\Sigma)$, i.e.,

$$
\langle V \mid W\rangle_{\sigma}=\int_{\Sigma}\langle V(x), W(x)\rangle d \sigma(x)
$$

for vector fields $V, W \in \mathcal{L}^{2}(\Sigma)$. Let, as before, $\left(h_{k, j}\right)$ be an L^{2}-orthonormal basis of \mathcal{H}^{k}. The spaces Q^{k}, \mathcal{M}^{k} and \mathcal{N}^{k}, and the vector fields $q_{j}^{k}, m_{j}^{k}, n_{j}^{k}$ and p_{j}^{k} constructed in [11] correspond to the following:

$$
\begin{aligned}
Q^{k} & =\left\{H=\left(h_{1}, \ldots, h_{n}\right) \in \overrightarrow{\mathcal{H}}^{k}: \operatorname{div} H=0,\langle H(x), x\rangle=0\right\} \simeq \chi_{1, k}^{0} \\
\mathcal{N}^{k} & =\left\{H=\operatorname{grad} h \in \overrightarrow{\mathcal{H}}^{k}: h \in \mathcal{H}_{k+1}\right\} \simeq d \chi_{0, k+1}^{0} \\
\mathcal{N}^{k} & =\left\{H=(n+2 k-4) x h-r^{2} \operatorname{grad} h \in \overrightarrow{\mathcal{H}}^{k}: h \in \mathcal{H}_{k-1}\right\} \simeq I_{\Delta}(1, k) \chi_{0, k-1}^{0} \\
q_{j}^{k} & \simeq \eta_{k, j}^{1}, \\
m_{j}^{k} & =\frac{1}{\sqrt{(k+1)(n+2 k)}} \operatorname{grad} h_{k+1, j} \simeq \alpha_{k, j}^{1} \\
n_{j}^{k} & =\sqrt{\frac{n+2 k-4}{n+k-3}} x h_{k-1, j}-\frac{r^{2}}{\sqrt{(n+2 k-4)(n+k-3)}} \operatorname{grad} h_{k-1, j} \simeq \gamma_{k, j}^{1} \\
p_{j}^{k} & =x h_{k-1, j}+c_{S^{\star} S}(n, k)\left(1-r^{2}\right) \operatorname{grad} h_{k-1, j} \simeq \psi_{k, j}^{1}
\end{aligned}
$$

The constant $c_{S^{\star} S}(n, k)$ is equal to $c_{L}(1, k)$ with $L=L_{(n-1) / n, 1 / 2}$. The following theorem ([11, Theorem 3]) is now a direct consequence of Theorem 2.2.1 and the identity $\beta_{k, j}^{1}=0$.

Theorem 2.2.2 (Reimann). Given $V \in \mathcal{L}^{2}(\Sigma), n \geq 3$, there exists a unique solution Φ of $S^{\star} S \Phi=0$ in the ball B with L^{2}-boundary value V :

$$
\lim _{t \rightarrow 1} \int_{\Sigma}|\Phi(t x)-V(x)|^{2} d \sigma(x)=0
$$

This solution is given by the formula

$$
\Phi=\sum_{k=0}^{\infty} \sum_{j=1}^{d_{k+1}} \widetilde{a}_{k, j} m_{j}^{k}+\sum_{k=1}^{\infty} \sum_{j=1}^{d_{k-1}} \widetilde{c}_{k, j} p_{j}^{k}+\sum_{k=1}^{\infty} \sum_{j=1}^{d_{k}} u_{k, j} q_{j}^{k}
$$

with

$$
\begin{aligned}
\widetilde{a}_{k, j} & =\left\langle V \mid m_{j}^{k}\right\rangle_{\sigma}-\sqrt{\frac{k+1}{n+k-1}}\left\langle V \mid n_{j}^{k+2}\right\rangle_{\sigma} \\
\widetilde{c}_{k, j} & =\sqrt{\frac{n+2 k-4}{n+k-3}}\left\langle V \mid n_{j}^{k}\right\rangle_{\sigma} \\
u_{k, j} & =\left\langle V \mid q_{j}^{k}\right\rangle_{\sigma}
\end{aligned}
$$

REFERENCES

[1] L. V. Ahlfors, Invariant operators and integral representations in hyperbolic spaces, Math. Scand. 36 (1975), 27-43.
[2] I. G. Avramidi and T. Branson, Heat kernel asymptotics operators with non-Laplace type principal part, Rev. Math. Phys. 13 (2001), 847-890.
[3] R. R. Coifman and G. Weiss, Representations of compact groups and spherical harmonics, Enseign. Math. 14 (1969), 121-175.
[4] W. Kozłowski, Hodge type decomposition, Ann. Polon. Math. 90 (2007), 99-104.
[5] -, Laplace type operators: Dirichlet problem, Ann. Scuola Norm. Sup. Pisa 6 (2007), 53-80.
[6] W. Kozłowski and A. Pierzchalski, Natural boundary value problems for Laplace type operators, Preprint 2006/04, Faculty of Math., Łódź Univ.
[7] A. Lipowski, Boundary problems for the Ahlfors operator, Ph.D. Thesis, Łódź Univ., 1996, 55 pp. (in Polish).
[8] R. Palais, Seminar on the Atiyah-Singer Index Theorem, Ann. of Math. Stud. 57, Princeton Univ. Press, Princeton, NJ, 1965.
[9] A. Pierzchalski, Geometry of Quasiconformal Deformations of Riemannian Manifolds, Łódź Univ. Press, 1997.
[10] -, Ricci curvature and Quasiconformal Deformations of a Riemannian Manifold, Manuscripta Math. 66 (1989), 113-127.
[11] H. M. Reimann, Rotation invariant differential equation for vector fields, Ann. Scuola Norm. Sup. Pisa 9 (1982), 160-174.
[12] E. M. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.

Faculty of Mathematics and Computer Science
Łódź University
Banacha 22
90-238 Łódź, Poland
E-mail: wojciech@math.uni.lodz.pl

Received 12 February 2007; revised 19 July 2007

[^0]: 2000 Mathematics Subject Classification: Primary 35J25; Secondary 35J67, 34K10.
 Key words and phrases: weighted form Laplacian, Laplace operator, polynomial pform, Dirichlet boundary problem.

