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HIGHLY TRANSITIVE SUBGROUPS OF THE SYMMETRIC
GROUP ON THE NATURAL NUMBERS

BY

U. B. DARJI (Louisville, KY) and J. D. MITCHELL (St Andrews)

Abstract. Highly transitive subgroups of the symmetric group on the natural num-
bers are studied using combinatorics and the Baire category method. In particular, elemen-
tary combinatorial arguments are used to prove that given any nonidentity permutation
α on N there is another permutation β on N such that the subgroup generated by α

and β is highly transitive. The Baire category method is used to prove that for certain
types of permutation α there are many such possibilities for β. As a simple corollary, if
2 ≤ κ ≤ 2ℵ0 , then the free group of rank κ has a highly transitive faithful representation
as permutations on the natural numbers.

1. Introduction. In 1977 McDonough [10] proved that a free group
of countable rank at least two has a highly transitive faithful permutation
representation in SN, the group of all permutations on the natural numbers.
Since then many results concerning highly transitive free subgroups of SN

have been published. For example, see Adeleke [1], Glass and McCleary [8],
Neumann [12] and Truss [15]. Cameron [3] contains the most comprehensive
survey of results in this area.

Of particular interest here is [5], where Dixon uses the Baire category
method to show that in a certain sense most highly transitive groups are
free. The approach in this paper is in the same spirit as in Dixon’s paper.
In other words, combinatorial and topological methods are used to obtain
algebraic results. The main algebraic result of the paper states that given
any nonidentity element α ∈ SN, there exists a cycle β ∈ SN with support N

such that 〈α, β〉 is highly transitive. The proof is combinatorial in nature.
Furthermore, it is shown that if α has infinite support, then a generic β in
the set I, of permutations that have no finite cycles, has the property that
〈α, β〉 is highly transitive. That is, there are “many” β ∈ I that have this
property. If α has even less finite structure, that is, α ∈ I, then a generic
β ∈ SN has the property that 〈α, β〉 is highly transitive. Dixon’s result that
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a generic element in I × I generates a highly transitive subgroup of SN is
obtained as a corollary. We also deduce as a corollary that if κ is a cardinal
with 2 ≤ κ ≤ 2ℵ0 , then there exists a highly transitive free subgroup of SN

of rank κ. In [3] Neumann is credited with constructing a highly transitive
free subgroup of SN of rank 2ℵ0 with the additional property that every
nonidentity element is cofinitary, that is, has at most finitely many fixed
points.

The theorems in this paper were originally motivated by similar results
for finite symmetric groups. In particular, if σ ∈ Sn, n 6= 4, is a nonidentity
permutation, then there exists τ ∈ Sn such that Sn = 〈σ, τ〉 (see [14]).
Furthermore, the probability that a randomly chosen pair of permutations
generates Sn or the alternating group An tends to 1 as n tends to ∞. This
result was originally known as Netto’s conjecture [11], and was first proved
by Dixon in [4]. The results presented here might be considered as infinite
analogues of these results.

2. Preliminaries. A topological space is called Polish if it is separable
and admits a complete metric which generates the given topology. The Baire
Category Theorem holds in a Polish space. That is, no nonempty open set
is meagre, i.e. a countable union of nowhere dense sets. Hence sets that are
complements of meagre sets, so-called comeagre sets, are “large”. To say
that a generic x in a Polish space X has property P means that the set
{x ∈ X : x does not satisfy P} is meagre in X. A set which is the countable
intersection of open sets is called a Gδ set. A theorem of Aleksandrov states
that every Gδ subset M of a Polish space X is Polish. Hence, it is meaningful
to say that a generic x ∈M has property P .

A subset Y of a topological space X has the Baire property if

Y = (U \N) ∪M

where U is open and M,N are meagre. The Baire property is a regularity
property analogous to Lebesgue measurability. The following theorem is
required. It is an analogue, in the context of category, of Fubini’s Theorem.

Theorem 2.1 (Kuratowski–Ulam Theorem [9, Theorem 8.41]). Suppose
X,Y are Polish spaces and M ⊆ X × Y has the Baire property. Then

(i) if Mx = {y ∈ Y : (x, y) ∈ M} is comeagre for a comeagre set of
x ∈ X, then M is a comeagre subset of X × Y ;

(ii) if M is comeagre in X×Y , then for a generic x ∈ X, Mx is comeagre
in Y .

For a Polish space X, denote the compact subsets of X equipped with
the Hausdorff metric by K(X). Recall that if X is Polish, then so is K(X).
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The reader is referred to [9] or [13] for further information on the theory of
Polish spaces.

The topology used on SN is that inherited from the product topology
on N

N. Recall that N
N is a Polish space. The group SN is a Gδ subset of

N
N and hence is Polish as well. In fact, a specific complete metric on SN

which generates the aforementioned topology can be defined. For σ, τ ∈ SN,
define

d(σ, τ) =

{

0 σ = τ

1/i+ 1/j σ 6= τ

where i is the least natural number where σ and τ differ and j is the least
natural number where σ−1 and τ−1 differ. Moreover, SN is a Polish group,
meaning that the group operation and the unary operation of taking inverses
are continuous.

Define N
<N to be the set of all injections with domain a finite subset of

N and image contained in N. If σ ∈ N
<N, then [σ] denotes the clopen (i.e.

simultaneously closed and open) set of all τ ∈ SN such that τ agrees with σ
on the domain of σ. Note that the collection of all such sets forms a basis
for the topology on SN. Recall that a subset X ⊆ SN is nowhere dense if
and only if for all σ ∈ N

<N there exists an extension τ ∈ N
<N of σ such that

[τ ] ∩X = ∅. For any α ∈ N
<N we denote by dom(α) the domain of α and

by im(α) the image (or range) of α.

The order of α ∈ SN is denoted by |α|. Denote by 1X the identity per-
mutation on X ⊆ N. If σ ∈ SN, then the support of σ, denoted by supp(σ),
is the set of all i ∈ N such that iσ 6= i. The fix of σ, denoted by fix(σ),
is the set of all i ∈ N such that iσ = i. The disjoint cycle structure of
α ∈ SN is denoted by (α1)(α2) · · · . A cycle σ ∈ SN is called a shift if
supp(σ) = N.

The collection I of all permutations with no finite cycles and the col-
lection S ⊆ I of all shifts are central to our investigation. Both of these
collections are nowhere dense in SN and hence “small”. However, both I
and S are Gδ subsets of SN and hence are Polish themselves. Therefore we
can meaningfully talk about generic elements of either collection. Neither
I nor S is a subgroup of SN since if σ and ̺ are shifts such that 1σ = 2
and 2̺ = 1, then σ̺ fixes 1. We also note that S is a dense subset of I.
Therefore if we show that a generic σ ∈ S has property P , then so does a
generic τ ∈ I.

For a subset X of SN we denote by 〈X〉 the subgroup formed in the usual
way, by taking all finite products of elements in X ∪X−1. It is well-known
that two permutations are conjugate in SN if and only if they have the same
number of disjoint cycles of each length (see, for example, [2, Theorem 2.9]).
The following fact will be used frequently.
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Lemma 2.2. Let G be a permutation group. If g, h, k ∈ G are such that
〈g, k−1hk〉 = G, then 〈kgk−1, h〉 = G.

A subgroup G of SN is highly transitive if the natural action of G on N

is k-transitive for all k ∈ N. Recall that G ≤ SN is highly transitive if and
only if G is (topologically) dense in SN. Also bear in mind that if G ≤ SN is
a group, then so is cl(G), the topological closure of G. If α ∈ SN, then define

(1) Hα = {β ∈ SN : 〈α, β〉 is highly transitive}.

There is a faithful representation of a group G in SN if there is a monomor-
phism ψ : G → SN. A highly transitive faithful representation is a faithful
representation in which ψ(G) is a highly transitive subgroup of SN. The
reader is referred to [2] or [6] for more information on permutation groups
and to [9] for standard facts about topology and Baire category.

3. The main results. In this section we state the main results of this
paper. Some discussion is devoted to showing that these results are, in some
sense, the best possible. Most of the proofs of these results are left to the
next section. We begin by showing that no single permutation generates a
highly transitive subgroup of SN.

Lemma 3.1. Let α = (α1)(α2) · · · ∈ SN. Then 〈α〉 is a nowhere dense
subgroup of SN and so it is not highly transitive.

Proof. If α has an infinite cycle, then no sequence αn1 , αn2 , . . . converges
and so cl(〈α〉) = 〈α〉, which is countable. Therefore 〈α〉 is nowhere dense
in SN.

Alternatively, each αi is a finite cycle. Let φ ∈ N
<N and choose numbers

k, l 6∈ dom(φ)∪ im(φ) that belong to different cycles of α. If τ ∈ N
<N is any

extension of φ satisfying kτ = l, then [τ ]∩cl(〈α〉) = ∅, and so 〈α〉 is nowhere
dense.

The next example shows it is possible for cl(〈α〉) to be uncountable.

Example 3.2. Let p1, p2, . . . be distinct primes and let α = (α1)(α2) · · ·
∈ SN be any element such that for each i, |αi| = pi. Take any sequence
{ri}i∈N satisfying 0 ≤ ri < pi. By the Chinese Remainder Theorem, there
exists a sequence of positive integers {xi}i∈N such that for each 1 ≤ j ≤ i,
we have

xi ≡ rj mod pj .

The sequence {αxi}i∈N converges to (αr1
1 )(αr2

2 ) · · · . Hence, for each sequence
{ri}i∈N with 0 ≤ ri < pi for all i, we have a distinct element of SN. Therefore
cl(〈α〉) is uncountable.

Next, we state our main theorem.
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Theorem 3.3. Let α be an arbitrary nonidentity permutation on N.
Then

(i) if α has finite support , then there exists a shift σ such that 〈α, σ〉 is
highly transitive, that is, σ ∈ Hα ∩ S;

(ii) if α has infinite support , then Hα ∩S is comeagre in S and Hα ∩ I
is comeagre in I;

(iii) if α ∈ I, then Hα is comeagre in SN.

The proof of this theorem is given in the next section. Let us first consider
some corollaries.

Corollary 3.4. Let α ∈ SN be a nonidentity permutation. Then there
is a shift σ such that 〈α, σ〉 is highly transitive.

Proof. This simply follows from Theorems 3.3(i) and (ii).

Corollary 3.5 (Dixon, [5]). A generic element of S2, respectively a
generic element of I2, generates a highly transitive subgroup of SN.

Proof. This simply follows from the Kuratowski–Ulam Theorem (Theo-
rem 2.1) and Theorem 3.3(ii).

Corollary 3.6. A generic compact set K in K(S) has the property that
〈K〉 is highly transitive. Moreover , there exist α, β ∈ K such that 〈α, β〉 is
highly transitive.

Proof. By Corollary 3.5, the set T = {(α, β) ∈ S2 : 〈α, β〉 is highly
transitive} is comeagre in S2. It follows that {K ∈ K(S) : ∃α, β ∈ K such
that (α, β) ∈ T} is comeagre in K(S).

Corollary 3.7. Let 2 ≤ κ ≤ 2ℵ0 . Then there is a highly transitive free
subgroup of SN with rank κ.

Proof. In [7] Gartside and Knight prove that a generic compact set K ∈
K(SN) freely generates a free subgroup of SN. It is straightforward to modify
their proof to show that a generic K ∈ K(S) freely generates a free subgroup
of SN. Moreover, a generic compact subset of S is perfect. Together with
Corollary 3.6 these facts imply that there exists a compact subset K of S
such that

• |K| = 2ℵ0 ;
• there exist α, β ∈ K such that 〈α, β〉 is highly transitive;
• K freely generates a free subgroup of SN.

(In fact, a generic compact set in K(S) has these three properties.)
Let A be a subset of K with α, β ∈ A and |A| = κ. Then 〈A〉 is the

required group.

The sharpness of Theorem 3.3 is now discussed. In other words, we ask:
is it possible to obtain the conclusion of Theorem 3.3(ii) or (iii) under the
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hypothesis of Theorem 3.3(i) or (ii)? More precisely, if α ∈ SN \ {1N} has
finite support, is Hα ∩ S comeagre in S or Hα comeagre in SN? If α has
infinite support, but contains a finite cycle, then is Hα comeagre in SN? The
following examples show that the answers to these questions are, in general,
no.

Example 3.8. Let α = (1 2). Then we will show that Hα∩S is not dense
in S, and so it is certainly not comeagre in S. To this end, define φ, η ∈ N

<N

such that 1φ = 3 & 3φ = 2 and 1η = 3, 3η = 1, & 4η = 4. We prove that
〈α, σ〉 ∩ [η] = ∅ for all σ in the open set [φ] ∩ S. From this we deduce that
〈α, σ〉 is not dense in SN and thus not highly transitive. Consequently, the
intersection of [φ] ∩ S and Hα is empty.

To obtain a contradiction assume there is σ ∈ [φ]∩S and β ∈ 〈α, σ〉∩ [η].
We may write β = σk1ασk2 · · ·ασkn where ki ∈ Z. If i, j ∈ Z and τ =
(1σ−i 2σ−i), then σiασj = τσi+j . Applying this recursively to β, we obtain

β = τ1 · · · τn−1σ
k1+···+kn ,

where each τi is a transposition of the form (j jσ2). This implies that
iτ1τ2 · · · τn−1 = iσ2k for all i ∈ N and some k ∈ Z that depends on i.
Moreover, since 4η = 4, k1 + · · · + kn is divisible by 2. Thus 1β =
1τ1 · · · τn−1σ

k1+···+kn = 1σm for some number m that is divisible by 2. In
particular, 1β 6= 3, a contradiction.

Since S is dense in I, Example 3.8 also demonstrates that Hα ∩I is not,
in general, dense in I. The set S is a nowhere dense in SN and so Example 3.8
does not rule out the possibility that Hα may be comeagre in SN. However,
the following easy example shows that Hα may not be comeagre in SN.

Example 3.9. If α is any permutation with a finite cycle φ, then for
any β ∈ [φ] the subgroup 〈α, β〉 is not highly transitive.

Not only is Hα not comeagre (in SN) when α contains a finite cycle, but
something much stronger is true.

Theorem 3.10. If k ∈ N, then the set {(α1, . . . , αk) ∈ Sk
N

: 〈α1, . . . , αk〉
is nowhere dense in SN} is comeagre in Sk

N
.

Corollary 3.11. The set Hα is meagre in SN for a generic α ∈ SN.

Proof. Theorem 3.10 shows that a generic pair (α, β) ∈ S2
N

generates a
nowhere dense subgroup of SN. By the Kuratowski–Ulam Theorem, there
exists a comeagre set A in SN such that for all α ∈ A the set

Mα = {β ∈ SN : 〈α, β〉 is nowhere dense (in SN)}

is comeagre in SN. Thus Hα = {β ∈ SN : 〈α, β〉 is dense in SN} ⊆ SN \Mα

is meagre for all α ∈ A.
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Since the set of all permutations with finite support is meagre in SN, a
generic permutation α in SN has infinite support and Hα meagre in SN. This
demonstrates that Theorem 3.3(ii) is sharp.

If X is any Polish space, then

{(x1, x2, . . .) ∈ Xω : {x1, x2, . . .} is dense in X}

is comeagre in Xω. Hence the analogue of Theorem 3.10 does not hold when
k = ω.

Recall that SN is nowhere locally compact and hence every compact
subset of SN is nowhere dense in SN. Of course, it follows from Corollary 3.4
that there are compact sets K such that 〈K〉 is highly transitive, but the
following theorem shows that the contrary is true for generic compact sets
in K(SN).

Theorem 3.12. A generic K ∈ K(SN) has the property that 〈K〉 is
nowhere dense in SN.

4. Proofs of Theorems 3.3, 3.10 and 3.12. The first thing to prove
is Theorem 3.3(i). The proof is started by the next four lemmas.

Lemma 4.1. Let σt be a cycle in the disjoint cycle decomposition of
σ ∈ SN and let τ = (i iσt) = (i iσ) for some i ∈ supp(σt). Then 〈σ, τ〉
contains every transposition τ ′ with supp(τ ′) ⊆ supp(σt).

Proof. For any j ∈ supp(σt) there exists r ∈ Z such that j = iσr
t = iσr.

Note that (iσr
t iσr+1

t ) = σ−r
t (i iσt)σ

r
t = σ−rτσr. Let k, l ∈ supp(σt) be

arbitrary. Then there exists n ∈ Z such that l = kσn
t = kσn. Therefore

(k l) = (k kσn
t ) = (kσn−1

t kσn
t ) · · · (kσ2

t kσ
3
t )(kσt kσ

2
t )(k kσt)

◦ (kσt kσ
2
t )(kσ

2
t kσ

3
t ) · · · (kσ

n−1
t kσn

t ) ∈ 〈σ, τ〉,

and the proof is complete.

Lemma 4.2. Let σ be a shift and τ = (i iσ) for some i ∈ N. Then 〈σ, τ〉
is highly transitive.

Proof. Every transposition (k l) ∈ 〈σ, τ〉 by Lemma 4.1. Since the set of
all permutations with finite support set is dense in SN and every permutation
with finite support set is a product of transpositions, we have cl(〈σ, τ〉)
= SN.

Lemma 4.3. Let σ be a shift and τ = (i iσ)(iσn iσn+1), n ≥ 2. Then
〈σ, τ〉 is highly transitive.

Proof. Without loss of generality we assume that n = 2. Let

α1 = σ−2τσ2τ = (i iσ)(iσ4 iσ5),

α2 = σ−4α1σ
4α1 = (i iσ)(iσ8 iσ9), . . . , αi+1 = σ−2(i+1)

αiσ
2(i+1)

αi, . . . .
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Then the limit of the sequence (αi)i∈N is the transposition (i iσ). Therefore
(i iσ) ∈ cl(〈σ, τ〉) and so SN = cl(〈σ, (i iσ)〉) ⊆ cl(〈σ, τ〉).

Lemma 4.4. Let σ be a shift and let τ = (i iσ iσ2 . . . iσn) for some
n ≥ 1. Then 〈σ, τ〉 is highly transitive.

Proof. If n = 1, then we are finished by Lemma 4.2. Suppose that n ≥ 2
and define

α = σ−nτσn = (iσn iσn+1 . . . iσ2n).

Hence

β = τατ−1 = (iσn−1 iσn+1 iσn+2 . . . iσ2n),

and so

δ = σn−1βσ−(n−1) = (i iσ2 iσ3 . . . iσn+1).

Finally,

γ = τδ−1 = (i iσ)(iσn iσn+1).

Now, by Lemma 4.3, it follows that SN = cl(〈σ, γ〉) ⊆ cl(〈σ, τ〉) ⊆ SN, giving
equality throughout.

It is now possible to complete the proof of Theorem 3.3(i).

Proof of Theorem 3.3(i). Recall that α ∈ SN is a nonidentity with finite
support. Let p be a prime which divides |α|. Then α|α|/p is a permutation
with order p and finite support. Hence we may assume that α is a permuta-
tion with finite support which has order p. Let ̺ ∈ SN be any shift. There
exists β ∈ SN such that

δ = βαβ−1 = (1̺ . . . 1̺p)(1̺p+1 . . . 1̺2p) · · · (1̺kp+1 . . . 1̺(k+1)p).

By an argument similar to that used in the proof of Lemma 4.3 we can
obtain a sequence in 〈δ, ̺〉 whose limit is γ = (1̺ . . . 1̺p). Therefore, by
Lemma 4.4, we have SN = cl(〈̺, γ〉) ⊆ cl(〈̺, δ〉) = cl(〈̺, βαβ−1〉). Hence, by
Lemma 2.2, we have cl(〈α, β−1̺β〉) = SN. It follows that σ = β−1̺β is the
desired shift.

Next is the proof of part (ii) of the main theorem in the previous section.

Proof of Theorem 3.3(ii). It suffices to prove the case for S. If k is a
positive integer, then denote by N

k the set of all injections from {1, . . . , k}
into N. It is enough to show for every k ∈ N and every η ∈ N

k that the
intersection of S and the set

Hα,η = {σ ∈ SN : [η] ∩ 〈α, σ〉 6= ∅}

is comeagre in S. This is so because

Hα ∩ S =
∞
⋂

k=1

⋂

η∈Nk

(Hα,η ∩ S) .
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Each of the sets Hα,η is open. Hence we need only show that Hα,η ∩ S
is dense in S. To this end, let φ be any element in N

<N which contains no
cycle. It remains to show that there is σ ∈ [φ] ∩ S such that [η] ∩ 〈α, σ〉
6= ∅.

By extending the domain and the range, if necessary, assume that both
the domain and range of η equal the set {1, . . . , l}, and that the domain of
φ is {1, . . . , l} and the range of φ is contained in {1, . . . , l + 1}. Moreover,
order the elements of {1, . . . , l + 1} = {n1, . . . , nl+1} so that (ni)φ = ni+1

for 1 ≤ i ≤ l. Let nl+2, nl+3, . . . , n2l+2 ∈ supp(α) be chosen recursively so
that

nl+i+1 6∈ {n1, . . . , nl+i} ∪ {n1, . . . , nl+i}α ∪ {n1, . . . , nl+i}α
−1

for 1 ≤ i ≤ l + 1. Then nl+i+1α 6∈ {n1, . . . , n2l+2}. It is possible to choose
such elements because α has infinite support.

Since dom(η) = im(η) = {1, . . . , l}, we may find u1, . . . , ul, v1, . . . , vl ∈
{1, . . . , l} such that nui

= i and nvi
= (i)η. Let n−l, n−l+1, . . . , n0 be points

in N \ {n1, . . . , n2l+2} such that nvi−l−1 = (nui+l+1)α for 1 ≤ i ≤ l. Note
that, from the definition, the points nl+i+1, i ≥ 1, can all be taken to be
distinct.

Finally, let σ be any shift which satisfies (ni)σ = ni+1 for each −l ≤ i ≤
2l+ 1. Clearly, σ ∈ [φ]∩S. Next we show that σl+1ασl+1 ∈ [η]. If 1 ≤ i ≤ l,
then

(i)σl+1ασl+1 = (nui
)σl+1ασl+1 = (nui+l+1)ασ

l+1

= (nvi−l−1)σ
l+1 = nvi

= (i)η.

Thus [η] ∩ 〈α, σ〉 6= ∅, completing the proof.

Proof of Theorem 3.3(iii). Fix α ∈ I. As in the proof of Theorem 3.3(ii),
for each η ∈ N

k, let Hα,η = {σ ∈ SN : 〈α, σ〉 ∩ [η] 6= ∅}. It suffices to show
that Hα,η is comeagre in SN. Since Hα,η is clearly open, it only remains to
show that it is dense in SN. To this end, let φ ∈ N

<N. We show that there
is σ ∈ [φ] such that 〈α, σ〉 ∩ [η] 6= ∅. Let

A = dom(φ) ∪ im(φ) ∪ dom(η) ∪ im(η).

Since α contains no finite cycle and A is finite, there is a positive integer
l such that for all i ∈ A and l′ ∈ Z with |l′| ≥ l, we have (i)αl′ ∩A = ∅. For
1 ≤ i ≤ k, let τi = ((i)αl (i)ηα−l). Note that for all i, supp(τi)∩dom(φ) = ∅,
and since (i)αl 6= (j)ηα−l for all 1 ≤ i, j ≤ k we have supp(τi)∩supp(τj) = ∅
when i 6= j. Now, let σ ∈ [φ] be such that every τi is a cycle of σ. Then, for
each 1 ≤ i ≤ k, we have

(i)αlσαl = (i)αlτiα
l = (i)ηα−lαl = (i)η,

completing the proof.
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Proof of Theorem 3.10. The case when k = 1 follows from Lemma 3.1.

It remains to prove the assertion when k > 1. We do this in the case
k = 2; the general case follows by a similar argument. To start, we show
that a generic (α, β) ∈ S2

N
has the property that there is an infinite set fixed

by both α and β. To this end, enumerate the finite subsets of N of size n as
Fn,1, Fn,2, . . . and let

An,m = {(α1, α2) ∈ S2
N : Fn,m ⊆ fix(α1) ∩ fix(α2)}.

Observe that An,m is open in S2
N

and so the countable union

An =
∞
⋃

m=1

An,m

is open as well. We show that An is dense in S2
N
. Let (β1, β2) ∈ S2

N
and let

β1, β2 ∈ N
<N be any initial segments of β1 and β2, respectively. There exists

m such that Fn,m has empty intersection with the domains and the images
of β1 and β2. Hence there exists (γ1, γ2) ∈ An,m such that γ1 and γ2 are
extensions of β1 and β2, respectively. Therefore An is dense. It follows that
the set A =

⋂∞
n=1 An is a dense Gδ subset of S2

N
.

Note that if (α1, α2) ∈ A, then there is an infinite set B, depending on
α1 and α2, such that α1|B = α2|B = 1B. We prove that 〈α1, α2〉 is nowhere
dense in SN by showing that given φ ∈ N

<N there exists τ ∈ N
<N such that

τ |dom(φ) = φ and 〈α1, α2〉 ∩ [τ ] = ∅. To this end, let i ∈ B such that i is not
in the domain of φ nor in the image of φ. Then any τ which is an extension
of φ with iτ 6= i is the desired map.

Proof of Theorem 3.12. The proof of this result is analogous to that of
Theorem 3.10. Enumerate the finite subsets of N of size n as Fn,1, Fn,2, . . . .
Let

An,m = {K ∈ K(SN) : α|Fn,m
= 1Fn,m

for all α ∈ K}.

We note that An,m is open in K(SN). Let An =
⋃∞

m=1 An,m. Clearly, An is
open in K(SN). We next show that it is dense in K(SN). Recall that the set
of all finite sets is dense in K(SN). It will suffice to show that if M ∈ K(SN)
is any finite set and U is any open set in K(SN) with M ∈ U , then there
is K ∈ An such that K ∈ U . Enumerate the elements of M as β1, . . . , βk.
Let βi be a restriction of βi such that if N = {γ1, . . . , γk} and γi ∈ [βi] for
each i, then N ∈ U . Let Fn,m have empty intersection with the domain and
image of βi for all 1 ≤ i ≤ k. Now we may choose a γi, an extension of βi,
such that γi|Fn,m

= 1|Fn,m
. Then {γ1, . . . , γk} ∈ U ∩ An,m ⊆ U ∩An.

Now consider the dense Gδ subset A =
⋂∞

n=1 An of K(SN). We want to
show that for each K ∈ A, 〈K〉 is nowhere dense in SN. To this end, let
φ ∈ N

<N. Let n > max{dom(φ)∪ im(φ)} and let m be such that K ∈ An,m.
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Then there is an i ∈ Fn,m \ (dom(φ) ∪ im(φ)). Let τ be any extension of φ
such that iτ 6= i. Then 〈K〉 ∩ [τ ] = ∅.
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