VOL. 123

2011

NO. 2

MAPS WITH DIMENSIONALLY RESTRICTED FIBERS

ΒY

VESKO VALOV (North Bay)

Abstract. We prove that if $f: X \to Y$ is a closed surjective map between metric spaces such that every fiber $f^{-1}(y)$ belongs to a class S of spaces, then there exists an F_{σ} -set $A \subset X$ such that $A \in S$ and dim $f^{-1}(y) \setminus A = 0$ for all $y \in Y$. Here, S can be one of the following classes: (i) $\{M : e\text{-dim } M \leq K\}$ for some CW-complex K; (ii) C-spaces; (iii) weakly infinite-dimensional spaces. We also establish that if $S = \{M : \dim M \leq n\}$, then dim $f \Delta g \leq 0$ for almost all $g \in C(X, \mathbb{I}^{n+1})$.

1. Introduction. All spaces in the paper are assumed to be paracompact and all maps continuous. By C(X, M) we denote all maps from X into M. Unless stated otherwise, all function spaces are endowed with the source limitation topology provided M is a metric space.

The paper is inspired by the results of Pasynkov [11], Toruńczyk [16], Sternfeld [15] and Levin [8]. Pasynkov announced in [11] and proved in [12] that if $f: X \to Y$ is a surjective map with dim $f \leq n$, where X and Y are finite-dimensional metric compacta, then dim $f \bigtriangleup g \leq 0$ for almost all maps $g \in C(X, \mathbb{I}^n)$ (see [10] for a non-compact version of this result). Toruńczyk [16] established (in a more general setting) that if f, X and Y are as in Pasynkov's theorem, then for each $0 \leq k \leq n-1$ there exists a σ -compact subset $A_k \subset X$ such that dim $A_k \leq k$ and dim $f|(X \setminus A_k) \leq n-k-1$.

Next results in this direction were established by Sternfeld and Levin. Sternfeld [15] proved that if in the above results Y is not necessarily finitedimensional, then dim $f \triangle g \leq 1$ for almost all $g \in C(X, \mathbb{I}^n)$ and there exists a σ -compact subset $A \subset X$ such that dim $A \leq n-1$ and dim $f|(X \setminus A) \leq 1$. Levin [8] improved Sternfeld's results by showing that dim $f \triangle g \leq 0$ for almost all $g \in C(X, \mathbb{I}^{n+1})$, and showed that this is equivalent to the existence of an *n*-dimensional σ -compact subset $A \subset X$ with dim $f|(X \setminus A) \leq 0$.

The above results of Pasynkov and Toruńczyk were generalized in [18] to closed maps between metric spaces X and Y with Y being a C-space (recall that each finite-dimensional paracompact space is a C-space [6]).

²⁰¹⁰ Mathematics Subject Classification: Primary 54F45; Secondary 54E40.

Key words and phrases: extensional dimension, C-spaces, 0-dimensional maps, metric compacta, weakly infinite-dimensional spaces.

But the question whether the results of Pasynkov and Toruńczyk remain valid without the finite-dimensionality assumption on Y is still open.

In this paper we provide non-compact analogues of Levin's results for closed maps between metric spaces.

We say that a topological property of metrizable spaces is an S-*property* if the following conditions are satisfied:

- (i) S is hereditary with respect to closed subsets;
- (ii) if X is metrizable and {H_i}[∞]_{i=1} is a sequence of closed S-subsets of X, then U[∞]_{i=1} H_i ∈ S;
- (iii) a metrizable space X belongs S provided there exists a closed surjective map $f: X \to Y$ such that Y is a 0-dimensional metrizable space and $f^{-1}(y) \in S$ for all $y \in Y$;
- (iv) any discrete union of S-spaces is an S-space.

Any map whose fibers have a given S-property is called an S-map.

Here are some examples of S-properties (we identify S with the class of spaces having the property S):

- $S = {X : \dim X \le n}$ for some $n \ge 0$;
- $S = \{X : \dim_G X \le n\}$, where G is an Abelian group and \dim_G is the cohomological dimension;
- more generally, $S = \{X : e\text{-dim } X \le K\}$, where K is a CW-complex and e-dim is the extension dimension (see [4], [5]);
- $S = \{X : X \text{ is weakly infinite-dimensional}\};$
- $S = \{X : X \text{ is a } C\text{-space}\}.$

To show that the property e-dim $\leq K$ satisfies condition (iii), we apply [3, Corollary 2.5]. For the case of weakly infinite-dimensional spaces and C-spaces this follows from [7].

The question whether (strong) countable-dimensionality is an S-property was raised in the first version of this paper. The referee kindly informed us that, according to [14, Remark 2.2] (see also the remark after [6, Corollary 5.4.6], as well as [6, Problem 6.2.D(b)]), there exists a map with strongly countable-dimensional fibers from a metric compactum X onto the Cantor set such that X is not countable-dimensional. Hence, (strong) countabledimensionality is not an S-property.

THEOREM 1.1. Let $f: X \to Y$ be a closed surjective S-map with X and Y being metrizable spaces. Then there exists an F_{σ} -subset $A \subset X$ such that $A \in S$ and dim $f^{-1}(y) \setminus A = 0$ for all $y \in Y$. Moreover, if f is a perfect map, the conclusion remains true provided S is a property satisfying conditions (i)-(iii).

Theorem 1.1 was established by Levin [9, Theorem 1.2] in the case when X and Y are metric compacta and S is the property e-dim $\leq K$ for a given

CW-complex K. Levin's proof remains valid for any S-property, but it does not work for non-compact spaces.

We say that a map $f: X \to Y$ has a *countable functional weight* (notation $W(f) \leq \aleph_0$, see [10]) if there exists a map $g: X \to \mathbb{I}^{\aleph_0}$ such that $f \bigtriangleup g: X \to Y \times \mathbb{I}^{\aleph_0}$ is an embedding. For example [12, Proposition 9.1], $W(f) \leq \aleph_0$ for any closed map $f: X \to Y$ such that X is a metrizable space and every fiber $f^{-1}(y), y \in Y$, is separable.

THEOREM 1.2. Let X and Y be paracompact spaces and $f: X \to Y$ a closed surjective map with dim $f \leq n$ and $W(f) \leq \aleph_0$. Then $C(X, \mathbb{I}^{n+1})$ equipped with the uniform convergence topology contains a dense subset of maps g such that dim $f \bigtriangleup g \leq 0$.

This theorem was established by Levin [8, Theorem 1.6] for metric compacta X and Y, but Levin's arguments do not work for non-compact spaces. We use Pasynkov's technique from [10] to reduce the proof of Theorem 1.2 to the case of X and Y being metric compacta.

Our last results concern the function spaces $C(X, \mathbb{I}^n)$ and $C(X, \mathbb{I}^{\aleph_0})$ equipped with the source limitation topology. Recall that this topology on C(X, M) with M being a metrizable space can be described as follows: the neighborhood base at a given map $h \in C(X, M)$ consists of the sets $B_{\rho}(h, \epsilon) = \{g \in C(X, M) : \rho(g, h) < \epsilon\}$, where ρ is a fixed compatible metric on M and $\epsilon : X \to (0, 1]$ runs over continuous positive functions on X. The symbol $\rho(h, g) < \epsilon$ means that $\rho(h(x), g(x)) < \epsilon(x)$ for all $x \in X$. It is well known that for paracompact spaces X this topology does not depend on the metric ρ and it has the Baire property provided M is completely metrizable.

THEOREM 1.3. Let $f: X \to Y$ be a perfect surjection between paracompact spaces and $W(f) \leq \aleph_0$.

- (i) The maps $g \in C(X, \mathbb{I}^{\aleph_0})$ such that $f \bigtriangleup g$ embeds X into $Y \times \mathbb{I}^{\aleph_0}$ form a dense G_{δ} -set in $C(X, \mathbb{I}^{\aleph_0})$ with respect to the source limitation topology.
- (ii) If there exists a map $g \in C(X, \mathbb{I}^n)$ with dim $f \bigtriangleup g \leq 0$, then all maps having this property form a dense G_{δ} -set in $C(X, \mathbb{I}^n)$ with respect to the source limitation topology.

COROLLARY 1.4. Let $f: X \to Y$ be a perfect surjection with dim $f \leq n$ and $W(f) \leq \aleph_0$, where X and Y are paracompact spaces. Then all maps $g \in C(X, \mathbb{I}^{n+1})$ with dim $f \bigtriangleup g \leq 0$ form a dense G_{δ} -set in $C(X, \mathbb{I}^{n+1})$ with respect to the source limitation topology.

Corollary 1.4 follows directly from Theorem 1.2 and Theorem 1.3(ii). Corollary 1.5 below follows from Corollary 1.4 and [2, Corollary 1.1] (see Section 3). V. VALOV

COROLLARY 1.5. Let X, Y be paracompact spaces and $f: X \to Y$ a perfect surjection with dim $f \leq n$ and $W(f) \leq \aleph_0$. Then for every metrizable ANR-space M the maps $g \in C(X, \mathbb{I}^{n+1} \times M)$ such that dim $g(f^{-1}(y)) \leq n+1$ for all $y \in Y$ form a dense G_{δ} -set E in $C(X, \mathbb{I}^{n+1} \times M)$ with respect to the source limitation topology.

2. S-properties and maps into finite-dimensional cubes. This section contains the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We follow the proof of [19, Proposition 4.1]. Let us first reduce the proof to the case where f is a perfect map. Indeed, according to Vainstein's lemma, the boundary $\operatorname{Fr} f^{-1}(y)$ of every fiber $f^{-1}(y)$ is compact. Defining F(y) to be $\operatorname{Fr} f^{-1}(y)$ if $\operatorname{Fr} f^{-1}(y) \neq \emptyset$, and an arbitrary point from $f^{-1}(y)$ otherwise, we obtain a set $X_0 = \bigcup \{F(y) : y \in Y\}$ such that $X_0 \subset X$ is closed and the restriction $f|X_0$ is a perfect map. Moreover, each $f^{-1}(y) \setminus X_0$ is open in X and has property S (as an F_{σ} -subset of the S-space $f^{-1}(y)$). Hence, $X \setminus X_0$, being the union of the discrete family $\{f^{-1}(y) \setminus X_0 : y \in Y\}$ of S-sets, is an S-set. At the same time $X \setminus X_0$ is open in X. Consequently, $X \setminus X_0$ is the union of countably many closed sets $X_i \subset X$, $i = 1, 2, \ldots$. Obviously, each X_i , $i \geq 1$, also has property S. Therefore, it suffices to prove Theorem 1.1 for the S-map $f|X_0: X_0 \to Y$.

So, we may suppose that f is perfect. According to [10], there exists a map $g: X \to \mathbb{I}^{\aleph_0}$ such that g embeds every fiber $f^{-1}(y), y \in Y$. Let $g = \triangle_{i=1}^{\infty} g_i$ and $h_i = f \triangle g_i: X \to Y \times \mathbb{I}, i \ge 1$. Moreover, we choose countably many closed intervals \mathbb{I}_j such that every open subset of \mathbb{I} contains some \mathbb{I}_j . By [18, Lemma 4.1], for every j there exists a 0-dimensional F_{σ} -set $C_j \subset Y \times \mathbb{I}_j$ such that $C_j \cap (\{y\} \times \mathbb{I}_j) \neq \emptyset$ for every $y \in Y$. Now, consider the sets $A_{ij} = h_i^{-1}(C_j)$ for all $i, j \ge 1$ and let A be their union. Since f is an S-map, so is the map h_i for any i. Hence, A_{ij} has property S for all i, j. This implies that so does A.

It remains to show that $\dim f^{-1}(y) \setminus A \leq 0$ for every $y \in Y$. Let $\dim f^{-1}(y_0) \setminus A > 0$ for some y_0 . Since $g|f^{-1}(y_0)$ is an embedding, there exists an integer i such that $\dim g_i(f^{-1}(y_0) \setminus A) > 0$. Then $g_i(f^{-1}(y_0) \setminus A)$ has a non-empty interior in \mathbb{I} . So, $g_i(f^{-1}(y_0) \setminus A)$ contains some \mathbb{I}_j . Choose $t_0 \in \mathbb{I}_j$ with $c_0 = (y_0, t_0) \in C_j$. Then there exists $x_0 \in f^{-1}(y_0) \setminus A$ such that $g_i(x_0) = t_0$. On the other hand, $x_0 \in h_i^{-1}(c_0) \subset A_{ij} \subset A$, a contradiction.

Proof of Theorem 1.2. We first prove the next proposition, which is a small modification of [10, Theorem 8.1]. For any map $f: X \to Y$ we consider the set $C(X, Y \times \mathbb{I}^{n+1}, f)$ consisting of all maps $g: X \to Y \times \mathbb{I}^{n+1}$ such that $f = \pi_n \circ g$, where $\pi_n: Y \times \mathbb{I}^{n+1} \to Y$ is the projection onto Y. We also consider the other projection $\varpi_n: Y \times \mathbb{I}^{n+1} \to \mathbb{I}^{n+1}$. It is easily seen that the formula $g \mapsto \varpi_n \circ g$ provides one-to-one correspondence between $C(X, Y \times \mathbb{I}^{n+1}, f)$ and $C(X, \mathbb{I}^{n+1})$. So, we may assume that $C(X, Y \times \mathbb{I}^{n+1}, f)$ is a metric space isometric with $C(X, \mathbb{I}^{n+1})$, where $C(X, \mathbb{I}^{n+1})$ is equipped with the supremum metric.

PROPOSITION 2.1. Let $f: X \to Y$ be an n-dimensional surjective map between compact spaces with n > 0 and $\lambda: X \to Z$ a map into a metric compactum Z. Then the maps $g \in C(X, Y \times \mathbb{I}^{n+1}, f)$ satisfying the condition below form a dense subset of $C(X, Y \times \mathbb{I}^{n+1}, f)$: there exists a compact space H and maps $\varphi: X \to H$, $h: H \to Y \times \mathbb{I}^{n+1}$ and $\mu: H \to Z$ such that $\lambda = \mu \circ \varphi, g = h \circ \varphi, W(h) \leq \aleph_0$ and dim h = 0.

Proof. We fix a map $g_0 \in C(X, Y \times \mathbb{I}^{n+1}, f)$ and $\epsilon > 0$. Let $g_1 = \varpi_n \circ g_0$. Then $\lambda \bigtriangleup g_1 \in C(X, Z \times \mathbb{I}^{n+1})$. Consider also the constant maps $f' \colon Z \times \mathbb{I}^{n+1} \to Pt$ and $\eta \colon Y \to Pt$, where Pt is the one-point space. So, we have $\eta \circ f = f' \circ (\lambda \bigtriangleup g_1)$. According to Pasynkov's factorization theorem [13, Theorem 13], there exist metrizable compacta K, T and maps $f^* \colon K \to T$, $\xi_1 \colon X \to K, \xi_2 \colon K \to Z \times \mathbb{I}^{n+1}$ and $\eta^* \colon Y \to T$ such that:

- $\eta^* \circ f = f^* \circ \xi_1;$
- $\xi_2 \circ \xi_1 = \lambda \bigtriangleup g_1;$
- $\dim f^* \leq \dim f \leq n$.

If $p: Z \times \mathbb{I}^{n+1} \to Z$ and $q: Z \times \mathbb{I}^{n+1} \to \mathbb{I}^{n+1}$ denote the corresponding projections, we have

$$p \circ \xi_2 \circ \xi_1 = \lambda$$
 and $q \circ \xi_2 \circ \xi_1 = g_1$.

Since dim $f^* \leq n$, by Levin's result [8, Theorem 1.6], there exists a map $\phi: K \to \mathbb{I}^{n+1}$ such that ϕ is ϵ -close to $q \circ \xi_2$ and dim $f^* \bigtriangleup \phi \leq 0$. Then the map $\phi \circ \xi_1$ is ϵ -close to g_1 , so $g = f \bigtriangleup (\phi \circ \xi_1)$ is ϵ -close to g_0 . Denote $\varphi = f \bigtriangleup \xi_1, H = \varphi(X)$ and $h = (\mathrm{id}_Y \times \phi) | H$. If $\varpi_H \colon H \to K$ is the restriction of the projection $Y \times K \to K$ on H, we have

$$\lambda = p \circ \xi_2 \circ \xi_1 = p \circ \xi_2 \circ \varpi_H \circ \varphi, \text{ so } \lambda = \mu \circ \varphi, \text{ where } \mu = p \circ \xi_2 \circ \varpi_H.$$

Moreover, $g = f \triangle (\phi \circ \xi_1) = (\operatorname{id}_Y \times \phi) \circ (f \triangle \xi_1) = h \circ \varphi$. Since K is a metrizable compactum, $W(\phi) \leq \aleph_0$. Hence, $W(h) \leq \aleph_0$.

To show that dim $h \leq 0$, it suffices to prove that dim $h \leq \dim f^* \Delta \phi$. To this end, we show that any fiber $h^{-1}((y,v))$, where $(y,v) \in Y \times \mathbb{I}^{n+1}$, is homeomorphic to a subset of the fiber $(f^* \Delta \phi)^{-1}((\eta^*(y), v))$. Indeed, let π_Y be the restriction of the projection $Y \times K \to Y$ on the set H. Since $\eta^* \circ f = f^* \circ \xi_1$, H is a subset of the pullback of Y and K with respect to the maps η^* and f^* . Therefore, ϖ_H embeds every fiber $\pi_Y^{-1}(y)$ into $(f^*)^{-1}(y)$, $y \in Y$. Let $a_i = (y_i, k_i) \in H \subset Y \times K$, i = 1, 2, be such that $h(a_1) = h(a_2)$. Then $(y_1, \phi(k_1)) = (y_2, \phi(k_2))$, so $y_1 = y_2 = y$ and $\phi(k_1) = \phi(k_2) = v$. This implies $\varpi_H(a_i) = k_i \in (f^*)^{-1}(\eta^*(\pi_Y(a_i))) = (f^*)^{-1}(\eta^*(y))$, i = 1, 2. Hence, ϖ_H embeds the fiber $h^{-1}((y, v))$ into the fiber $(f^* \triangle \phi)^{-1}((\eta^*(y), v))$. Consequently, dim $h \leq \dim f^* \triangle \phi = 0$.

We can now finish the proof of Theorem 1.2. It suffices to show that every map from $C(X, Y \times \mathbb{I}^{n+1}, f)$ can be approximated by maps $g \in C(X, Y \times \mathbb{I}^{n+1}, f)$ with dim $g \leq 0$. We fix $g_0 \in C(X, Y \times \mathbb{I}^{n+1}, f)$ and $\epsilon > 0$. Since $W(f) \leq \aleph_0$, there exists a map $\lambda \colon X \to \mathbb{I}^{\aleph_0}$ such that $f \bigtriangleup \lambda$ is an embedding. Let $\beta f \colon \beta X \to \beta Y$ be the Čech–Stone extension of the map f. Then dim $\beta f \leq n$ (see [13, Theorem 15]). Consider also the maps $\beta \lambda \colon \beta X \to \mathbb{I}^{\aleph_0}$ and $\bar{g}_0 = \beta f \bigtriangleup \beta g_1$, where $g_1 = \varpi_n \circ g_0$. According to Proposition 2.1, there exists a map $\bar{g} \in C(\beta X, \beta Y \times \mathbb{I}^{n+1}, \beta f)$ which is ϵ -close to \bar{g}_0 and satisfies the following condition: there exists a compact space H and maps $\varphi \colon \beta X \to H, h \colon H \to \beta Y \times \mathbb{I}^{n+1}$ and $\mu \colon H \to \mathbb{I}^{\aleph_0}$ such that $\beta \lambda = \mu \circ \varphi$, $\bar{g} = h \circ \varphi, W(h) \leq \aleph_0$ and dim h = 0. We have the equalities

$$\beta f \bigtriangleup \beta \lambda = (\pi_n \circ \bar{g}) \bigtriangleup (\mu \circ \varphi) = (\pi_n \circ h \circ \varphi) \bigtriangleup (\mu \circ \varphi)$$
$$= ((\pi_n \circ h) \bigtriangleup \mu) \circ \varphi,$$

where π_n denotes the projection $\beta Y \times \mathbb{I}^{n+1} \to \beta Y$. This implies that φ embeds X into H because $f \bigtriangleup \lambda$ embeds X into $Y \times \mathbb{I}^{\aleph_0}$. Let g be the restriction of \bar{g} over X. Identifying X with $\varphi(X)$, we find that h is an extension of g. Hence, dim $g \leq \dim h = 0$. Observe also that g is ϵ -close to g_0 , which completes the proof.

3. Proof of Theorem 1.3 and Corollary 1.5

Proof of Theorem 1.3(ii). Since $W(f) \leq \aleph_0$, there is a map $\lambda: X \to \mathbb{I}^{\aleph_0}$ such that $f \bigtriangleup \lambda$ embeds X into $Y \times \mathbb{I}^{\aleph_0}$. Choose a sequence $\{\gamma_k\}_{k\geq 1}$ of open covers of \mathbb{I}^{\aleph_0} with mesh $(\gamma_k) \leq 1/k$, and let $\omega_k = \lambda^{-1}(\gamma_k)$ for all k. We denote by $C_{(\omega_k,0)}(X,\mathbb{I}^n,f)$ the set of all maps $g \in C(X,\mathbb{I}^n)$ with the following property: every $z \in (f \bigtriangleup g)(X)$ has a neighborhood V_z in $Y \times \mathbb{I}^n$ such that $(f \bigtriangleup g)^{-1}(V_z)$ can be represented as the union of a disjoint open (in X) family refining the cover ω_k . According to [18, Lemma 2.5], each of the sets $C_{(\omega_k,0)}(X,\mathbb{I}^n,f), k \geq 1$, is open in $C(X,\mathbb{I}^n)$ with respect to the source limitation topology. It follows from the definition of the covers ω_k that $\bigcap_{k\geq 1} C_{(\omega_k,0)}(X,\mathbb{I}^n,f)$ consists of maps g with dim $f \bigtriangleup g \leq 0$. Since $C(X,\mathbb{I}^n)$ with the source limitation topology has the Baire property, it remains to show that any $C_{(\omega_k,0)}(X,\mathbb{I}^n,f)$ is dense in $C(X,\mathbb{I}^n)$.

To this end, we need the following result established in our forthcoming book [1] with T. Banakh: Suppose $h_0: Z \to E$ is a map from a Tikhonov space Z into an ANR-space E and $O(h_0)$ is a neighborhood of h_0 in C(Z, E)equipped with the source limitation topology. Then there exists an open cover γ of Z such that for any γ -map $h_1: Z \to P$ into a paracompact space P (i.e., $h_0^{-1}(\omega)$ refines γ for some open cover ω of P) there exists a map $h_2: G \to E$ with $h_2 \circ h_1 \in O(h_0)$, where G is an open neighborhood of the closure of h(Z) in P.

We apply the above result for a fixed cover ω_m , a map $g_0 \in C(X, \mathbb{I}^n)$ and a neighborhood $B_{\rho}(g_0, \epsilon)$ of g_0 in $C(X, \mathbb{I}^n)$, where $\epsilon \colon X \to (0, 1]$ is a continuous function and ρ is the Euclidean metric on \mathbb{I}^n . More precisely, we are going to find $h \in C_{(\omega_m,0)}(X, \mathbb{I}^n, f)$ such that $\rho(g_0(x), h(x)) < \epsilon(x)$ for all $x \in X$. According to the result formulated above, there exists an open cover \mathcal{U} of X satisfying the following condition: if $\alpha \colon X \to K$ is a \mathcal{U} -map into a paracompact space K, then there exists a map $q \colon G \to \mathbb{I}^n$, where G is an open neighborhood of $\overline{\alpha(X)}$ in K, such that g_0 and $q \circ \alpha$ are $\epsilon/2$ -close with respect to the metric ρ . Let \mathcal{U}_1 be an open cover of X refining both \mathcal{U} and ω_m such that $\inf{\epsilon(x) \colon x \in U} > 0$ for all $U \in \mathcal{U}_1$.

Since dim $f \bigtriangleup g \leq 0$ for some $g \in C(X, \mathbb{I}^n)$, according to [1, Theorem 6] there exists an open cover \mathcal{V} of Y such that for any \mathcal{V} -map $\beta \colon Y \to L$ into a simplicial complex L we can find a \mathcal{U}_1 -map $\alpha \colon X \to K$ into a simplicial complex K and a perfect PL-map $p \colon K \to L$ with $\beta \circ f = p \circ \alpha$ and dim $p \leq n$. We can assume that \mathcal{V} is locally finite. Take L to be the nerve of the cover \mathcal{V} and $\beta \colon Y \to L$ the corresponding natural map. Then there exist a simplicial complex K and maps p and α satisfying the above conditions. Hence, the following diagram is commutative:

$$\begin{array}{ccc} X & \stackrel{\alpha}{\longrightarrow} & K \\ f & & & \downarrow p \\ f & & & \downarrow p \\ Y & \stackrel{\beta}{\longrightarrow} & L \end{array}$$

Since K is paracompact, the choice of the cover \mathcal{U} guarantees the existence of a map $\varphi \colon G \to \mathbb{I}^n$, where $G \subset K$ is an open neighborhood of $\overline{\alpha(X)}$, such that g_0 and $h_0 = \varphi \circ \alpha$ are $\epsilon/2$ -close with respect to ρ . Replacing the triangulation of K by a suitable subdivision, we may additionally assume that no simplex of K meets both $\overline{\alpha(X)}$ and $K \setminus G$. So, the union N of all simplexes $\sigma \in K$ with $\sigma \cap \overline{\alpha(X)} \neq \emptyset$ is a subcomplex of K and $N \subset G$. Moreover, since N is closed in K, $p_N = p|N \colon N \to L$ is a perfect map. Therefore, we have the following commutative diagram:

Since α is a \mathcal{U}_1 -map and $\inf\{\epsilon(x) : x \in U\} > 0$ for all $U \in \mathcal{U}_1$, we can construct a continuous function $\epsilon_1 : N \to (0, 1]$ and an open cover γ of N

such that $\epsilon_1 \circ \alpha \leq \epsilon$ and $\alpha^{-1}(\gamma)$ refines \mathcal{U}_1 . Since dim $p_N \leq \dim p \leq n$ and L, being a simplicial complex, is a C-space, we can apply [18, Theorem 2.2] to find a map $\varphi_1 \in C_{(\gamma,0)}(N, \mathbb{I}^n, p_N)$ which is $\epsilon_1/2$ -close to φ . Let $h = \varphi_1 \circ \alpha$. Then h and h_0 are $\epsilon/2$ -close because $\epsilon_1 \circ \alpha \leq \epsilon$. On the other hand, h_0 is $\epsilon/2$ -close to g_0 . Hence, g_0 and h are ϵ -close.

It remains to show that $h \in C_{(\omega_m,0)}(X,\mathbb{I}^n, f)$. To this end, fix a point $z = (f(x), h(x)) \in (f \bigtriangleup h)(X) \subset Y \times \mathbb{I}^n$ and let y = f(x). Then $w = (p_N \bigtriangleup \varphi_1)(\alpha(x)) = (\beta(y), h(x))$. Since $\varphi_1 \in C_{(\gamma,0)}(N,\mathbb{I}^n, p_N)$, there exists a neighborhood V_w of w in $L \times \mathbb{I}^n$ such that $W = (p_N \bigtriangleup \varphi_1)^{-1}(V_w)$ is the union of a disjoint open family in N refining γ . We can assume that $V_w = V_{\beta(y)} \times V_{h(x)}$, where $V_{\beta(y)}$ and $V_{h(x)}$ are neighborhoods of $\beta(y)$ and h(x) in Y and \mathbb{I}^n , respectively. Consequently, $(f \bigtriangleup h)^{-1}(\Gamma) = \alpha^{-1}(W)$, where $\Gamma = \beta^{-1}(V_{\beta(y)}) \times V_{h(x)}$. Finally, observe that $\alpha^{-1}(W)$ is the disjoint union of an open (in X) family refining ω_m . Therefore, $h \in C_{(\omega_m,0)}(X, \mathbb{I}^n, f)$.

Proof of Theorem 1.3(i). Let λ and ω_k be as in the proof of Theorem 1.3(ii). Denote by $C_{\omega_k}(X, \mathbb{I}^{\aleph_0}, f)$ the set of all $g \in C(X, \mathbb{I}^{\aleph_0})$ such that $f \triangle g$ is an ω_k -map. It can be shown that every $C_{\omega_k}(X, \mathbb{I}^{\aleph_0}, f)$ is open in $C(X, \mathbb{I}^{\aleph_0})$ with the source limitation topology (see [17, Proposition 3.1]). Moreover, $\bigcap_{k\geq 1} C_{\omega_k}(X, \mathbb{I}^{\aleph_0}, f)$ consists of maps g with $f \triangle g$ embedding X into $Y \times \mathbb{I}^{\aleph_0}$. So, we need to show that each $C_{\omega_k}(X, \mathbb{I}^{\aleph_0}, f)$ is dense in $C(X, \mathbb{I}^{\aleph_0})$ equipped with the source limitation topology.

To prove this, we follow the notation and arguments from the proof of Theorem 1.3(ii) (that $C_{(\omega_k,0)}(X,\mathbb{I}^n,f)$ are dense in $C(X,\mathbb{I}^n)$) by considering \mathbb{I}^{\aleph_0} instead of \mathbb{I}^n . We fix a cover ω_m , a map $g_0 \in C(X,\mathbb{I}^{\aleph_0})$ and a function $\epsilon \in C(X, (0, 1])$. Since $W(f) \leq \aleph_0$, we can apply Theorem 6 from [1] to find an open cover \mathcal{V} of Y such that for any \mathcal{V} -map $\beta \colon Y \to L$ into a simplicial complex L there exists a \mathcal{U}_1 -map $\alpha \colon X \to K$ into a simplicial complex K and a perfect PL-map $p \colon K \to L$ with $\beta \circ f = p \circ \alpha$. Proceeding as before, we find a map $h = \varphi_1 \circ \alpha$ which is ϵ -close to g_0 , where $\varphi_1 \in C_{\gamma}(N, \mathbb{I}^{\aleph_0}, p_N)$. It is easily seen that $\varphi_1 \in C_{\gamma}(N, \mathbb{I}^{\aleph_0}, p_N)$ implies $h \in C_{\omega_m}(X, \mathbb{I}^{\aleph_0}, f)$. So, $C_{\omega_m}(X, \mathbb{I}^{\aleph_0}, f)$ is dense in $C(X, \mathbb{I}^{\aleph_0})$.

Proof of Corollary 1.5. It follows from [2, Proposition 2.1] that the set E is G_{δ} in $C(X, \mathbb{I}^{n+1} \times M)$. So, we need to show it is dense in $C(X, \mathbb{I}^{n+1} \times M)$. To this end, we fix $g^0 = (g_1^0, g_2^0) \in C(X, \mathbb{I}^{n+1} \times M)$ with $g_1^0 \in C(X, \mathbb{I}^{n+1})$ and $g_2^0 \in C(X, M)$. Since, by Corollary 1.4, the set

$$G_1 = \{g_1 \in C(X, \mathbb{I}^{n+1}) : \dim f \bigtriangleup g_1 \le 0\}$$

is dense in $C(X, \mathbb{I}^{n+1})$, we may approximate g_1^0 by an $h_1 \in G_1$. Then, by [2, Corollary 1.1], the maps $g_2 \in C(X, M)$ with dim $g_2((f \triangle h_1)^{-1}(z)) = 0$ for all $z \in Y \times \mathbb{I}^{n+1}$ form a dense subset G_2 of C(X, M). So, we can approximate g_2^0 by a map $h_2 \in G_2$. Let us show that $h = (h_1, h_2) \in C(X, \mathbb{I}^{n+1}) \times M$

belongs to E. We define the map $\pi_h: (f \triangle h)(X) \to (f \triangle h_1)(X)$ by setting $\pi_h(f(x), h_1(x), h_2(x)) = (f(x), h_1(x)), x \in X$. Because f is perfect, so is π_h . Moreover,

$$(\pi_h)^{-1}(f(x), h_1(x)) = h_2(f^{-1}(f(x)) \cap h_1^{-1}(h_1(x))), \quad x \in X.$$

So, every fiber of π_h is 0-dimensional. We also observe that $\pi_h(h(f^{-1}(y))) = (f \bigtriangleup h_1)(f^{-1}(y))$ and the restriction $\pi_h|h(f^{-1}(y))$ is a perfect surjection between the compact spaces $h(f^{-1}(y))$ and $(f \bigtriangleup h_1)(f^{-1}(y))$ for any $y \in Y$. Since $(f \bigtriangleup h_1)(f^{-1}(y)) \subset \{y\} \times \mathbb{I}^{n+1}$, we have $\dim(f \bigtriangleup h_1)(f^{-1}(y)) \le n+1$, $y \in Y$. Consequently, applying Hurewicz's dimension-lowering theorem [6] for the map $\pi_h|h(f^{-1}(y))$, we have $\dim h(f^{-1}(y)) \le n+1$. Therefore, $h \in E$, which completes the proof. \blacksquare

Acknowledgments. The author wishes to thank the referee for his/her valuable remarks and for providing a reference that countable-dimensionality is not an S-property.

The author was partially supported by NSERC Grant 261914-08.

REFERENCES

- [1] T. Banakh and V. Valov, General position properties in fiberwise geometric topology, arXiv:1001.2494v1[math.GT].
- [2] —, —, Spaces with fibered approximation property in dimension n, Cent. Eur. J. Math. 8 (2010), 411–420.
- [3] A. Chigogidze and V. Valov, The extension dimension and C-spaces, Bull. London Math. Soc. 34 (2002), 708–716.
- [4] A. N. Dranishnikov, The Eilenberg-Borsuk theorem for mappings into an arbitrary complex, Russian Acad. Sci. Sb. Math. 81 (1995), 467–475.
- [5] A. Dranishnikov and J. Dydak, Extension dimension and extension types, Proc. Steklov Inst. Math. 212 (1996), 55–88.
- [6] R. Engelking, Theory of Dimensions: Finite and Infinite, Heldermann, Lemgo, 1995.
- Y. Hattori and K. Yamada, Closed pre-images of C-spaces, Math. Japon. 34 (1989), 555–561.
- [8] M. Levin, Bing maps and finite-dimensional maps, Fund. Math. 151 (1996), 47–52.
- [9] —, On extensional dimension of maps, Topology Appl. 103 (2000), 33–35.
- B. A. Pasynkov, On geometry of continuous maps of countable functional weight, Fundam. Prikl. Mat. 4 (1998), 155–164 (in Russian).
- [11] —, On dimension and geometry of mappings, Dokl. Akad. Nauk SSSR 221 (1975), 543–546 (in Russian).
- [12] —, On geometry of continuous maps of finite-dimensional compact metric spaces, Trudy Mat. Inst. Steklova 212 (1996), 147–172 (in Russian).
- [13] —, Factorization theorems in dimension theory, Uspekhi Mat. Nauk 36 (1981), no. 3, 147–175 (in Russian).
- R. Pol, On classification of weakly infinite-dimensional compacta, Fund. Math. 116 (1983), 169–188.
- Y. Sternfeld, On finite-dimensional maps and other maps with "small" fibers, ibid. 147 (1995), 127–133.

- [16] H. Toruńczyk, Finite-to-one restrictions of continuous functions, ibid. 125 (1985), 237–249.
- [17] M. Tuncali and V. Valov, On finite-dimensional maps, Tsukuba J. Math. 28 (2004), 155–167.
- [18] —, —, On dimensionally restricted maps, Fund. Math. 175 (2002), 35–52.
- [19] V. Valov, Parametric Bing and Krasinkiewicz maps: revisited, Proc. Amer. Math. Soc. 139 (2011), 747–756.

Vesko Valov Department of Computer Science and Mathematics Nipissing University 100 College Drive P.O. Box 5002 North Bay, ON, P1B 8L7, Canada E-mail: veskov@nipissingu.ca

> Received 5 January 2011; revised 11 April 2011

(5461)