COLLOQUIUM MATHEMATICUM

PROBABILITY THAT AN ELEMENT OF A FINITE GROUP HAS A SQUARE ROOT

BY
M. S. LUCIDO (Udine) and M. R. POURNAKI (Tehran)

Abstract

Let G be a finite group of even order. We give some bounds for the probability $\mathrm{p}(G)$ that a randomly chosen element in G has a square root. In particular, we prove that $\mathrm{p}(G) \leq 1-\lfloor\sqrt{|G|}\rfloor /|G|$. Moreover, we show that if the Sylow 2-subgroup of G is not a proper normal elementary abelian subgroup of G, then $\mathrm{p}(G) \leq 1-1 / \sqrt{|G|}$. Both of these bounds are best possible upper bounds for $\mathrm{p}(G)$, depending only on the order of G.

1. Introduction. Let G be a finite group and let $g \in G$. If there exists an element $h \in G$ for which $g=h^{2}$, then we say that g has a square root. Clearly, g may have one or more square roots, or it may have none. Let G^{2} be the set of all elements of G which have at least one square root, i.e.,

$$
G^{2}=\left\{g \in G \mid \text { there exists } h \in G \text { such that } g=h^{2}\right\}
$$

or simply $G^{2}=\left\{g^{2} \mid g \in G\right\}$. Then

$$
\mathrm{p}(G)=\frac{\left|G^{2}\right|}{|G|}
$$

is the probability that a randomly chosen element in G has a square root.
The properties of $\mathrm{p}\left(S_{n}\right)$, where S_{n} denotes the symmetric group on n letters, have been studied by some authors. Asymptotic properties of $\mathrm{p}\left(S_{n}\right)$ were studied in [1], [2], [8] and in [3], which is devoted to the proof of a conjecture of Wilf [9] that $\mathrm{p}\left(S_{n}\right)$ is non-increasing in n. Recently, the basic properties of $\mathrm{p}(G)$ for an arbitrary finite group G have been studied by the authors of this paper (see [7]). Moreover, they calculated $\mathrm{p}(G)$ when G is a simple group of Lie type of rank 1 or when G is an alternating group. A table of $\mathrm{p}(G)$ for the sporadic finite simple groups was also given.

In this paper we give some bounds for the probability that a randomly chosen element in a given finite group has a square root. In particular, we

[^0]give the following best possible upper bounds for $\mathrm{p}(G)$, depending only on $|G|$ (see Theorems 2.11 and 2.13).

Main Theorem. Let G be a finite group of even order. Then

$$
\mathrm{p}(G) \leq 1-\lfloor\sqrt{|G|}\rfloor /|G|
$$

Moreover, if the Sylow 2-subgroup of G is not a proper normal elementary abelian subgroup of G, then $\mathrm{p}(G) \leq 1-1 / \sqrt{|G|}$, and both bounds are the best possible.
2. The best possible bounds. By [7, Proposition $2.1(\mathrm{ii})]$, $\mathrm{p}(G)=1$ if and only if $|G|$ is odd. Therefore we deal with even order groups. The following theorem presents an upper bound for $\mathrm{p}(G)$ when G has even order, improving the bound $\mathrm{p}(G)<1$.

Theorem 2.1. Let G be a finite group of even order, and P be a Sylow 2 -subgroup of G. Then $\mathrm{p}(G) \leq 1-1 /|P|$.

Let P be the additive group of the field $\mathrm{GF}\left(2^{n}\right)$ and let $H=\operatorname{GF}\left(2^{n}\right)^{\times}$ be its multiplicative group. Let $G=P H$ be the semidirect product of these groups, with H acting on P by multiplication. Then $\mathrm{p}(G)=1-1 /|P|$, which shows that the bound in Theorem 2.1 is sharp.

The following corollary is just a combination of Theorem 2.1 and Proposition 2.3 of [7].

Corollary 2.2. Let G be a finite group of even order, and P be a Sylow 2 -subgroup of G. If G is solvable, then $1 /|P| \leq \mathrm{p}(G) \leq 1-1 /|P|$.

We recall that if a Sylow 2-subgroup of a finite group is cyclic, then the group has a normal 2-complement (see for example [6, 7.2.2]), and it is therefore solvable. We thus get the following corollary.

Corollary 2.3. Let G be a finite group such that $|G|=2 m$, where m is odd. Then $\mathrm{p}(G)=1 / 2$.

In order to prove Theorem 2.1, we must first explain a few things about decomposition of an element in a finite group. So let G be a finite group. We can uniquely decompose each element $x \in G$ into $x=x_{2} x_{2^{\prime}}=x_{2^{\prime}} x_{2}$, where x_{2} is a 2-element of G and $x_{2^{\prime}}$ is an element of G of odd order. Moreover, if x has a square root then so also does x_{2}. In the following, when we speak about x_{2} and $x_{2^{\prime}}$, we always mean this unique decomposition of x. We also need the following result originally proved by Frobenius (see [5] and also Corollary 41.11 of [4] as a more accessible reference).

REMARK 2.4. Let G be a finite group, $a \in G$, and n be a positive integer. Then the number of solutions of the equation $x^{n}=a$ in G is a multiple of $\operatorname{gcd}\left(n,\left|C_{G}(a)\right|\right)$. In particular, the number of solutions of the equation $x^{n}=1$ in G is a multiple of $\operatorname{gcd}(n,|G|)$.

Proof of Theorem 2.1. Choose $a \in G$ such that a is a 2-element of maximal order in G. We claim that if $x \in G$ and $x=x_{2} x_{2^{\prime}}$ with x_{2} a conjugate of a, then x does not have a square root. To prove the claim, suppose that $a=h^{2}$ for some $h \in G$. Then by [7, Remark 2.2] we have $|h|=2|a|$, which contradicts the definition of a. Therefore a does not have a square root and the same is true for its conjugates. Hence, x_{2} does not have a square root, which in turn implies that x does not have a square root. Therefore the claim holds and we have

$$
\left\{x \in G \mid x_{2} \text { is conjugate to } a\right\} \subseteq G \backslash G^{2}
$$

Observe also that the number of $x \in G$ for which x_{2} is conjugate to a is equal to $\left|G: C_{G}(a)\right| t$, where t is the number of elements of odd order of $C_{G}(a)$. Therefore

$$
\left|G: C_{G}(a)\right| t \leq|G|-\left|G^{2}\right|
$$

We now write $|G|=2^{k} m$ where $k \geq 1$ and m is odd. Then it is clear that $\left|C_{G}(a)\right|=2^{k^{\prime}} m^{\prime}$ for some positive integers k^{\prime} and m^{\prime} such that $k^{\prime} \leq k$ and $m^{\prime} \mid m$. On the other hand, it is easy to see that an element x in $C_{G}(a)$ has odd order if and only if $x^{m^{\prime}}=1$. Therefore, t is equal to the number of solutions of the equation $x^{m^{\prime}}=1$ in $C_{G}(a)$. By Remark 2.4, this is a multiple of $\operatorname{gcd}\left(m^{\prime}, 2^{k^{\prime}} m^{\prime}\right)=m^{\prime}$. Hence, $m^{\prime} \leq t$ and thus $\left|G: C_{G}(a)\right| m^{\prime} \leq$ $\left|G: C_{G}(a)\right| t \leq|G|-\left|G^{2}\right|$. By dividing both sides by $|G|$ we obtain

$$
\frac{m^{\prime}}{\left|C_{G}(a)\right|} \leq 1-\mathrm{p}(G)
$$

which in turn implies that

$$
\mathrm{p}(G) \leq 1-\frac{m^{\prime}}{2^{k^{\prime}} m^{\prime}}=1-\frac{1}{2^{k^{\prime}}} \leq 1-\frac{1}{2^{k}}=1-\frac{1}{|P|}
$$

as required.
The following theorem gives another upper bound for $\mathrm{p}(G)$ when G has even order, depending only on the order of G and the number of 2-elements of G.

Theorem 2.5. Let G be a finite group of even order, and denote by Q the set of 2-elements of G. Then $\mathrm{p}(G) \leq 1-|Q| / 2|G|$.

Proof. Suppose $a \in Q$. By Remark 2.4, the number of solutions of the equation $x^{2}=a$ in G is a multiple of $\operatorname{gcd}\left(2,\left|C_{G}(a)\right|\right)$. Hence, this number is either 0 or ≥ 2. But by [7 , Remark 2.2] all solutions of this equation lie in Q. Therefore, $|G|-\left|G^{2}\right| \geq|Q| / 2$, or $\mathrm{p}(G) \leq 1-|Q| / 2|G|$ as required.

We now prove an easy but useful lemma.
Lemma 2.6. Let G be a finite group, and N be a normal subgroup of G. Then $\mathrm{p}(G) \leq \mathrm{p}(G / N)$.

Proof. Note that $g N \in G / N$ has a square root if and only if there is $x N \in G / N$ for which $g N=(x N)^{2}$ if and only if $x^{2} \in g N$. Therefore, $g N \in G / N$ does not have a square root if and only if there is no element $x \in G$ with $x^{2} \in g N$. Hence, if a coset in G / N does not have a square root, then no element of this coset has a square root in G, and therefore $|G|-\left|G^{2}\right| \geq|N|\left(|G / N|-\left|(G / N)^{2}\right|\right)$. By dividing both sides by $|G|$ we obtain $1-\mathrm{p}(G) \geq 1-\mathrm{p}(G / N)$, or $\mathrm{p}(G) \leq \mathrm{p}(G / N)$ as required.

As corollaries of Lemma 2.6, we give an upper bound for $\mathrm{p}(G)$ when G is a finite 2 -group, depending only on the order of $|G|$, and then an upper bound for $\mathrm{p}(G)$ when G is a finite nilpotent group.

Corollary 2.7. Let G be a finite 2 -group such that $|G| \geq 4$. Then $\mathrm{p}(G) \leq 1-1 / \sqrt{|G|}$.

Proof. Suppose that $\Phi(G)$ is the Frattini subgroup of G. By Lemma 2.6 and Theorem 2.4(i) of [7], we have

$$
\mathrm{p}(G) \leq \mathrm{p}\left(\frac{G}{\Phi(G)}\right)=\frac{1}{|G / \Phi(G)|} \leq \frac{1}{2}
$$

Since $|G| \geq 4$, we obtain $1 / 2 \leq 1-1 / \sqrt{|G|}$, and so the above inequality implies that $\mathrm{p}(G) \leq 1-1 / \sqrt{|G|}$ as required.

Corollary 2.8. Let G be a finite nilpotent group of even order, and P be a Sylow 2-subgroup of G. If $|P|=2$, then $\mathrm{p}(G)=1 / 2$. If $|P|>2$, then $1 /|P| \leq \mathrm{p}(G) \leq 1-1 / \sqrt{|P|} \leq 1-1 / \sqrt{|G|}$.

Proof. The first statement is Corollary 2.3. The second statement comes from Corollary 2.7 and Proposition 2.3 of [7], which states that if G is nilpotent, then $\mathrm{p}(G)=\mathrm{p}(P)$.

The following two propositions give upper bounds for $\mathrm{p}(G)$, depending on the order of G, but only for special classes of even order groups.

Proposition 2.9. Let G be a finite group of even order. If G contains more than one Sylow 2-subgroup, then $\mathrm{p}(G) \leq 1-1 / \sqrt{|G|}$.

Proof. Let P be a Sylow 2-subgroup of G. Since G has at least two distinct Sylow 2-subgroups, P is not normal in G. By Remark 2.4, the number of solutions of the equation $x^{|P|}=1$ in G is a multiple of $\operatorname{gcd}(|P|,|G|)=|P|$. Therefore, $|P|$ divides the number of solutions of $x^{|P|}=1$ in G. But if we let Q be the set of 2 -elements of G, then the set of solutions of the equation $x^{|P|}=1$ in G is just Q, and this means $|P|$ divides $|Q|$. Hence, either $|P|=|Q|$ or $|P| \leq|Q| / 2$. In the first case $P=Q$ is normal in G, contrary to hypothesis. Hence, $|P| \leq|Q| / 2$. On the other hand, by Theorem 2.5, we have $\mathrm{p}(G) \leq 1-|Q| / 2|G|$, and so $\mathrm{p}(G) \leq 1-|P| /|G|$. This inequality together
with Theorem 2.1 now implies that $(1-\mathrm{p}(G))^{2} \geq(|P| /|G|)(1 /|P|)=1 /|G|$, and so $\mathrm{p}(G) \leq 1-1 / \sqrt{|G|}$ as required.

Proposition 2.10. Let G be a finite group of even order with elementary abelian Sylow 2-subgroups. Then $\mathrm{p}(G) \leq 1-\lfloor\sqrt{|G|}\rfloor /|G|$.

Proof. Suppose P is an elementary abelian Sylow 2-subgroup of G. Consider $x \neq 1$ as an element of P. If there is $y \in G$ such that $x=y^{2}$, then by [7, Remark 2.2] we have $|y|=4$, which is a contradiction. Therefore, $x \in G \backslash G^{2}$, and so $P \backslash\{1\} \subseteq G \backslash G^{2}$. Hence, $|P|-1 \leq|G|-\left|G^{2}\right|$. On the other hand, by Theorem 2.1, $\mathrm{p}(G) \leq 1-1 /|P|$ and so $\left|G^{2}\right| \leq|G|-|G| /|P|$, which implies $|G| /|P| \leq|G|-\left|G^{2}\right|$. Therefore, $|G|-|G| /|P| \leq\left(|G|-\left|G^{2}\right|\right)^{2}$, or
$|G| \leq\left(|G|-\left|G^{2}\right|\right)^{2}+|G| /|P| \leq\left(|G|-\left|G^{2}\right|\right)\left(|G|-\left|G^{2}\right|+1\right)<\left(|G|-\left|G^{2}\right|+1\right)^{2}$.
This implies that $\sqrt{|G|}<|G|-\left|G^{2}\right|+1$, so $\lfloor\sqrt{|G|}\rfloor \leq|G|-\left|G^{2}\right|$, and hence $\mathrm{p}(G) \leq 1-\lfloor\sqrt{|G|}\rfloor /|G|$ as required.

The bound of Proposition 2.10 is the best possible. In fact, if G is the group described just after the statement of Theorem 2.1, then $\mathrm{p}(G)=1-$ $\lfloor\sqrt{|G|}\rfloor /|G|$.

We can now state the following theorem which gives lower and upper bounds for $\mathrm{p}(G)$, depending only on the order of G.

Theorem 2.11. Let G be a finite group of even order. Then

$$
1 /|G| \leq \mathrm{p}(G) \leq 1-\lfloor\sqrt{|G|}\rfloor /|G|
$$

Proof. It is clear that $1 /|G| \leq \mathrm{p}(G)$ (see also Proposition 2.1 of [7]). Therefore we prove the second inequality. We first consider groups G with $|G|<26$. Among these, by Corollary 2.3 , we only need to deal with groups whose order is divisible by 4 . Moreover, if G is nilpotent, then by Proposition 2.3 of [7] and by Corollary 2.7, we have

$$
\mathrm{p}(G)=\mathrm{p}(P) \leq 1-\frac{1}{\sqrt{|P|}} \leq 1-\frac{1}{\sqrt{|G|}} \leq 1-\frac{\lfloor\sqrt{|G|}\rfloor}{|G|}
$$

and we are done. Therefore we should prove the second inequality only for groups of order 12,20 and 24 . In these cases, if the Sylow 2-subgroup is normal, we are done, and otherwise we can use Proposition 2.9. Hence, the second inequality holds for groups G with $|G|<26$.

We now suppose that $|G| \geq 26$. Let $N \neq 1$ be a minimal normal subgroup of G.

Suppose that G / N has odd order. In this case $|N|$ is even. Since N is minimal normal, it is isomorphic to a direct product of isomorphic simple groups. There are two possibilities. If $N \cong \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$ is an elementary abelian 2-group, then N is the unique Sylow 2-subgroup of G. Hence,

Proposition 2.10 implies that $\mathrm{p}(G) \leq 1-\lfloor\sqrt{|G|}\rfloor /|G|$, which gives the second inequality. If $N \cong S \times \cdots \times S$, where S is a non-abelian simple group, then G has at least two distinct Sylow 2-subgroups and so, by Proposition 2.9, we obtain $\mathrm{p}(G) \leq 1-1 / \sqrt{|G|} \leq 1-\lfloor\sqrt{|G|}\rfloor /|G|$, which gives the second inequality.

Next we assume that G / N has even order. In this case, we apply induction on $|G|$. Since $|G / N|<|G|$, the inductive hypothesis implies that

$$
\begin{equation*}
\mathrm{p}(G / N) \leq 1-\frac{\lfloor\sqrt{|G / N|}\rfloor}{|G / N|} \tag{1}
\end{equation*}
$$

and therefore, by Lemma 2.6, we have

$$
\begin{equation*}
\mathrm{p}(G) \leq 1-\frac{\lfloor\sqrt{|G / N|}\rfloor}{|G / N|} \tag{2}
\end{equation*}
$$

We claim that if $|N| \geq 12$, then

$$
\begin{equation*}
1-\frac{\lfloor\sqrt{|G / N|}\rfloor}{|G / N|} \leq 1-\frac{\lfloor\sqrt{|G|}\rfloor}{|G|} \tag{3}
\end{equation*}
$$

To prove the claim, observe that (3) is equivalent to $\lfloor\sqrt{|G|}\rfloor \leq\lfloor\sqrt{|G / N|}\rfloor|N|$. Therefore it is enough to prove that $\sqrt{|G|} \leq(\sqrt{|G / N|}-1)|N|$, that is, $\sqrt{|G|} \geq|N| /(\sqrt{|N|}-1)$. Since $|G| \geq 2|N|$, it is sufficient to show that $\sqrt{2} \geq$ $\sqrt{|N|} /(\sqrt{|N|}-1)$, which is true for $|N| \geq 12$. Therefore the claim holds and so for $|N| \geq 12$ we get, using (2), the inequality $\mathrm{p}(G) \leq 1-\lfloor\sqrt{|G|}\rfloor /|G|$, which is the second inequality.

We now suppose that $|N| \leq 11$. We observe that (1) is equivalent to

$$
|G / N|-\left|(G / N)^{2}\right| \geq\lfloor\sqrt{|G / N|}\rfloor
$$

Therefore there are at least $\lfloor\sqrt{|G / N|}\rfloor$ cosets $g_{1} N, \ldots, g_{l} N$ such that there is no $x \in G$ with $x^{2} \in g_{i} N, i=1, \ldots, l$. Consequently,

$$
\begin{equation*}
|G|-\left|G^{2}\right| \geq|N|\lfloor\sqrt{|G / N|}\rfloor \tag{4}
\end{equation*}
$$

For any N such that $1<|N| \leq 11$, it is easy to prove that

$$
\frac{|N|}{\sqrt{|N|}-1}<5 .
$$

Since $|G| \geq 26$, we have $\sqrt{|G|}>5$, therefore

$$
\frac{|N|}{\sqrt{|N|}-1}<5<\sqrt{|G|} .
$$

This implies that $|N|<\sqrt{|G|}(\sqrt{|N|}-1)$, which can be rewritten as

$$
0<\sqrt{|G|} \sqrt{|N|}-\sqrt{|G|}-|N|
$$

or

$$
0<\sqrt{|N|}(\sqrt{|G|}-\sqrt{|N|})-\sqrt{|G|}
$$

So we have

$$
\sqrt{|G|}<|N|(\sqrt{|G / N|}-1)<|N|\lfloor\sqrt{|G / N|}\rfloor
$$

Since $\lfloor\sqrt{|G|}\rfloor \leq \sqrt{|G|}$, using (4) we get $\lfloor\sqrt{|G|}\rfloor \leq|G|-|G|^{2}$, which gives $\mathrm{p}(G) \leq 1-\lfloor\sqrt{|G|}\rfloor /|G|$.

The cyclic group of order 4 shows that the bound in Theorem 2.11 is the best possible. In fact,

$$
\mathrm{p}\left(\mathbb{Z}_{4}\right)=1 / 2=1-1 / \sqrt{4}
$$

A natural question arises: Does the slightly stronger bound of Proposition 2.9 hold if P is normal but $\Phi(P)>1$, so that only elementary abelian normal Sylow 2-subgroups are responsible for the weaker bound of Theorem 2.11?

The answer is yes, as we prove in the following theorem.
Theorem 2.12. Let G be a finite group of even order, and P be a Sylow 2 -subgroup of G. If $\mathrm{p}(G)>1-1 / \sqrt{|G|}$, then P is a proper normal elementary abelian subgroup of G.

Proof. By Proposition 2.9, P is normal, and by Corollary 2.8, G is not nilpotent and therefore $P \neq G$. Let $\Phi=\Phi(P)$ be the Frattini subgroup of P. We first suppose that $\sqrt{|G|} \leq|P| / 2$. Then $1 / \sqrt{|G|} \leq|P| / 2|G|$, which implies, by Theorem 2.5,

$$
\mathrm{p}(G) \leq 1-\frac{|P|}{2|G|} \leq 1-\frac{1}{\sqrt{|G|}}
$$

contrary to hypothesis.
Therefore we can suppose that $|\Phi|^{2} \leq|P|^{2} / 4 \leq|G|$. Then, by Lemma 2.6 and Theorem 2.11, we have

$$
\mathrm{p}(G) \leq \mathrm{p}(G / \Phi) \leq 1-\frac{\lfloor\sqrt{|G / \Phi|}\rfloor}{|G / \Phi|} \leq 1-\frac{|\Phi|(\sqrt{|G / \Phi|}-1)}{|G|}
$$

We want to prove that

$$
\frac{|\Phi|(\sqrt{|G / \Phi|}-1)}{|G|} \geq \frac{1}{\sqrt{|G|}}
$$

This is equivalent to showing that

$$
\begin{equation*}
\sqrt{|G|} \geq \frac{|\Phi|}{\sqrt{|\Phi|}-1} \tag{5}
\end{equation*}
$$

We first suppose that $|\Phi| \geq 4$; then $\sqrt{|\Phi|}-1 \geq 1$ and the inequality (5) is equivalent to $|\Phi|^{2} \leq|G|$, which we are assuming is true.

We then suppose $|\Phi|=2$. If P is cyclic, then by the remark preceding Corollary 2.3, P has a normal 2-complement Q. Hence $G=P \times Q$ and by Corollary 2.7,

$$
\begin{aligned}
\mathrm{p}(G) & =\mathrm{p}(P \times Q)=\mathrm{p}(P) \mathrm{p}(Q)=\mathrm{p}(P) \\
& \leq 1-\frac{1}{\sqrt{|P|}} \leq 1-\frac{1}{\sqrt{|G|}}
\end{aligned}
$$

contrary to hypothesis. Thus P is not cyclic, and this implies $|P| \geq 8$ and $|G| \geq 24$, so again

$$
\sqrt{G} \geq \sqrt{24}>\frac{2}{\sqrt{2}-1}=\frac{|\Phi|}{\sqrt{|\Phi|}-1}
$$

which is (5).
Thus (5) holds in both cases, and this implies $\mathrm{p}(G) \leq 1-1 / \sqrt{G}$, contrary to hypothesis. This last contradiction proves that $\Phi=\{1\}$.

We close this section by observing that Theorems 2.11 and 2.12 together prove the following theorem. Moreover, the group G described just after the statement of Theorem 2.1 shows that the bound $\mathrm{p}(G) \leq 1-\lfloor\sqrt{|G|}\rfloor /|G|$ in Theorem 2.11 is the best possible and the cyclic group of order 4 shows that the better bound $\mathrm{p}(G) \leq 1-1 / \sqrt{G}$ is again the best possible.

Theorem 2.13. Let G be a finite group of even order. If the Sylow 2subgroup of G is not a proper normal elementary abelian subgroup of G, then

$$
\mathrm{p}(G) \leq 1-1 / \sqrt{G}
$$

REFERENCES

[1] E. A. Bender, Asymptotic methods in enumeration, SIAM Rev. 16 (1974), 485-515.
[2] J. Blum, Enumeration of the square permutations in S_{n}, J. Combin. Theory Ser. A 17 (1974), 156-161.
[3] M. Bona, A. McLennan and D. White, Permutations with roots, Random Structures Algorithms 17 (2000), 157-167.
[4] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure Appl. Math. 11, Interscience Publ., New York, 1962.
[5] P. Hall, On a theorem of Frobenius, Proc. London Math. Soc. 40 (1936), 468-501.
[6] H. Kurzweil and B. Stellmacher, The Theory of Finite Groups. An Introduction, Springer, New York, 2004.
[7] M. S. Lucido and M. R. Pournaki, Elements with square roots in finite groups, Algebra Colloq. 12 (2005), 677-690.
[8] N. Pouyanne, On the number of permutations admitting an m-th root, Electron. J. Combin. 9 (2002), no. 1, Research Paper 3, 12 pp.
[9] H. S. Wilf, Generatingfunctionology, 2nd ed., Academic Press, Boston, MA, 1994.
Dipartimento di Matematica e Informatica Università di Udine

Department of Mathematical Sciences
Via delle Scienze 208
Sharif University of Technology
P.O. Box 11155-9415

Tehran, Iran
I-33100 Udine, Italy
and
School of Mathematics
Institute for Studies in Theoretical Physics
and Mathematics
P.O. Box 19395-5746

Tehran, Iran
E-mail: pournaki@ipm.ir

Received 22 February 2007;
revised 26 August 2007
(4876)

[^0]: 2000 Mathematics Subject Classification: Primary 20A05, 20D60, 20P05; Secondary 05A15.

 Key words and phrases: finite group, probability.
 Research of the second author supported in part by grant no. 83200112 from IPM.

