UNE REMARQUE SUR LES ESPACES D'INTERPOLATION A^{β} QUI SONT FAIBLEMENT LUR

PΔR

MOHAMMAD DAHER (Le Mée-sur-Seine)

Abstract. Let (A_0, A_1) be a pair of interpolation spaces and $\beta \in]0, 1[$. We show that if (A^{β}, n_{β}) is a weakly-LUR space for a specific norm n_{β} (equivalent to the natural one), then $A_{\theta} = A^{\theta}$ for every $\theta \in]0, 1[$.

1. Introduction. Soit $\overline{A} = (A_0, A_1)$ un couple d'interpolation complexe, au sens de [1]–[3]. Soit $S = \{z \in \mathbb{C}; 0 \leq \operatorname{Re} z \leq 1\}$.

Rappelons d'abord la définition de l'espace d'interpolation A_{θ} , où $\theta \in]0,1[$. On note $\mathcal{F}(\overline{A})$ l'espace des fonctions F à valeurs dans A_0+A_1 , continues bornées sur S, holomorphes à l'intérieur de S, telles que, pour $j \in \{0,1\}$, $F(j+i\tau)$ prend ses valeurs dans A_j , l'application $\tau \in \mathbb{R} \mapsto F(j+i\tau) \in A_j$ est continue et $\|F(j+i\tau)\|_{A_j} \to 0$ quand $|\tau| \to +\infty$. On le munit de la norme

$$||F||_{\mathcal{F}(\overline{A})} = \max(\sup_{\tau \in \mathbb{R}} ||F(i\tau)||_{A_0}, \sup_{\tau \in \mathbb{R}} ||F(1+i\tau)||_{A_1}).$$

L'espace $A_{\theta} = \{F(\theta); F \in \mathcal{F}(\overline{A})\}$ est un Banach [2, Theorem 4.1.2] pour la norme définie par

$$||a||_{A_{\theta}} = \inf\{||F||_{\mathcal{F}(\overline{A})}; F(\theta) = a\}.$$

Rappelons maintenant la définition de l'espace d'interpolation A^{θ} [2, Chapter 4]. On note $\mathcal{G}(\overline{A})$ l'espace des fonctions g à valeurs dans $A_0 + A_1$, continues sur S, holomorphes à l'intérieur de S, telles que $g(j+i\tau) - g(j+i\tau') \in A_j$ pour tous $\tau, \tau' \in \mathbb{R}, j \in \{0,1\}$, et la quantité suivante est finie :

$$\|g\cdot\|_{Q\mathcal{G}(\overline{A})} = \max \left[\sup_{\substack{\tau,\tau' \in \mathbb{R} \\ \tau \neq \tau'}} \left\| \frac{g(i\tau) - g(i\tau')}{\tau - \tau'} \right\|_{A_0}, \sup_{\substack{\tau,\tau' \in \mathbb{R} \\ \tau \neq \tau'}} \left\| \frac{g(1+i\tau) - g(1+i\tau')}{\tau - \tau'} \right\|_{A_1} \right].$$

Cette quantité définit une norme sur l'espace $QG(\overline{A})$, quotient de $G(\overline{A})$ par les fonctions constantes, et $QG(\overline{A})$ est complet pour cette norme [2, Lemma 4.1.3].

²⁰¹⁰ Mathematics Subject Classification: Primary 46B70.

Key words and phrases: interpolation space, locally uniformly rotund.

L'espace $A^{\theta}=\{g'(\theta);\,g\in\mathcal{G}(\overline{A})\}$ est un Banach [2, Theorem 4.1.4] pour la norme définie par

$$||a||_{A^{\theta}} = \inf\{||g\cdot||_{OG(\overline{A})}; g'(\theta) = a\}.$$

D'après [1], A_{θ} s'identifie isométriquement à un sous-espace de A^{θ} .

On rappelle [2, p. 89] les inégalités suivantes, pour $g \in \mathcal{G}(\overline{A})$:

(1.1)
$$||g'(z)||_{A_0+A_1} \le ||g\cdot||_{QG(\overline{A})}, \quad z \in S,$$

conséquence immédiate de

(1.2)
$$\left\| \frac{g(z+it) - g(z)}{t} \right\|_{A_0 + A_1} \le \|g^{\cdot}\|_{Q\mathcal{G}(\overline{A})}, \quad z \in S, t \in \mathbb{R}^*.$$

L'inégalité (1.2) découle de la définition de $\|g\cdot\|_{Q\mathcal{G}(\overline{A})}$ et du théorème des trois droites [2, Lemma 1.1.2] appliqué aux fonctions $z\mapsto \langle (g(z+it)-g(z))/t,a^*\rangle$, où a^* parcourt la boule unité de $A_0^*\cap A_1^*$ et t est un réel fixé.

D'après [2, Theorem 4.2.2], $A_0 \cap A_1$ est dense dans A_θ , $0 < \theta < 1$. Dans la suite, (A_0, A_1) est un couple d'interpolation tel que $A_0 \cap A_1$ est dense dans A_0 et A_1 , ce qui permet d'appliquer le théorème d'itération [2, Theorem 4.6.1].

La lettre θ désignera toujours un réel dans]0,1[.

DÉFINITION 1 ([5]). Un espace de Banach X est (resp. faiblement) localement uniformément convexe, ce qu'on note LUR (resp. ω -LUR), si, pour toute suite $(x_n)_{n\geq 0}$ dans X telle que

$$||x_n||^2/2 + ||x||^2/2 - ||(x_n + x)/2||^2 \xrightarrow[n \to \infty]{} 0,$$

on a $x_n \to x$ en norme (resp. faiblement).

2. Résultats. Outre sa norme naturelle, l'espace A^{θ} est muni de la norme n_{θ} (voir le lemme 2 ci-dessous):

$$n_{\theta}(a) = \sup\{|\langle a, a^* \rangle|; \|a^*\|_{(A_0^*, A_1^*)_{\theta}} \le 1\}.$$

Théorème 1. $Si(A^{\beta}, n_{\beta})$ est un espace ω -LUR pour un $\beta \in]0, 1[$, alors $A_{\theta} = A^{\theta}$ pour tout $\theta \in]0, 1[$.

Proche de celle de [4], la preuve utilisera les lemmes suivants. Le premier est certainement bien connu.

Lemme 1. Soient X un espace de Banach et E un sous-espace fermé préfaiblement dense dans X^* . Alors il existe une constante C telle que

$$||x||_X \le C \sup_{||x^*||_E = 1} |\langle x, x^* \rangle| = C||x||_{E^*} \le C||x||_X, \quad x \in X.$$

Preuve. Comme $||x||_X = \sup_{||x^*||_{X^*}=1} |\langle x, x^* \rangle|$, l'inégalité de droite est immédiate. Soit $J: X \to E^*$ la contraction canonique. Montrons que J^* :

 $E^{**} \to X^*$ est surjective. Par hypothèse, tout $x^* \in X^*$ est limite préfaible d'une suite généralisée $(e_{\alpha})_{\alpha \in A}$ dans E. Par le théorème de Banach–Steinhaus, cette famille est bornée dans X^* , donc dans E. D'après le théorème de Banach–Alaoglu, elle admet une valeur d'adhérence préfaible e^{**} dans E^{**} , qui coïncide nécessairement avec x^* sur J(X), c'est-à-dire $x^* = J^*(e^{**})$.

Alors, par le théorème de l'application ouverte, il existe une constante C>0 telle que tout x^* dans la boule unité de X^* provient d'un e^{**} dans la boule de rayon C de E^{**} . D'où

$$||x||_X \le \sup_{\|e^{**}\|_{E^{**}} < C} |\langle x, J^*(e^{**}) \rangle| = C||J(x)||_{E^*}.$$

Lemme 2.

- (a) L'espace $(A_0^*, A_1^*)_{\theta}$ est dense dans $(A^{\theta})^*$ pour la topologie $\sigma[(A^{\theta})^*, A^{\theta}]$.
- (b) L'application n_{θ} définit une norme sur A^{θ} , équivalente à la norme naturelle.

Preuve. (a) D'après [1], $(A_0^*, A_1^*)_{\theta}$ est isométriquement un sous-espace de $(A_0^*, A_1^*)^{\theta}$. Or ce dernier est isométriquement égal à $(A_{\theta})^*$ [2, Theorem 4.5.1]. Soit $a \in A^{\theta}$ tel que $\langle a, a^* \rangle = 0$ pour tout $a^* \in (A_0^*, A_1^*)_{\theta}$; en particulier $\langle a, a^* \rangle = 0$ pour tout $a^* \in A_0^* \cap A_1^* = (A_0 + A_1)^*$. Comme A^{θ} s'injecte continûment dans $A_0 + A_1$, cela entraîne a = 0 et prouve la densité annoncée. En particulier n_{θ} définit bien une norme sur A^{θ} .

(b) Le lemme 1 appliqué à $X=A^{\theta}$ et $E=(A_0^*,A_1^*)_{\theta}$ achève la preuve du lemme 2. \blacksquare

LEMME 3. Soit $g \in \mathcal{G}(\overline{A})$ et soit

$$\phi_{\theta}: \mathbb{R} \to A^{\theta}, \quad \phi_{\theta}(\tau) = g'(\theta + \iota \tau).$$

- (a) L'application $n_{\theta}(\phi_{\theta})$ est s.c.i. sur \mathbb{R} .
- (b) Si ϕ_{θ} est à valeurs dans un sous-espace séparable Z de A^{θ} , elle est fortement mesurable à valeurs dans A^{θ} .

Preuve. (a) Comme $A_0^* \cap A_1^*$ est dense en norme dans $(A_0^*, A_1^*)_{\theta}$ (voir [2, Theorem 4.2.2]),

$$n_{\theta}(\phi_{\theta}(\tau)) = \sup\{|\langle \phi_{\theta}(\tau), a^* \rangle|; \|a^*\|_{(A_0^*, A_1^*)_{\theta}} \le 1\}$$

= \sup\{|\langle \phi_{\theta}(\tau), a^* \rangle|; \|a^*\|_{(A_0^*, A_1^*)_{\theta}} \le 1 \text{ et } a^* \in A_1^*\}.

Comme ϕ_{θ} est continue $\mathbb{R} \to A_0 + A_1$, la fonction $\tau \mapsto \langle \phi_{\theta}(\tau), a^* \rangle$ est continue lorsque $a^* \in A_0^* \cap A_1^*$.

(b) D'après (a), l'application $n_{\theta}(\phi_{\theta} - x)$ est s.c.i. sur \mathbb{R} pour tout $x \in A^{\theta}$. L'image réciproque par ϕ_{θ} de toute n_{θ} -boule ouverte de A^{θ} est donc un borélien. Par le lemme 2, les topologies induites sur A^{θ} par n_{θ} et la norme naturelle sont les mêmes. Comme Z est séparable, tout ouvert de Z est réunion dénombrable de n_{θ} -boules, et ϕ_{θ} est bien mesurable à valeurs dans Z.

LEMME 4. Soient $g \in \mathcal{G}(\overline{A})$ et $\beta \in]0,1[$. On suppose que $\phi_{\beta} = g'(\beta + i\cdot)$ est p.s. égale à une fonction fortement mesurable sur \mathbb{R} à valeurs dans A^{β} . Alors

- (a) ϕ_{β} est p.s. à valeurs dans A_{β} .
- (b) Pour $\theta \neq \beta$, $g'(\theta) \in A_{\theta}$.
- (c) Pour tout θ , ϕ_{θ} est p.s. à valeurs dans un sous-espace séparable de A_{θ} .
- (d) $g'(\beta) \in A_{\beta}$.

Preuve. (a) (i) Comme g est holomorphe sur S, pour tous $t \in \mathbb{R}$, h > 0, $\theta \in]0,1[$, on a, dans $A_0 + A_1$,

(2.1)
$$g(\theta + i(t+h)) - g(\theta + it) = \int_{t}^{t+h} g'(\theta + i\tau) d\tau.$$

Posons

$$g_1 = g - g(0) - \alpha_0$$

où
$$g(1) - g(0) = \alpha_0 + \alpha_1 \ (\alpha_j \in A_j, \ j = 0, 1)$$
, avec
$$\|g(1) - g(0)\|_{A_0 + A_1} = \|\alpha_0\|_{A_0} + \|\alpha_1\|_{A_1}.$$

D'après l'inégalité des accroissements finis et (1.1),

$$||g(1) - g(0)||_{A_0 + A_1} \le ||g||_{OG(\overline{A})}.$$

Alors $g_1: S \to A_0 + A_1$ est continue sur S et holomorphe à l'intérieur de S. Comme $g \in \mathcal{G}(\overline{A})$, pour tout $\tau \in \mathbb{R}$ et $j \in \{0, 1\}$, on a

$$||g_1(j+i\tau)||_{A_j} \le ||g(j+i\tau)-g(j)||_{A_j} + ||\alpha_j||_{A_j} \le (1+|\tau|)||g\cdot||_{Q\mathcal{G}(\overline{A})}.$$

L'application $z \mapsto G_{\varepsilon}(z) = e^{\varepsilon z^2} g_1(z)$ est donc dans $\mathcal{F}(\overline{A})$ pour tout $\varepsilon > 0$. En particulier, pour tout $t \in \mathbb{R}$, $G_{\varepsilon}(\theta + it) \in A_{\theta}$, donc $g_1(\theta + it) \in A_{\theta}$. D'où

$$(2.2) g_1(\theta + i(t+h)) - g_1(\theta + it) = g(\theta + i(t+h)) - g(\theta + it) \in A_{\theta}.$$

(ii) L'hypothèse sur ϕ_β et le théorème de différentiabilité de Lebesgue entraı̂nent que, p.s., on a dans A^β l'égalité

(2.3)
$$ig'(\beta + it) = \lim_{h \to 0} \frac{1}{h} \int_{t}^{t+h} g'(\beta + i\tau) d\tau,$$

où h est réel. Appliquant (2.1) et (2.2) à $\theta = \beta$, comme A_{β} s'identifie à un sous-espace fermé de A^{β} , ceci entraı̂ne que p.s., avec h réel,

$$g'(\beta + it) = \lim_{h \to 0} \frac{g(\beta + i(t+h)) - g(\beta + it)}{ih}$$
 dans A_{β} .

- (b₁) On suppose d'abord $\theta > \beta$.
- (i) Soit

$$V(z) = g_1(\beta + (1 - \beta)z), \quad z \in S.$$

Cette fonction à valeurs dans $A_0 + A_1$ est holomorphe à l'intérieur de S et continue sur S, donc s'exprime à l'aide de la mesure harmonique sur le bord de S. Pour vérifier que V, vue comme fonction à valeurs dans $A_{\beta} + A_1$, est holomorphe à l'intérieur de S et continue sur S, il suffira donc de voir que V est continue sur l'axe imaginaire, à valeurs dans A_{β} .

Montrons que $V \in \mathcal{G}(A_{\beta}, A_1)$ avec une norme $\leq (1 - \beta) \|g \cdot\|_{Q\mathcal{G}(\overline{A})}$. L'inégalité correspondante sur la droite Re z = 1 est évidente. Pour la vérifier sur l'axe imaginaire, posons, pour τ, τ' réels fixés,

$$F_{\tau,\tau'}(\xi) = \frac{g(\xi+i(1-\beta)\tau) - g(\xi+i(1-\beta)\tau')}{\tau-\tau'}, \quad \xi \in S,$$

d'où

$$F_{\tau,\tau'}(\beta) = \frac{V(i\tau) - V(i\tau')}{\tau - \tau'}$$
 et $F_{\tau,\tau'}(1) = \frac{V(1 + i\tau) - V(1 + i\tau')}{\tau - \tau'}$.

Pour tout $t \in \mathbb{R}$, on a

$$||F_{\tau,\tau'}(j+it)||_{A_j} \le (1-\beta)||g^{\cdot}||_{QG(\overline{A})}, \quad j \in \{0,1\}.$$

Comme dans (a)(i), pour tout $\varepsilon > 0$, l'application $\xi \mapsto H_{\varepsilon,\tau,\tau'}(\xi) = e^{\varepsilon \xi^2} F_{\tau,\tau'}(\xi)$ vérifie

$$||H_{\varepsilon,\tau,\tau'}||_{\mathcal{F}(\overline{A})} \le e^{\varepsilon} (1-\beta) ||g\cdot||_{Q\mathcal{G}(\overline{A})},$$

d'où

$$||F_{\tau,\tau'}(\beta)||_{A_{\beta}} \le (1-\beta)||g\cdot||_{Q\mathcal{G}(\overline{A})}.$$

On a donc, pour tous τ, τ' réels,

$$||V(i\tau) - V(i\tau')||_{A_{\beta}} \le |\tau - \tau'|(1-\beta)||g\cdot||_{OG(\overline{A})},$$

ce qui prouve la continuité de V sur l'axe imaginaire, à valeurs dans A_{β} , et l'assertion annoncée.

(ii) Par (a)(ii), pour h réel, p.s.

$$\lim_{h\to 0} (V(i(\tau+h)) - V(i\tau))/h = (1-\beta)g'(\beta + (1-\beta)i\tau) \quad \text{dans } A_{\beta}.$$

D'après [2, Lemma 4.3.3], on a alors

$$V'(\eta) \in (A_{\beta}, A_1)_{\eta}, \quad \eta \in]0, 1[.$$

(iii) Choisissons η tel que $\theta = (1 - \eta)\beta + \eta$. D'après le théorème de réitération [2, Theorem 4.6.1], $(A_{\beta}, A_{1})_{\eta} = A_{\theta}$, donc

$$V'(\eta) = (1 - \beta)g'(\theta) \in A_{\theta}.$$

- (b₂) Si $0 < \theta < \beta$ le raisonnement est analogue, en remplaçant V par $W(z) = g_1(\beta z) \in \mathcal{G}(A_0, A_\beta)$ telle que $\lim_{h\to 0} (W(1+i(\tau+h)) W(1+i\tau))/h$ existe dans A_β , pour presque tout τ , avec h réel.
- (c) Soit $A'_0 \subset A_0$ le sous-espace fermé séparable engendré par $\{g_1(it); t \in \mathbb{R}\}$. Comme g_1 est continue sur S, A'_0 est séparable, ainsi que $(A'_0, A_1)_{\beta}$ et

son adhérence Y dans A_{β} . Par (a)(ii) appliqué au couple (A'_0, A_1) , $g'(\beta + it)$ est p.s. dans $(A'_0, A_1)_{\beta}$, donc p.s. dans Y, ce qui règle le cas $\theta = \beta$.

Pour le cas $\beta < \theta$, remplaçons la fonction V de $(b_1)(i)$ par $V_t(z) = V(z+it)$, avec t fixé réel. Comme en (b_1) , $V_t \in \mathcal{G}(Y,A_1)$, $V'_t(\eta) \in (Y,A_1)_{\eta}$, $\eta \in]0,1[$ et $(Y,A_1)_{\eta}$ est séparable. Soit η défini comme en $(b_1)(iii)$. Comme ci-dessus, $V'_t(\eta) = (1-\beta)g'(\theta+i(1-\beta)t)$. Soit Z_{θ} l'adhérence de $(Y,A_1)_{\eta}$ dans $(A_{\beta},A_1)_{\eta} = A_{\theta}$; alors Z_{θ} est séparable et $\phi_{\theta} = g'(\theta+i\cdot)$ est à valeurs dans Z_{θ} .

On raisonne de façon analogue si $0 < \theta < \beta$ en considérant $W_t(z) = W(z+it) : W_t$ est dans $\mathcal{G}(A'_0, Y)$.

(d) Soit $\theta > \beta$. Par (c) et le lemme 3, ϕ_{θ} est fortement mesurable à valeurs dans A_{θ} . Alors (b₂) appliqué en échangeant les rôles de β et θ donne $g'(\beta) \in A_{\beta}$.

Preuve du théorème 1.

ÉTAPE 1. Notons pour simplifier $\phi = \phi_{\beta}$. On va montrer que ϕ est p.s. égale à une fonction fortement mesurable sur \mathbb{R} à valeurs dans A^{β} . Soit $(\tau_n)_{n\geq 0}$ une suite dans \mathbb{R} convergeant vers τ . Comme $n_{\beta}(\phi)$ est s.c.i. par le lemme 3,

$$\overline{\lim} \{2[n_{\beta}(\phi(\tau))]^{2} + 2[n_{\beta}(\phi(\tau_{n}))]^{2} - [n_{\beta}(\phi(\tau) + \phi(\tau_{n}))]^{2}\}
= \lim_{n \to +\infty} E_{n} \le 2[n_{\beta}(\phi(\tau))]^{2} + 2\overline{\lim}[n_{\beta}(\phi(\tau_{n}))]^{2} - \underline{\lim}[n_{\beta}(\phi(\tau) + \phi(\tau_{n}))]^{2}
\le 2[n_{\beta}(\phi(\tau))]^{2} + 2\overline{\lim}[n_{\beta}(\phi(\tau_{n}))]^{2} - 4[n_{\beta}(\phi(\tau))]^{2}
= 2\overline{\lim}[n_{\beta}(\phi(\tau_{n}))]^{2} - 2[n_{\beta}(\phi(\tau))]^{2}.$$

À nouveau par la semi-continuité de $n_{\beta}(\phi)$, pour tout N et tout $\varepsilon > 0$, il existe un compact $K_{N,\varepsilon} \subset [-N,N]$, de mesure $> 2N - \varepsilon$, sur lequel $n_{\beta}(\phi)$ est continue. Soit $(\tau_n)_{n\geq 0}$ une suite dans $K_{N,\varepsilon}$ convergeant vers τ . D'après ce qui précède, $\overline{\lim_{n\to+\infty} E_n} = 0$. Par définition de la propriété ω -LUR de (A^{β}, n_{β}) , cela entraı̂ne que $\phi(\tau_n) \to \phi(\tau)$ faiblement dans A^{β} , c'est-à-dire ϕ est faiblement continue sur $K_{N,\varepsilon}$. Par le théorème de Pettis [6, Theorem II.2], cela montre le résultat annoncé.

ÉTAPE 2. Soient $a \in A^{\theta}$ et $g \in \mathcal{G}(\overline{A})$ tels que $g'(\theta) = a$. Le lemme 4 (b) ou (d) implique $a \in A_{\theta}$.

REMARQUE 1. Par le lemme 3(b) appliqué en $\theta = \beta$ et le lemme 4, on obtient $A_{\theta} = A^{\theta}$ pour tout θ si A^{β} est séparable.

Il suffit même que A^{β} soit un espace WCG (voir [4]). Rappelons qu'un espace WCG admet une norme équivalente LUR (voir [5, Chap. VII, Proposition 2.1]). Ce fait et le théorème 1 motivent la question suivante:

PROBLÈME 1. Si (A^{β}, n_{β}) admet une norme équivalente LUR pour un $\beta \in]0, 1[$, est-ce que $A_{\theta} = A^{\theta}$ pour tout $\theta \in]0, 1[$?

PROPOSITION 1. Soient A_0 , A_1 deux espaces de Banach tels que A_0 s'injecte continûment dans A_1 , et $\beta \in]0,1[$. Si A_{β} a la propriété de Radon-Nikodym analytique (définie par exemple dans [6]) pour un $\beta \in]0,1[$, alors $A_{\theta} = A^{\theta}$ pour tout $\theta \in]0,1[$.

Pour $\beta = 1$ ce résultat est [8, Proposition 3.1]; appliqué au couple (A_0, A_β) , il donne la conclusion pour $\theta \in]0, \beta[$.

Preuve de la proposition 1. D'après le lemme 4, il suffit de montrer que, pour toute $g \in \mathcal{G}(\overline{A})$, ϕ_{β} est p.s. mesurable à valeurs dans A^{β} .

On a mentionné en (b_2) de la preuve de ce lemme que la fonction $W = g_1(\beta \cdot)$ est dans $\mathcal{G}(A_0, A_\beta)$. À l'intérieur de S, W' est donc holomorphe à valeurs dans $A_0 + A_\beta = A_\beta$; par (1.1) elle est bornée. Comme A_β a la propriété de Radon-Nikodym analytique, W' admet p.s. des limites non tangentielles au bord de S. Soit ψ la limite p.s. $(\text{dans } A_\beta)$ de W' sur la droite Re z = 1; ψ est donc p.s. mesurable à valeurs dans A_β . Comme g' est continue (à valeurs dans $A_0 + A_1 = A_1$) à l'intérieur de S, ψ coincide p.s. avec la fonction $t \mapsto \beta g'(\beta + i\beta t)$, ce qui achève la preuve.

PROPOSITION 2. Si A_0 s'injecte continûment dans A_1 avec image dense, si A_{β} est un treillis de Banach, et si $(A_0^*, A_1^*)^{\beta}$ admet une norme équivalente LUR pour un $\beta \in]0, 1[$, alors $(A_0^*, A_1^*)_{\theta} = (A_0^*, A_1^*)^{\theta}$ pour tout $\theta \in]0, 1[$.

Preuve. Comme ℓ^{∞} n'admet aucune norme équivalente LUR [5, Chap. II, Theorem 7.10], $(A_{\beta})^* = (A_0^*, A_1^*)^{\beta}$ ne contient pas ℓ^{∞} isomorphiquement. Alors, d'après un résultat bien connu de Bessaga–Pełczyński [6, Corollary I.6], $(A_0^*, A_1^*)^{\beta}$ ne contient pas c_0 isomorphiquement; comme c'est un treillis de Banach, il a la propriété de Radon–Nikodym analytique [7]. Comme l'espace $(A_0^*, A_1^*)_{\beta}$ est isométriquement un sous-espace de $(A_0^*, A_1^*)^{\beta}$, on voit que $(A_0^*, A_1^*)_{\beta}$ conserve la propriété de Radon–Nikodym analytique. La proposition précédente achève la preuve.

Remerciements. Je remercie chaleureusement F. Lust-Piquard pour ses conseils lors de la rédaction de ce travail.

RÉFÉRENCES

- J. Bergh, On the relation between the two complex methods of interpolation, Indiana Univ. Math. J. 28 (1979), 775-778.
- [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
- [3] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190.
- [4] M. Daher, Une remarque sur l'espace d'interpolation A^{θ} , C. R. Acad. Sci. Paris 322 (1996), 641–644.

- R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces,
 Pitman Monogr. Surveys Pure Appl. Math. 64, Longman Sci. & Tech., Harlow, 1993.
- [6] J. Diestel and J. J. Uhl Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- [7] G. A. Edgar, Banach spaces with the analytic Radon–Nikodým property and abelian groups, dans: Almost Everywhere Convergence (Columbus, OH, 1988), 195–213, Academic Press, Boston, 1989.
- [8] U. Haagerup and G. Pisier, Factorization of analytic functions with values in noncommutative L₁-spaces and applications, Canad. J. Math. 41 (1989), 882–906.

Mohammad Daher 32 rue Jaques Monod 77350 Le Mée-sur-Seine, France E-mail: m.daher@orange.fr

> Received 28 July 2010; revised 21 March 2011 (5410)