COLLOQUIUM MATHEMATICUM

VOL. 123 2011 NO. 2

FREE POWERS OF THE FREE POISSON MEASURE

BY

MELANIE HINZ and WOJCIECH MLOTKOWSKI (Wroctaw)

Abstract. We compute moments of the measures (w™P)®, where w denotes the

free Poisson law, and 8 and ® are the additive and multiplicative free convolutions. These
moments are expressed in terms of the Fuss—Narayana numbers.

1. Introduction. Free convolution is a binary operation on the class M
of probability measures on R, which corresponds to the notion of free inde-
pendence in noncommutative probability (see [3, 8 [12]). Namely, if X,Y are
free noncommuting random variables, with distributions u,v € M respec-
tively, then the additive free convolution p By is the distribution of the sum
X +Y. Similarly, if moreover X > 0 then the multiplicative free convolution
pw®v can be defined as the distribution of the product vXYvX.

Here we can confine ourselves to the class M€ of compactly supported
measures in M. Let M denote the class of those u € M\ {dp} with
support in [0, 00). For y € M€ we define its moment generating function

e}

(1) My(z) == Z sm(p)2"™,
m=0
defined in some neighborhood of 0, where
(2) sm(n) = | 2™ dp(x)
R

is the mth moment of p. Then we define its R-transform R,(z) by the
equation

3) My(2) = Ry(=M,(2)) + 1.
If Ru(z) = o0 i mm(p)z™ then the numbers ry,(p) are called the free cu-

mulants of p. For p,v € M we define the additive free convolution p Bv
and the additive free power =t by

(4) Rusy(2) = Ru(2) + Ry(2) and R mi(z) = tR,(2).
The latter is well defined at least for ¢ > 1.
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The free S-transform (see [11]) of u € M$ is defined by the relation
(5) R,(28u(2)) =2 or Mu(z(1+2)718,(2)) =1+ 2.
Observe that
(6) 8 1 (2) = %SM <j>
If u,v € M€ and p has support contained in [0, 00) then the multiplicative
free convolution pu Ry and the multiplicative free powers pu*P are defined by
(7) Sumv(2) 1= 8u(2)Sp(2) and S m,(2) = Su(2)".

The powers are well defined at least for p > 1.
For ¢ € R, ¢ # 0, and p € M we define the dilation D.u € M by
D (X)) := pu(c 1 X) for every Borel subset X of R. Then we have

1
(8) Mp,u(2) = My(cz), Rp.u(z)=Ru(cz), Sp.u(z)= ESN(Z)'
The last formula, together with @, leads to

PROPOSITION 1.1. Assume that p € MS, p,t > 0 and both the measures
(uEHEP and (u=P)®! exist. Then

D1 () = ()P,

Proof. 1f S,,(2) is the free S-transform of y then

1 2\? 1 2\P
ZSH <t> and tpSu(t>

are the free S-transforms of (u®P)®¢ and (u®!)®P respectively. u

2. The free Poisson measure. Our aim is to study the additive and
multiplicative free powers of the free Poisson measure

1 /4-
w = %U xxd:v on [0,4].

It is known that w®! is R-infinitely divisible for ¢ > 1 and @™ is B-infinitely
divisible for p > 1 (see [12, 8, 2, [7]). Therefore the double powers (zo®!)®P
and (@®P)®’ exist whenever p,t > 0 and max{p,t} > 1.

The additive free powers @™, ¢ > 0, are well known:

\/4t—(x—1—t)2d

2mx

9) w™ = max{1 —t,0}d + x

with the absolutely continuous part supported on [(1 — v/#)2, (1 4+ V/1)?], as
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well as the corresponding functions:

p
(10) M_m:(2) = 1+ (1—t)z+ /(1= (L+1)2)2 — 4t22
o) . m m m tk
:1+m§—:1z ;<k><k—1>m
(11) Rown(9) = 1o Sem() =

For the multiplicative free powers @™P, p > 0, it is known [2, [7] that

(12) Mo = 3 (M)

— m m(p+1)+1

(13) R_ay(z) = i <mp + 1) 2

— m mp+ 1

m

Explicit formulas for the measures @™ are known only for natural p 9, [10].
Our aim now is to study the measures

@(p,t) = (@)™,

where p,t > 0 and max{p,t} > 1. First observe that

_ = (mp+1 zm
(1) R =3 (")
and
(15) Sw(pﬂg)(z) = tpil(t + Z)ip.

Our previous remarks lead to the following
PROPOSITION 2.1. Assume that p,t > 0 and max{p,t} > 1.

o Ifp>1 then w(p,t) is B-infinitely divisible.
o [ft>1 then w(p,t) is B-infinitely divisible. m

In order to compute moments of w(p,t) we will use the Lagrange inver-
ston formula which says that if a function z = f(w) is analytic at the point
w = a and f'(a) # 0, f(a) =: b, then for the inverse function w = g(z) we
have

> gl w—a \™M
(16) (2) =a+ —
o =at 3 e (s 5)

Now we are ready to prove (see [0] for the special case p = 2)

(== b

|
w=a m:
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THEOREM 2.2. For p,t > 0 with max{p,t} > 1, define w(p,t) =
(c®P)Bt. Then

(17) M :1+izm§:< 1> <mm_pk>;i

=1
Proof. Putting in (|16))

f(w) =Pl 4+ w) Ht +w) P

and a = b = 0 we have, in view of (5) and (15), My (2) = 1+ g(2).
Therefore

el m(l— m 2™
Me(p,) (2 >—1+Zdwm L G
But now
m e’} k
m mp __ ygmp m k mp E
arariera = (3 (7)) (3 (V) (7))
k=0 k=0
0o k
SO
=0 =0 \' -t
Therefore
- (L +w)™(t4w)™P) =t"P(m — )‘mi:l m P yimmer
T w w wzo_ m .izo ; —
= mp — | S m mp k—m
£ (m 1).;<k_1 N

which leads to our statement. m

Note that in view of Proposition there is no point to study powers
like
(((wgpl)ﬁﬂtl)gpz)ﬁﬂtg...

because all of them are dilations of some of w(p, t).
It would be interesting to verify the following

CONJECTURE. Assume that p,t > 0. Then the sequence {sp,(p,t)}7°_g
defined by: so(p,t) := 1 and

m(p,t) := i <;£L 1> (mn?k>:z

k=1
for m > 1, is positive definite if and only if max{p,t} > 1.

The coefficients at and have a remarkable combinatorial mean-
ing, which was found by Edelman [4]. Namely, fix m,p € N and let NC®) (m)
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denote the set of all noncrossing partitions 7 of {1,...,mp} such that p di-
vides the cardinality of every block of 7. Then the cardinality of NC®) (m)
is expressed as the Fuss—Catalan number:

1 1 1
INC® ()| = <m(p—|— )+ >
m m(p+1)+1
For other applications of these numbers we refer to [5].

For 7 € NC®)(m) we define its rank rk(r) := m — |r|. The elements of
fixed rank are counted by the Fuss—Narayana numbers:

1
NCP (m) k() =k -1} =( " ) " )=
tr e NP ) nkm) = k-1 = (") (7))

There is a natural partial order on NC(p)(m). Namely, we say that m €
NC®) (m) is finer than o € NC®)(m), and write 7 < o, if every block of 7 is
contained in a block of o. Then NC®) (m) equipped with < and rk becomes
a graded partially ordered set (which means that for any 7,0 € NC®) (m)
with 7 < o, every unrefinable chain 7 = m9p < 1 < --- < 7w = 0 from =«
to o has the same length r = rk(o) — rk(7)) and a join-semilattice (i.e. any
two elements in NC®) (m) have a least upper bound).

More general structures, noncrossing partitions on Coxeter groups, were
studied in [I].

3. Symmetrization of (ww®)®. For 1 € M concentrated on [0, 0),
we define its symmetrization 1 by (o f(2?) dps(z) = §p f(x) du(z) for every
compactly supported continuous function f : R — R. If M, (2) is the moment
generating function of y then Ms(z) = M, (2%), which means that so, () =
Sm(p) and odd moments of p® are zero.

Now we will compute the free cumulants for the symmetrization of w(p, t).

THEOREM 3.1. Assume that p,t > 0 with max{p,t} > 1. Then for the
symmetrization w(p,t)® of w(p,t) we have

(18)  Repay le 2’“2( ><mn?9k)1t7:
——Z zmz(m+k—2>< m_pk>(—t>’“.

Proof. The cumulant generating function R(z) for w(p,t)® satisfies
(19) PR (14 R(2)) = 2(R(2) + 1),

To check this, it is sufficient to substitute z — 2M(2?) and compare with
and . Therefore R(z) = Ro(z?), where Ry satisfies

(20) -1 Ro(2)(1 + Ro(2)) = 2(Ro(2) +1)".




290

M. HINZ AND W. MEOTKOWSKI

To conclude, we use the Lagrange inversion formula as in the proof of
Theorem putting f(w) = P lw(l + w)(t + w)™P, a = b = 0 to get
Ro(z) = g(2). =
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