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ESTIMATES ON INNER AND OUTER RADII OF UNIT BALLS IN
NORMED SPACES
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Abstract. The purpose of this paper is to continue the investigations on extremal
values for inner and outer radii of the unit ball of a finite-dimensional real Banach space
for the Holmes–Thompson and Busemann measures. Furthermore, we give a related new
characterization of ellipsoids in Rd via codimensional cross-section measures.

0. Introduction. Continuing [8], we will establish sharp lower and up-
per bounds on inner and outer radii of unit balls of finite-dimensional real
Banach spaces which are defined with the help of (maximally contained or
minimally containing) homothets of isoperimetrices. More precisely, we ob-
tain a sharp lower bound on the inner radius for the Holmes–Thompson
measure and a sharp upper bound on the outer radius for the Busemann
measure. Also we answer a related question on cross-section measures posed
in [8] and [9], getting a new characterization of ellipsoids in Rd (in the spirit
of [10]) and a sharp upper bound on the inner radius for the Busemann
measure.

1. Definitions and preliminaries. Recall that a convex body K is
a compact, convex set with nonempty interior, and that K is said to be
centered if it is symmetric with respect to the origin o of Rd. As usual,
Sd−1 denotes the standard Euclidean unit sphere in Rd. We write λi for the
i-dimensional Lebesgue measure in Rd, where 1 ≤ i ≤ d, and instead of λd we
simply write λ. We denote by u⊥ the (d−1)-dimensional subspace orthogonal
to u ∈ Sd−1, and by lu the 1-subspace parallel to u. For a convex body K
in Rd, we define the polar body K◦ of K by K◦ = {y ∈ Rd : 〈x, y〉 ≤ 1,
x ∈ K} and identify Rd and its dual space Rd∗ by using the standard basis.
In that case, λi and λ∗i coincide in Rd. For a centered convex body K in Rd

we have the Blaschke–Santaló inequality

λ(K)λ(K◦) ≤ ε2d,
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with equality exactly for ellipsoids (see [4]). Here εd stands for the volume
of the Euclidean unit ball in Rd. For K a convex body in Rd and u ∈ Sd−1,
the support function is defined by hK(u) = sup{〈u, y〉 : y ∈ K}, and for
o ∈ K its radial function ρK(u) by ρK(u) = max{α ≥ 0 : αu ∈ K}. We
always have hαK = αhK and ραK = αρK ; only these are needed here. We
also mention the relation

(1) ρK◦(u) =
1

hK(u)
, u ∈ Sd−1.

The projection body ΠK of a convex body K in Rd is defined by hΠK(u) =
λd−1(K|u⊥) for each u ∈ Sd−1, where K|u⊥ is the orthogonal projection of
K onto u⊥, and λd−1(K|u⊥) is called the (d − 1)-dimensional outer cross-
section measure of K at u. The intersection body IK of a convex body
K ⊂ Rd is defined by ρIK(u) = λd−1(K ∩ u⊥) for each u ∈ Sd−1. If K is a
convex body in Rd containing o, and S is a subspace, then we also have

(2) K◦ ∩ S = (K|S)◦.

Further on, for K ⊂ Rd a convex body we denote by λd−1(K,u⊥) and
λ1(K,u) the inner cross-section measures of K (i.e., the maximal measure of
a hyperplane section of K normal to u and the maximal chord length of K
at u, respectively). Note that for centered convex bodies maximal chords
pass through the origin. By definition λ1(K|lu) is the width of K at u. All
the notions given above can be found in the monographs [3], [12], and [14];
see also [6]. And we refer to [5] for a Fourier-analytic characterization of
intersection bodies. In [7] the following results for cross-section measures
were derived (see also [11] and [13] for generalizations).

For a convex body K in Rd, d ≥ 2, and every direction u ∈ Sd−1,

(3) λ(K) ≤ λd−1(K|u⊥)λ1(K,u) ≤ dλ(K),

with equality on the left if and only if K is a cylinder with u as generator
direction, and on the right precisely for K an oblique double cone with
respect to u. A convex body K is called an oblique double cone with respect
to the direction p− q if each boundary point of K can be connected to the
boundary points p or q of K by a boundary segment. In other words, any
2-dimensional half-plane with bounding line through the maximal chord pq
of K intersects K in a (possibly degenerate) triangle. And for each u ∈ Sd−1,
a convex body K in Rd, d ≥ 2, satisfies

(4) λ(K) ≤ λd−1(K,u⊥)λ1(K|lu) ≤ dλ(K),

with equality on the left if and only if K is a cylinder whose generators are
parallel to u and whose basis is normal to u, and on the right exactly for K
a (double) cone whose basis is normal to u.
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We write (Rd, ‖ · ‖) = Md for a d-dimensional real Banach space, i.e., a
Minkowski space with unit ball B which is a centered convex body; see [14].
The unit sphere of Md is the boundary ∂B of the unit ball.

2. Surface areas, volumes, and isoperimetrices in Minkowski
spaces. A Minkowski space Md possesses a Haar measure µ, and this mea-
sure is unique up to multiplying the Lebesgue measure by a constant, i.e.,
µ = σBλ.

The following notions are well known; see Chapter 5 of [14]. The d-
dimensional Holmes–Thompson volume of a convex body K in Md is defined
by

µHT
B (K) =

λ(K)λ(B◦)
εd

, i.e., σB =
λ(B◦)
εd

,

and the d-dimensional Busemann volume of K is defined by

µBus
B (K) =

εd
λ(B)

λ(K), i.e., σB =
εd

λ(B)
(and µBus

B (B) = εd).

To define the Minkowski surface area of a convex body, one needs similarly
to define σB in Md−1. That is, for the Holmes–Thompson measure we have
σB(u) = λd−1((B ∩ u⊥)◦)/εd−1, and for the Busemann measure σB(u) =
εd−1/λ(B ∩ u⊥) (see [14, pp. 150–151]). The Minkowski surface area of K
can also be defined in terms of mixed volumes (see [12] for notation and
more about mixed volumes) by

(5) µB(∂K) = dV (K[d− 1], IB) ,

where IB is the convex body whose support function is σB(u). For the
Holmes–Thompson measure, IB is defined by IHT

B = Π(B◦)/εd−1 , and there-
fore it is a centered zonoid. For the Busemann measure we have IBus

B =
εd−1(IB)◦. Among the homothetic images of IB, one is singled out; it is
called the isoperimetrix ÎB and determined by µB(∂ÎB) = dµB(ÎB). The
isoperimetrix for the Holmes–Thompson measure is defined by

(6) ÎHT
B =

εd
λ(B◦)

IHT
B ,

and the isoperimetrix for the Busemann measure by

(7) ÎBus
B =

λ(B)
εd

IBus
B ;

see again Chapter 5 of [14] and [9].

Definition 1. If K is a convex body in Md, the inner radius of K is
defined by r(K) := max{α : ∃x ∈ Md with αÎB ⊆ K + x}, and the outer
radius of K is R(K) := min{α : ∃x ∈Mdwith αÎB ⊇ K + x}.



214 H. MARTINI AND Z. MUSTAFAEV

3. Estimates for inner and outer radii of the unit ball. Notice
that when K is a centered convex body, r(K) and R(K) can also be defined
in terms of the support functions ofK and ÎB. Namely, r(K) is the maximum
value of α such that α ≤ hK(u)/hÎB (u) for all u ∈ Sd−1. Similarly, R(K) is
the minimal α such that α ≥ hK(u)/hÎB (u) for all u ∈ Sd−1.

Setting K = B◦ in (3), we obtain λ(B◦) ≤ 2ρB◦(u)hΠB◦(u) ≤ dλ(B◦)
for each u ∈ Sd−1. This gives

λ(B◦)
2εd−1

hB(u) ≤ hIHT
B

(u) ≤ dλ(B◦)
2εd−1

hB(u)

for each u ∈ Sd−1. Since the last inequality does not change under dilations,
we may assume that λ(B◦) = εd. This yields

εd
2εd−1

≤ hIB (u)
hB(u)

≤ dεd
2εd−1

(cf. [2]). Since in that case ÎHT
B = IB, the following result is established.

Theorem 2. Let B be the unit ball of a Minkowski space. Then for the
Holmes–Thompson measure we have the estimate

R(B) ≤ 2εd−1

εd
.

This estimate is sharp. From [7] it follows that equality holds when B a
centered cylinder with u as generator direction.

Remark. As in [8], we also find that the Holmes–Thompson measure
satisfies the inequality

r(B) ≥ 2εd−1

dεd
,

with equality when B is an oblique double cone with respect to u; this also
follows from [7].

ForK = B, (4) yields λ(B) ≤ 2ρIB(u)hB(u) ≤ dλ(B) for any direction u,
implying

λ(B)
2

hIBus
B

(u) ≤ εd−1hB(u) ≤ dλ(B)
2

hIBus
B

(u)

for each u ∈ Sd−1. Since the last inequality will not change under dilations,
we may assume that λ(B) = εd. Therefore we have

2εd−1

dεd
≤ hIB (u)

hB(u)
≤ 2εd−1

εd

(cf. [2]). Since in that case ÎBus
B = IB, we have established the following

result.
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Theorem 3. Let B be the unit ball of a Minkowski space. Then the
Busemann measure satisfies the estimate

r(B) ≥ εd
2εd−1

.

Again, this estimate is sharp. From [7] it follows that equality holds when
B is a centered cylinder with basis direction u.

Remark. As in [8], we also infer that for the Busemann measure we
have

R(B) ≤ dεd
2εd−1

,

with equality when B is a (double) cone whose basis is normal to u; this
follows from [7]. Clearly, both measures satisfy R(B)/r(B) ≤ d.

Theorem 4. Let B be the unit ball of a Minkowski space with d ≥ 3.
Then there exists a direction u ∈ Sd−1 such that

λd−1(B ∩ u⊥)λ1(B|lu)
λ(B)

≤ 2εd−1

εd
.

Furthermore, equality holds for each u ∈ Sd−1 if and only if B is an ellipsoid.

Proof. We set B to be B◦ with λ(B◦) = εd, since the inequality does
not change under dilations. From the Blaschke–Santaló inequality and (2)
we obtain

λd−1(B◦ ∩ u⊥)λ1(B◦|lu) ≤
ε2d−1λ1(B◦|lu)

λd−1((B◦ ∩ u⊥)◦)

=
ε2d−1λ1(B◦|lu)
λd−1(B|u⊥)

=
2ε2d−1hB◦(u)
hΠB(u)

=
2εd−1hB◦(u)
hIHT

B◦
(u)

.

If hB◦(u)/hIHT
B◦

(u) > 1 for all u ∈ Sd−1, then ÎHT
B◦ ⊂ B◦. But this contra-

dicts the fact that ÎHT
B ⊂ B if and only if B is an ellipsoid (see [14, p. 216]).

Note that in our setting ÎHT
B = IHT

B (for d = 2, IHT
B = B holds also for Radon

curves). Hence there is a direction u ∈ Sd−1 such that hB◦(u)/hIHT
B◦

(u) ≤ 1.

And, clearly, equality holds for each u ∈ Sd−1 if and only if B is an ellip-
soid.

Corollary 5. Let B be the unit ball of a Minkowski space with d ≥ 3.
Then for the Busemann measure we have the sharp estimate r(B) ≤ 1.

Proof. By the theorem above there is a direction u ∈ Sd−1 such that
ρIB(u)hB(u)≤ λ(B)εd−1/εd.Applying (1) and (7), we obtain hB(u)/hÎBus

B
(u)

≤ 1 for some u ∈ Sd−1, establishing the result.
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Remark. For the Busemann measure the equality r(B) = 1 holds not
only for ellipsoids. For example, if B is an affine image of the dual-Archi-
medean rhombic dodecahedron in M3, then r(B) = 1; see [9].

Finding sharp bounds on µB(∂B) for both measures in Md, d ≥ 3, is a
challenging problem. It is known that for the Busemann measure we have
µB(∂B) ≤ 2dεd−1, with equality if and only if B is a parallelotope. It has
been conjectured that the Busemann measure satisfies µB(∂B) ≥ dεd. From
properties of mixed volumes it follows that for both measures we have

λ(B) = V (B[d− 1], B) ≥ r(B)V (B[d− 1], ÎB),

λ(B) = V (B[d− 1], B) ≤ R(B)V (B[d− 1], ÎB).

Thus we obtain r(B)µB(∂B) ≤ dεd and R(B)µB(∂B) ≥ dεd for the Buse-
mann measure, and r(B)µB(∂B) ≤ dεd for the Holmes–Thompson measure.

An important open problem is whether B has to be an ellipsoid if B is a
solution of the isoperimetric problem in Md, d ≥ 3 (see [1]). For the Holmes–
Thompson measure, this would mean that B has to be an ellipsoid if B and
ΠB◦ are homothetic (see [3, p. 180], [6], [12, p. 416], and [14, Problem
6.5.4]). And for the Busemann measure, it would mean that B has to be
an ellipsoid if B and (IB)◦ are homothetic (see [3, p. 336], [6], [12, p. 416],
and [14, Problem 7.4.4]). These problems are equivalent to the following two
questions in Md, d ≥ 3, the first meant for the Holmes–Thompson measure,
and the second for the Busemann measure: Is there a constant c such that,
for all u ∈ Sd−1,

λd−1(B|u⊥)λ1(B ∩ lu)
λ(B)

= c or
λd−1(B ∩ u⊥)λ1(B|lu)

λ(B)
= c?

From our Theorem 4, and Theorem 9 of [8], we see that c = 2εd−1/εd if and
only if B is an ellipsoid. Can c be equal to another constant? One should
also notice that if such a constant c not equal to 2εd−1/εd exists, then for the
Holmes–Thompson measure c > 2εd−1/εd, and for the Busemann measure
c < 2εd/εd, since hÎB cannot be strictly smaller than hB.
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