estimates on inner and outer radiI of unit balls in NORMED SPACES

BY
HORST MARTINI (Chemnitz) and ZOKHRAB MUSTAFAEV (Houston, TX)

Abstract

The purpose of this paper is to continue the investigations on extremal values for inner and outer radii of the unit ball of a finite-dimensional real Banach space for the Holmes-Thompson and Busemann measures. Furthermore, we give a related new characterization of ellipsoids in \mathbb{R}^{d} via codimensional cross-section measures.

0. Introduction. Continuing [8], we will establish sharp lower and upper bounds on inner and outer radii of unit balls of finite-dimensional real Banach spaces which are defined with the help of (maximally contained or minimally containing) homothets of isoperimetrices. More precisely, we obtain a sharp lower bound on the inner radius for the Holmes-Thompson measure and a sharp upper bound on the outer radius for the Busemann measure. Also we answer a related question on cross-section measures posed in [8] and [9, getting a new characterization of ellipsoids in \mathbb{R}^{d} (in the spirit of [10]) and a sharp upper bound on the inner radius for the Busemann measure.
1. Definitions and preliminaries. Recall that a convex body K is a compact, convex set with nonempty interior, and that K is said to be centered if it is symmetric with respect to the origin o of \mathbb{R}^{d}. As usual, S^{d-1} denotes the standard Euclidean unit sphere in \mathbb{R}^{d}. We write λ_{i} for the i-dimensional Lebesgue measure in \mathbb{R}^{d}, where $1 \leq i \leq d$, and instead of λ_{d} we simply write λ. We denote by u^{\perp} the ($d-1$)-dimensional subspace orthogonal to $u \in S^{d-1}$, and by l_{u} the 1 -subspace parallel to u. For a convex body K in \mathbb{R}^{d}, we define the polar body K° of K by $K^{\circ}=\left\{y \in \mathbb{R}^{d}:\langle x, y\rangle \leq 1\right.$, $x \in K\}$ and identify \mathbb{R}^{d} and its dual space $\mathbb{R}^{d *}$ by using the standard basis. In that case, λ_{i} and λ_{i}^{*} coincide in \mathbb{R}^{d}. For a centered convex body K in \mathbb{R}^{d} we have the Blaschke-Santaló inequality

$$
\lambda(K) \lambda\left(K^{\circ}\right) \leq \epsilon_{d}^{2},
$$

2010 Mathematics Subject Classification: 46B20, 52A40.
Key words and phrases: Busemann volume, cross-section measures, ellipsoids, HolmesThompson volume, inner radius, intersection body, isoperimetrix, Minkowski space, mixed volumes, outer radius, projection body.
with equality exactly for ellipsoids (see [4]). Here ϵ_{d} stands for the volume of the Euclidean unit ball in \mathbb{R}^{d}. For K a convex body in \mathbb{R}^{d} and $u \in S^{d-1}$, the support function is defined by $h_{K}(u)=\sup \{\langle u, y\rangle: y \in K\}$, and for $o \in K$ its radial function $\rho_{K}(u)$ by $\rho_{K}(u)=\max \{\alpha \geq 0: \alpha u \in K\}$. We always have $h_{\alpha K}=\alpha h_{K}$ and $\rho_{\alpha K}=\alpha \rho_{K}$; only these are needed here. We also mention the relation

$$
\begin{equation*}
\rho_{K^{\circ}}(u)=\frac{1}{h_{K}(u)}, \quad u \in S^{d-1} . \tag{1}
\end{equation*}
$$

The projection body ΠK of a convex body K in \mathbb{R}^{d} is defined by $h_{\Pi K}(u)=$ $\lambda_{d-1}\left(K \mid u^{\perp}\right)$ for each $u \in S^{d-1}$, where $K \mid u^{\perp}$ is the orthogonal projection of K onto u^{\perp}, and $\lambda_{d-1}\left(K \mid u^{\perp}\right)$ is called the ($d-1$)-dimensional outer crosssection measure of K at u. The intersection body $I K$ of a convex body $K \subset \mathbb{R}^{d}$ is defined by $\rho_{I K}(u)=\lambda_{d-1}\left(K \cap u^{\perp}\right)$ for each $u \in S^{d-1}$. If K is a convex body in \mathbb{R}^{d} containing o, and S is a subspace, then we also have

$$
\begin{equation*}
K^{\circ} \cap S=(K \mid S)^{\circ} . \tag{2}
\end{equation*}
$$

Further on, for $K \subset \mathbb{R}^{d}$ a convex body we denote by $\lambda_{d-1}\left(K, u^{\perp}\right)$ and $\lambda_{1}(K, u)$ the inner cross-section measures of K (i.e., the maximal measure of a hyperplane section of K normal to u and the maximal chord length of K at u, respectively). Note that for centered convex bodies maximal chords pass through the origin. By definition $\lambda_{1}\left(K \mid l_{u}\right)$ is the width of K at u. All the notions given above can be found in the monographs [3], [12], and [14]; see also [6. And we refer to [5] for a Fourier-analytic characterization of intersection bodies. In 7 the following results for cross-section measures were derived (see also [11] and [13] for generalizations).

For a convex body K in $\mathbb{R}^{d}, d \geq 2$, and every direction $u \in S^{d-1}$,

$$
\begin{equation*}
\lambda(K) \leq \lambda_{d-1}\left(K \mid u^{\perp}\right) \lambda_{1}(K, u) \leq d \lambda(K) \tag{3}
\end{equation*}
$$

with equality on the left if and only if K is a cylinder with u as generator direction, and on the right precisely for K an oblique double cone with respect to u. A convex body K is called an oblique double cone with respect to the direction $p-q$ if each boundary point of K can be connected to the boundary points p or q of K by a boundary segment. In other words, any 2-dimensional half-plane with bounding line through the maximal chord $p q$ of K intersects K in a (possibly degenerate) triangle. And for each $u \in S^{d-1}$, a convex body K in $\mathbb{R}^{d}, d \geq 2$, satisfies

$$
\begin{equation*}
\lambda(K) \leq \lambda_{d-1}\left(K, u^{\perp}\right) \lambda_{1}\left(K \mid l_{u}\right) \leq d \lambda(K), \tag{4}
\end{equation*}
$$

with equality on the left if and only if K is a cylinder whose generators are parallel to u and whose basis is normal to u, and on the right exactly for K a (double) cone whose basis is normal to u.

We write $\left(\mathbb{R}^{d},\|\cdot\|\right)=\mathbb{M}^{d}$ for a d-dimensional real Banach space, i.e., a Minkowski space with unit ball B which is a centered convex body; see [14. The unit sphere of \mathbb{M}^{d} is the boundary ∂B of the unit ball.
2. Surface areas, volumes, and isoperimetrices in Minkowski spaces. A Minkowski space \mathbb{M}^{d} possesses a Haar measure μ, and this measure is unique up to multiplying the Lebesgue measure by a constant, i.e., $\mu=\sigma_{B} \lambda$.

The following notions are well known; see Chapter 5 of [14]. The d dimensional Holmes-Thompson volume of a convex body K in \mathbb{M}^{d} is defined by

$$
\mu_{B}^{\mathrm{HT}}(K)=\frac{\lambda(K) \lambda\left(B^{\circ}\right)}{\epsilon_{d}}, \quad \text { i.e., } \quad \sigma_{B}=\frac{\lambda\left(B^{\circ}\right)}{\epsilon_{d}},
$$

and the d-dimensional Busemann volume of K is defined by

$$
\mu_{B}^{\mathrm{Bus}}(K)=\frac{\epsilon_{d}}{\lambda(B)} \lambda(K), \quad \text { i.e. }, \quad \sigma_{B}=\frac{\epsilon_{d}}{\lambda(B)}\left(\text { and } \mu_{B}^{\mathrm{Bus}}(B)=\epsilon_{d}\right) .
$$

To define the Minkowski surface area of a convex body, one needs similarly to define σ_{B} in \mathbb{M}^{d-1}. That is, for the Holmes-Thompson measure we have $\sigma_{B}(u)=\lambda_{d-1}\left(\left(B \cap u^{\perp}\right)^{\circ}\right) / \epsilon_{d-1}$, and for the Busemann measure $\sigma_{B}(u)=$ $\epsilon_{d-1} / \lambda\left(B \cap u^{\perp}\right)$ (see [14, pp. 150-151]). The Minkowski surface area of K can also be defined in terms of mixed volumes (see [12] for notation and more about mixed volumes) by

$$
\begin{equation*}
\mu_{B}(\partial K)=d V\left(K[d-1], I_{B}\right), \tag{5}
\end{equation*}
$$

where I_{B} is the convex body whose support function is $\sigma_{B}(u)$. For the Holmes-Thompson measure, I_{B} is defined by $I_{B}^{\mathrm{HT}}=\Pi\left(B^{\circ}\right) / \epsilon_{d-1}$, and therefore it is a centered zonoid. For the Busemann measure we have $I_{B}^{\text {Bus }}=$ $\epsilon_{d-1}(I B)^{\circ}$. Among the homothetic images of I_{B}, one is singled out; it is called the isoperimetrix \hat{I}_{B} and determined by $\mu_{B}\left(\partial \hat{I}_{B}\right)=d \mu_{B}\left(\hat{I}_{B}\right)$. The isoperimetrix for the Holmes-Thompson measure is defined by

$$
\begin{equation*}
\hat{I}_{B}^{\mathrm{HT}}=\frac{\epsilon_{d}}{\lambda\left(B^{\circ}\right)} I_{B}^{\mathrm{HT}}, \tag{6}
\end{equation*}
$$

and the isoperimetrix for the Busemann measure by

$$
\begin{equation*}
\hat{I}_{B}^{\text {Bus }}=\frac{\lambda(B)}{\epsilon_{d}} I_{B}^{\text {Bus }} ; \tag{7}
\end{equation*}
$$

see again Chapter 5 of [14] and 9 .
Definition 1. If K is a convex body in \mathbb{M}^{d}, the inner radius of K is defined by $r(K):=\max \left\{\alpha: \exists x \in \mathbb{M}^{d}\right.$ with $\left.\alpha \hat{I}_{B} \subseteq K+x\right\}$, and the outer radius of K is $R(K):=\min \left\{\alpha: \exists x \in \mathbb{M}^{d}\right.$ with $\left.\alpha \hat{I}_{B} \supseteq K+x\right\}$.
3. Estimates for inner and outer radii of the unit ball. Notice that when K is a centered convex body, $r(K)$ and $R(K)$ can also be defined in terms of the support functions of K and \hat{I}_{B}. Namely, $r(K)$ is the maximum value of α such that $\alpha \leq h_{K}(u) / h_{\hat{I}_{B}}(u)$ for all $u \in S^{d-1}$. Similarly, $R(K)$ is the minimal α such that $\alpha \geq h_{K}(u) / h_{\hat{I}_{B}}(u)$ for all $u \in S^{d-1}$.

Setting $K=B^{\circ}$ in (3), we obtain $\lambda\left(B^{\circ}\right) \leq 2 \rho_{B^{\circ}}(u) h_{\Pi B^{\circ}}(u) \leq d \lambda\left(B^{\circ}\right)$ for each $u \in S^{d-1}$. This gives

$$
\frac{\lambda\left(B^{\circ}\right)}{2 \epsilon_{d-1}} h_{B}(u) \leq h_{I_{B}^{\mathrm{HT}}}(u) \leq \frac{d \lambda\left(B^{\circ}\right)}{2 \epsilon_{d-1}} h_{B}(u)
$$

for each $u \in S^{d-1}$. Since the last inequality does not change under dilations, we may assume that $\lambda\left(B^{\circ}\right)=\epsilon_{d}$. This yields

$$
\frac{\epsilon_{d}}{2 \epsilon_{d-1}} \leq \frac{h_{I_{B}}(u)}{h_{B}(u)} \leq \frac{d \epsilon_{d}}{2 \epsilon_{d-1}}
$$

(cf. [2]). Since in that case $\hat{I}_{B}^{\mathrm{HT}}=I_{B}$, the following result is established.
Theorem 2. Let B be the unit ball of a Minkowski space. Then for the Holmes-Thompson measure we have the estimate

$$
R(B) \leq \frac{2 \epsilon_{d-1}}{\epsilon_{d}}
$$

This estimate is sharp. From [7] it follows that equality holds when B a centered cylinder with u as generator direction.

Remark. As in [8], we also find that the Holmes-Thompson measure satisfies the inequality

$$
r(B) \geq \frac{2 \epsilon_{d-1}}{d \epsilon_{d}}
$$

with equality when B is an oblique double cone with respect to u; this also follows from [7].

For $K=B$, (4) yields $\lambda(B) \leq 2 \rho_{I B}(u) h_{B}(u) \leq d \lambda(B)$ for any direction u, implying

$$
\frac{\lambda(B)}{2} h_{I_{B}^{\text {Bus }}}(u) \leq \epsilon_{d-1} h_{B}(u) \leq \frac{d \lambda(B)}{2} h_{I_{B}^{\text {Bus }}}(u)
$$

for each $u \in S^{d-1}$. Since the last inequality will not change under dilations, we may assume that $\lambda(B)=\epsilon_{d}$. Therefore we have

$$
\frac{2 \epsilon_{d-1}}{d \epsilon_{d}} \leq \frac{h_{I_{B}}(u)}{h_{B}(u)} \leq \frac{2 \epsilon_{d-1}}{\epsilon_{d}}
$$

(cf. [2]). Since in that case $\hat{I}_{B}^{\text {Bus }}=I_{B}$, we have established the following result.

Theorem 3. Let B be the unit ball of a Minkowski space. Then the Busemann measure satisfies the estimate

$$
r(B) \geq \frac{\epsilon_{d}}{2 \epsilon_{d-1}} .
$$

Again, this estimate is sharp. From [7] it follows that equality holds when B is a centered cylinder with basis direction u.

Remark. As in [8], we also infer that for the Busemann measure we have

$$
R(B) \leq \frac{d \epsilon_{d}}{2 \epsilon_{d-1}},
$$

with equality when B is a (double) cone whose basis is normal to u; this follows from [7]. Clearly, both measures satisfy $R(B) / r(B) \leq d$.

Theorem 4. Let B be the unit ball of a Minkowski space with $d \geq 3$. Then there exists a direction $u \in S^{d-1}$ such that

$$
\frac{\lambda_{d-1}\left(B \cap u^{\perp}\right) \lambda_{1}\left(B \mid l_{u}\right)}{\lambda(B)} \leq \frac{2 \epsilon_{d-1}}{\epsilon_{d}} .
$$

Furthermore, equality holds for each $u \in S^{d-1}$ if and only if B is an ellipsoid.
Proof. We set B to be B° with $\lambda\left(B^{\circ}\right)=\epsilon_{d}$, since the inequality does not change under dilations. From the Blaschke-Santaló inequality and (2) we obtain

$$
\begin{aligned}
\lambda_{d-1}\left(B^{\circ} \cap u^{\perp}\right) \lambda_{1}\left(B^{\circ} \mid l_{u}\right) & \leq \frac{\epsilon_{d-1}^{2} \lambda_{1}\left(B^{\circ} \mid l_{u}\right)}{\lambda_{d-1}\left(\left(B^{\circ} \cap u^{\perp}\right)^{\circ}\right)} \\
& =\frac{\epsilon_{d-1}^{2} \lambda_{1}\left(B^{\circ} \mid l_{u}\right)}{\lambda_{d-1}\left(B \mid u^{\perp}\right)}=\frac{2 \epsilon_{d-1}^{2} h_{B^{\circ}}(u)}{h_{\Pi B}(u)}=\frac{2 \epsilon_{d-1} h_{B^{\circ}}(u)}{h_{I_{B^{\circ}}^{\mathrm{HT}}(u)}(u)} .
\end{aligned}
$$

If $h_{B^{\circ}}(u) / h_{I_{B^{\circ}}^{\mathrm{HT}}}(u)>1$ for all $u \in S^{d-1}$, then $\hat{I}_{B^{\circ}}^{\mathrm{HT}} \subset B^{\circ}$. But this contradicts the fact that $\hat{I}_{B}^{\mathrm{HT}} \subset B$ if and only if B is an ellipsoid (see [14, p. 216]). Note that in our setting $\hat{I}_{B}^{\mathrm{HT}}=I_{B}^{\mathrm{HT}}$ (for $d=2, I_{B}^{\mathrm{HT}}=B$ holds also for Radon curves). Hence there is a direction $u \in S^{d-1}$ such that $h_{B^{\circ}}(u) / h_{I_{B}^{\circ} \mathrm{HT}}(u) \leq 1$. And, clearly, equality holds for each $u \in S^{d-1}$ if and only if B is an ellipsoid.

Corollary 5. Let B be the unit ball of a Minkowski space with $d \geq 3$. Then for the Busemann measure we have the sharp estimate $r(B) \leq 1$.

Proof. By the theorem above there is a direction $u \in S^{d-1}$ such that $\rho_{I B}(u) h_{B}(u) \leq \lambda(B) \epsilon_{d-1} / \epsilon_{d}$. Applying (1) and (7), we obtain $h_{B}(u) / h_{\hat{I}_{B}^{\text {Bus }}}(u)$ ≤ 1 for some $u \in S^{d-1}$, establishing the result.

Remark. For the Busemann measure the equality $r(B)=1$ holds not only for ellipsoids. For example, if B is an affine image of the dual-Archimedean rhombic dodecahedron in \mathbb{M}^{3}, then $r(B)=1$; see 9 .

Finding sharp bounds on $\mu_{B}(\partial B)$ for both measures in $\mathbb{M}^{d}, d \geq 3$, is a challenging problem. It is known that for the Busemann measure we have $\mu_{B}(\partial B) \leq 2 d \epsilon_{d-1}$, with equality if and only if B is a parallelotope. It has been conjectured that the Busemann measure satisfies $\mu_{B}(\partial B) \geq d \epsilon_{d}$. From properties of mixed volumes it follows that for both measures we have

$$
\begin{aligned}
& \lambda(B)=V(B[d-1], B) \geq r(B) V\left(B[d-1], \hat{I}_{B}\right), \\
& \lambda(B)=V(B[d-1], B) \leq R(B) V\left(B[d-1], \hat{I}_{B}\right) .
\end{aligned}
$$

Thus we obtain $r(B) \mu_{B}(\partial B) \leq d \epsilon_{d}$ and $R(B) \mu_{B}(\partial B) \geq d \epsilon_{d}$ for the Busemann measure, and $r(B) \mu_{B}(\partial B) \leq d \epsilon_{d}$ for the Holmes-Thompson measure.

An important open problem is whether B has to be an ellipsoid if B is a solution of the isoperimetric problem in $\mathbb{M}^{d}, d \geq 3$ (see [1]). For the HolmesThompson measure, this would mean that B has to be an ellipsoid if B and ΠB° are homothetic (see [3, p. 180], [6, [12, p. 416], and [14, Problem 6.5.4]). And for the Busemann measure, it would mean that B has to be an ellipsoid if B and $(I B)^{\circ}$ are homothetic (see [3, p. 336], [6], [12, p. 416], and [14, Problem 7.4.4]). These problems are equivalent to the following two questions in $\mathbb{M}^{d}, d \geq 3$, the first meant for the Holmes-Thompson measure, and the second for the Busemann measure: Is there a constant c such that, for all $u \in S^{d-1}$,

$$
\frac{\lambda_{d-1}\left(B \mid u^{\perp}\right) \lambda_{1}\left(B \cap l_{u}\right)}{\lambda(B)}=c \quad \text { or } \quad \frac{\lambda_{d-1}\left(B \cap u^{\perp}\right) \lambda_{1}\left(B \mid l_{u}\right)}{\lambda(B)}=c ?
$$

From our Theorem 4, and Theorem 9 of 8 , we see that $c=2 \epsilon_{d-1} / \epsilon_{d}$ if and only if B is an ellipsoid. Can c be equal to another constant? One should also notice that if such a constant c not equal to $2 \epsilon_{d-1} / \epsilon_{d}$ exists, then for the Holmes-Thompson measure $c>2 \epsilon_{d-1} / \epsilon_{d}$, and for the Busemann measure $c<2 \epsilon_{d} / \epsilon_{d}$, since $h_{\hat{I}_{B}}$ cannot be strictly smaller than h_{B}.

REFERENCES

[1] H. Busemann and C. M. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88-94.
[2] V. I. Diskant, Estimates for diameter and width of the isoperimetrix in Minkowski geometry, J. Math. Phys. Anal. Geom. 2 (2006), 388-395.
[3] R. J. Gardner, Geometric Tomography, 2nd ed., Encyclopedia Math. Appl. 58, Cambridge Univ. Press, New York, 2006.
[4] E. Lutwak, On the Blaschke-Santaló inequality, in: Discrete Geometry and Convexity, J. E. Goodman et al. (eds.), Ann. New York Acad. Sci. 440, New York, 1985, 106-112.
[5] A. Koldobsky, Fourier Analysis in Convex Geometry, Amer. Math. Soc., Providence, RI, 2005.
[6] H. Martini, Cross-sectional measures, in: Intuitive Geometry (Szeged, 1991), Colloq. Math. Soc. János Bolyai, 63, North-Holland, Amsterdam, 1994, 269-310.
[7] -, Extremal equalities for cross-sectional measures of convex bodies, in: Proc. 3rd Congress of Geometry (Thessaloniki, 1991), Aristotle Univ. Press, Thessaloniki, 1992, 285-296.
[8] H. Martini and Z. Mustafaev, Some applications of cross-section measures in Minkowski spaces, Period. Math. Hungar. 53 (2006), 185-197.
[9] —, 一, On isoperimetric inequalities in Minkowski spaces, J. Inequal. Appl. 2010, art. ID 697954.
[10] C. A. Rogers and G. C. Shephard, Some extremal problems for convex bodies, Mathematika 5 (1958), 93-102.
[11] -, 一, Convex bodies associated with a given convex body, J. London Math. Soc. 33 (1958), 270-281.
[12] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl. 44, Cambridge Univ. Press, 1993.
[13] J. E. Spingarn, An inequality for sections and projections of a convex set, Proc. Amer. Math. Soc. 118 (1993), 1219-1224.
[14] A. C. Thompson, Minkowski Geometry, Encyclopedia Math. Appl. 63, Cambridge Univ. Press, 1996.

Horst Martini
Faculty of Mathematics
University of Technology Chemnitz
09107 Chemnitz, Germany
E-mail: horst.martini@mathematik.tu-chemnitz.de
Zokhrab Mustafaev
Department of Mathematics
University of Houston-Clear Lake
Houston, TX 77058, U.S.A.
E-mail: mustafaev@uhcl.edu

