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Abstract. For n ≥ 1 we consider the class JP(n) of dynamical systems each of whose
ergodic joinings with a Cartesian product of k weakly mixing automorphisms (k ≥ n)
can be represented as the independent extension of a joining of the system with only
n coordinate factors. For n ≥ 2 we show that, whenever the maximal spectral type of
a weakly mixing automorphism T is singular with respect to the convolution of any n
continuous measures, i.e. T has the so-called convolution singularity property of order n,
then T belongs to JP(n − 1). To provide examples of such automorphisms, we exploit
spectral simplicity on symmetric Fock spaces. This also allows us to show that for any
n ≥ 2 the class JP(n) is essentially larger than JP(n − 1). Moreover, we show that all
members of JP(n) are disjoint from ergodic automorphisms generated by infinitely divisible
stationary processes.

1. Introduction. In this paper we deal with several properties of dy-
namical systems which are related to the notion of disjointness. This notion
was introduced by Furstenberg [8] and, among other motivations, bore fruit
in the development of tools to classify dynamical systems and construct ex-
amples of different behaviour. We will devote our attention to classes of
automorphisms enjoying the so-called joining primeness property of order n
(JP(n)) introduced in [16]. The JP(n) class consists of automorphisms all of
whose ergodic joinings with Cartesian products of weakly mixing automor-
phisms are in fact joinings with at most n coordinate factors, the remaining
coordinate factors being joined by taking the product measure (for the pre-
cise definition see Section 2). In particular, weakly mixing automorphisms
with the JP(n) property do not admit a representation as Cartesian products
of more than n factors.

For each n ≥ 1 we give examples of automorphisms enjoying the JP(n+1)
property and not the JP(n) property (in [16] it was already shown that
JP(1) ( JP(2)). It seemed natural to look for such examples among weakly
mixing systems which are Cartesian products of n+ 1 copies of some auto-
morphism, since such a representation automatically implies that the JP(n)
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property does not hold. The main tool we use to find systems with the
joining primeness property of a given order among Cartesian products is
spectral theory, in particular the property of convolution singularity of or-
der n (CS(n)). We say that a Borel measure µ on the circle group T has
the CS(n) property if it is singular with respect to the convolution of any
n continuous measures (see Section 2.4). When µ is a convolution power
of some measure, the CS(n) property is tightly connected with the spec-
tral simplicity of symmetric tensor products of some unitary operator. We
will show that whenever the Gaussian system determined by the reduced
maximal spectral type σT of an automorphism T has simple spectrum, then
the nth convolution power of σT has the CS(n+ 1) property. This, in turn,
combined with the fact that all weakly mixing automorphisms having the
CS(n+1) property also enjoy the JP(n) property, will result in constructing
examples announced at the beginning of this paragraph. As a byproduct, we
give a proof of the folklore result that the spectrum of the infinite direct sum⊕∞

n=1 U
�n of unitary operators is simple provided that the spectra of all of

U�n, n ≥ 1, are simple.
The properties connected with spectral simplicity of symmetric tensor

products were studied before by numerous authors. Let us list only some
of them. Katok and Stepin [13] disproved Kolmogorov’s conjecture (see
e.g. [25]) that for any ergodic system the convolution square of the max-
imal spectral type is absolutely continuous with respect to the maximal
spectral type. Stepin [26] showed that for a typical (with respect to the
weak operator topology) non-mixing automorphism the convolution pow-
ers of the reduced maximal spectral type are pairwise disjoint: σ∗mT ⊥ σ∗nT
for m 6= n. Ageev [1] showed that even a stronger property is also typical
for automorphisms: the Gaussian system generated by the reduced maximal
spectral type has simple spectrum. Concrete examples of such systems in-
clude the Chacon automorphism (Ageev [2]), some mixing automorphisms
(Ageev [3] and Ryzhikov [22]) and also recent examples in terms of special
flows (Lemańczyk and Parreau [15]).

In [16] it was shown that automorphisms with the JP(1) property are
disjoint from dynamical systems arising from infinitely divisible (ID) sta-
tionary processes. There are many earlier results of a similar flavour. Let us
mention here only one of them and refer the reader to the introduction of
[16] for a more exhaustive survey. The JP(1) class includes simple systems
(introduced by Veech [28] and del Junco and Rudolph [6]), which in turn
contain the systems with the so-called minimal self-joining property (MSJ).
Thouvenot [27] proved that systems with the MSJ property are disjoint from
Gaussian systems. We extend the result from [16] and show that all auto-
morphisms satisfying the JP(n) property for some n ≥ 1 are disjoint from
automorphisms arising from ID stationary processes.
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2. Definitions

2.1. Tensor products. Let H be a separable Hilbert space. The space
F (H) =

⊕∞
n=1H

⊗n is called a Fock space. For a unitary operator U : H → H,
we denote by F (U) the corresponding unitary operator acting on F (H):
F (U) =

⊕∞
n=1 U

⊗n. On each subspace H⊗n ⊂ F (H) the action of the
operator U⊗n is determined by U⊗n(x1 ⊗ · · · ⊗ xn) = Ux1 ⊗ · · · ⊗ Uxn.

Let π ∈ S(n), where S(n) stands for the permutation group of the set
{1, . . . , n}. The operator Uπ : H⊗n → H⊗n is defined by Uπ(x1 ⊗ · · · ⊗ xn)
= xπ(1) ⊗ · · · ⊗ xπ(n). We denote by H�n the space of all elements of H⊗n
invariant with respect to the action of S(n), i.e. H�n = {x̃ ∈ H⊗n :
Uπ(x̃) = x̃ for all π ∈ S(n)}. We write U�n for U⊗n|H�n . The symmetric
Fock space is given by Fsym(H) =

⊕∞
n=1H

�n, and Fsym(U) denotes the op-
erator

⊕∞
n=1 U

�n = F (U)|Fsym(H). More information about tensor products
of Hilbert spaces and unitary operators can be found in [18].

2.2. Spectral theory. For a unitary operator U acting on a separable
Hilbert space H there exist elements xn ∈ H such that

(2.1) H =

∞⊕
n=1

Z(xn) and σx1 � σx2 � · · ·

where Z(x) = span{Un(x) : n ∈ Z} is the cyclic space generated by the
element x ∈ H, and σx for x ∈ H denotes the only finite, positive Borel
measure on T = {z ∈ C : |z| = 1} such that 〈Unx, x〉 =

	
T z

n dσx(z) (this
measure is called the spectral measure of x). The set of all measures on T
equivalent to σx1 in the decomposition (2.1) is called the maximal spectral
type of U and is denoted by σU . For n ≥ 2 the maximal spectral type of the
tensor product of operators U1, . . . , Un is given by the convolution of their
maximal spectral types: σU1⊗···⊗Un = σU1 ∗ · · · ∗ σUn .

For n ≥ 1 let An = {z ∈ T : (dσxn/dσx1)(z) 6= 0}, where dσxn/dσx1 is
the Radon–Nikodym derivative. The spectral multiplicity function MU : T→
N ∪ {∞} is given by MU (z) =

∑∞
n=1 1An(z) and the spectral multiplicity of

U is the essential supremum of MU . If for some N ≥ 1, MU = N almost
everywhere with respect to the maximal spectral type, we say that U has
homogeneous spectrum of multiplicity N . If moreover N = 1, we say that U
has simple spectrum.

Consider the operator Vσ : L
2(T, σ) → L2(T, σ) given by Vσ(f)(z)

= z ·f(z), where σ is a finite, positive Borel measure on T. It has simple spec-
trum and its maximal spectral type is σ. The operator U |Z(x) : Z(x)→ Z(x)
is spectrally equivalent to Vx : L2(T, σx) → L2(T, σx). For an introduction
to the spectral theory of unitary operators see e.g. [20] and for other locally
compact abelian group actions see [12] or [14].
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Given an automorphism T : (X,B, µ) → (X,B, µ) of a standard proba-
bility Borel space, by its spectral properties we will understand the spec-
tral properties of the associated unitary operator (the so-called Koopman
operator) UT : L2(X,B, µ) → L2(X,B, µ) defined by UT (f) = f ◦ T , e.g.
the maximal spectral type of T is the maximal spectral type of UT . Since
any Koopman operator has an atom at 1, i.e. δ1 � σUT , we will also
use the notion of the reduced maximal spectral type, i.e. σUT |L2

0(X)
, where

L2
0(X) = {f ∈ L2(X) :

	
X f dµ = 0}.

We recall that spectral simplicity of Fsym(UT |L2
0(X)) is equivalent to spec-

tral simplicity of the Gaussian automorphism associated to the reduced max-
imal spectral type of UT (1).

2.3. Joinings. Let T and S be automorphisms of standard probability
Borel spaces (X,B, µ) and (Y, C, ν) respectively. We denote by J(T, S) the set
of all joinings between T and S, i.e. the set of all T ×S-invariant probability
measures on (X × Y,B ⊗ C), whose projections on X and Y are equal to µ
and ν respectively. The subset of J(T, S) consisting of all ergodic joinings
will be denoted by Je(T, S). We write J(T ) for J(T, T ). Joinings are in one-
to-one correspondence with Markov operators Φ : L2(X,B, µ) → L2(Y, C, ν)
satisfying Φ ◦ T = S ◦ Φ:

Φ 7→ λΦ ∈ J(T, S), λΦ(A×B) =
�

B

Φ(1A) dν,

λ 7→ Φλ,
�
Φλ(f)(y)g(y) dν(y) =

�
f(x)g(y) dλ(x, y).

We denote the set of such Markov operators by J (T, S) and endow it with
the weak operator topology. This identification allows us to view J(T ) as a
metrizable compact semitopological semigroup. If A ⊂ C is a factor of S and
λ ∈ J(T, S|A) we can consider the joining λ̂ ∈ J(T, S) given on B ⊗ C by

λ̂(B × C) =
�

X×Y
1B(x)E(1C |A)(y) dλ(x, y).

It is called the relatively independent extension of λ.
We say that T and S are disjoint if J(T, S) = {µ ⊗ ν} (the notion of

disjointness was introduced by H. Furstenberg [8]). We refer the reader to [10]
for more information on the theory of joinings and e.g. to [17] for a short
survey on the basic notions.

2.4. Convolution singularity. Throughout the paper, by a measure
on T we will always mean a positive finite Borel measure.

Definition 2.1 ([16]). A measure σ on T has the convolution singularity
property (CS) if σ ⊥ ν1 ∗ ν2 for any continuous measures ν1, ν2 on T. An

(1) For more information concerning Gaussian systems we refer the reader e.g. to [18].
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automorphism T has the CS property if its maximal spectral type has this
property.

We can generalize this property and consider singularity with respect to
convolutions of more than two measures.

Definition 2.2. A measure σ on T has the convolution singularity prop-
erty of order n (CS(n)) if σ ⊥ ν1 ∗ · · · ∗ νn for any continuous measures
ν1, . . . , νn on T. An automorphism T has the CS(n) property if its maximal
spectral type has this property.

2.5. Joining primeness. The notion of joining primeness (JP) and its
generalization, joining primeness of higher order, were introduced in [16].

Definition 2.3. Let T : (X,B, µ) → (X,B, µ) be an ergodic automor-
phism of a standard probability Borel space. We say that T has the joining
primeness property of order n ≥ 1 (JP(n)) if for any k ≥ n + 1 and any
weakly mixing automorphisms Si : (Yi, Ci, νi) → (Yi, Ci, νi), 1 ≤ i ≤ k, for
every λ ∈ Je(T, S1 × · · · × Sk) there exist i1, . . . , in, 1 ≤ ij ≤ k, such that

λ = λX,Yi1 ,...,Yin ⊗
⊗

j 6∈{i1,...,in}

νj ,

where λX,Yi1 ,...,Yin is the projection of λ on the product of the corresponding
coordinate factors.

Speaking less formally, the JP(n) property means that ergodic joinings
with Cartesian products of weakly mixing automorphisms are in fact inde-
pendent extensions of joinings with products of at most n factors.

Remark 2.4 ([16]). Adding the requirement that S1, . . . , Sk are isomor-
phic yields an equivalent notion. Also restricting the definition by fixing
k = n+ 1 (instead of taking an arbitrary k ≥ n+ 1) brings nothing new.

Remark 2.5. Clearly JP(m) ⊂ JP(n) for m ≤ n.

3. General results

3.1. CS(n) property vs spectral multiplicities of tensor products
on some subspaces. Our results from this section overlap with the results
from [23] (e.g. Proposition 3.10 follows from the “calculus of spectral mul-
tiplicities” proposed in [23]). However, for the sake of completeness and for
the consistency of the language we have decided to include the overlapping
results as well. Ryzhikov also provides in [23] new examples of spectral mul-
tiplicities, including e.g. {p, q, pq}, {p, q, r, pq, pr, rq, pqr} (cf. Remark 3.12).
Recall that the problem of determining which subsets of N can be obtained
as the sets of essential values of the spectral multiplicity function remains
open.



158 J. KUŁAGA-PRZYMUS AND F. PARREAU

For n ≥ 1, we denote by Cn the map from Tn to T given by

Cn(z1, . . . , zn) = z1 · . . . · zn.

So, if U is a unitary operator of a separable Hilbert space, then σU⊗n =
(σU )

∗n = (Cn)∗(σ
⊗n
U ). Throughout the paper we will use the following well-

known characterization.

Proposition 3.1. Let σ be a finite positive Borel measure on T. The
operator V ⊗nσ has homogeneous spectrum of multiplicity N if and only if the
map Cn : Tn → T is N -to-one on some Borel set F ⊂ Tn with σ⊗n(F c) = 0.

Remark 3.2. The same property can also be expressed in terms of dis-
integration of measures into conditional measures, as was done in [12] in
the case of two operators with simple spectrum (whose product does not
necessarily have homogeneous spectrum):

The operator V ⊗nσ has homogeneous spectrum of multiplicity N if and
only if in the disintegration

σ⊗n =
�

T

µz dσ
∗n(z)

for σ∗n-almost every z, the measure µz (which is concentrated on C−1n (z)) is
purely atomic and has N atoms.

Remark 3.3. For a unitary operator U : H → H the condition that U�k
has simple spectrum for some k ≥ 1 implies that U has simple spectrum too.
Indeed, otherwise we can find x1, x2 ∈ H with the same spectral measures
σx1 = σx2 and such that Z(x1) ⊥ Z(x2). Then x⊗k1 , x⊗k2 ∈ H�k, Z(x⊗k1 ) ⊥
Z(x⊗k2 ) and σx⊗k1

= σx⊗k2
, which implies that the spectrum of U�k is not

simple either.

Let I = {~i = (i1, . . . , in) : {i1, . . . , in} = {1, . . . , n}}. Let G be a subgroup
of the group S(n), acting naturally on I by

π((i1, . . . , in)) = (π(i1), . . . , π(in))

for π ∈ G. Denote by oG the number of orbits of this action of G on I. Since
every orbit has #G elements, we have oG = n!/#G. Now we consider the
space

H⊗ninv (G) = {x̃ ∈ H
⊗n : Uπ(x̃) = x̃ for π ∈ G}.

Remark 3.4. Let n ≥ 1. If σ = σx is the maximal spectral type of the
unitary operator U : H → H then the spectral measure of (x, . . . , x) under
U⊗n is σ∗nx , so it is the maximal spectral type of U⊗n. Since (x, . . . , x)
∈ H⊗ninv (G) for any subgroup G ⊂ S(n), the maximal spectral type of
U⊗n|H⊗ninv (G) is also σ

∗n. In particular σU�n = σ∗n.
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Remark 3.5. Notice that the orthogonal projection on H⊗ninv (G) is given
by

projH⊗ninv (G) =
1

#G

∑
π∈G

Uπ.

The spectral decompositions of the operators U�n and U⊗n|H⊗ninv (G) are
connected with each other. In the case when the spectrum of U�n is simple
and the maximal spectral type is continuous, we obtain the following char-
acterization.

Proposition 3.6. Let U : H → H be a unitary operator of a separa-
ble Hilbert space. Assume that σ = σU is a continuous measure and that
U�n has simple spectrum. Then U⊗n|H⊗ninv (G) has homogeneous spectrum of
multiplicity oG.

A similar theorem can be found in Ageev [3]. Even though our situation
is simpler (in [3] the measure has one atom, whereas here it is continuous),
we include the proof for completeness.

Proof. Since by Remark 3.3 the operator U has simple spectrum, we can
assume that U = VσU , that is,

H = L2(T, σU ) and Uf(z) = zf(z).

We will use the ordering on T inherited from principal values of arguments
of complex numbers. Let

A~i = {(z1, . . . , zn) ∈ Tn : zi1 < · · · < zin} and F~i = 1A~i
L2(Tn, σ⊗nU )

for ~i ∈ I. The sets A~i are pairwise disjoint and we have

(3.1) F~i ⊥ F~j for ~i 6= ~j.

By continuity of σ, Tn can be decomposed up to a set of measure zero into
the disjoint union

⋃
~i∈I A~i. Therefore H

⊗n =
⊕
~i∈I F~i. We obtain

H⊗ninv (G) = projH⊗ninv (G)H
⊗n = projH⊗ninv (G)

⊕
~i∈I

F~i.

Notice that

(3.2) Uπ(F~i) = Fπ−1(~i ) for π ∈ S(n) and ~i ∈ I.

If ~j = τ(~i ) for some τ ∈ G, then by Remark 3.5,

projH⊗ninv (G) F~i = projH⊗ninv (G) F~j .

If ~j is not in the G-orbit of ~i, then for any π, π′ ∈ G we have π(~i ) 6= π′(~j),
and hence the sets Aπ−1(~i ) and Aπ′−1(~j) are disjoint and Fπ−1(~i ) ⊥ Fπ′−1(~j).

It follows by Remark 3.5 that

projH⊗ninv (G) F~i ⊥ projH⊗ninv (G) F~j .
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This means that for some ~i1, . . . ,~ioG we have

H⊗ninv (G) =

oG⊕
k=1

projH⊗ninv (G) F~ik .

Now,
U⊗n|F~i ' U

⊗n|proj
H⊗n
inv

(G)
F~i
.

Indeed, the unitary equivalence is given by

1A~i
f 7→

√
#GprojH⊗ninv (G) f.

The isometry condition follows from Remark 3.5, (3.2), (3.1) and the fact
that Uπ is an isometry of L2(Tn, σ⊗nU ). Moreover, projH⊗ninv (G) ◦U

⊗n = U⊗n ◦
projH⊗ninv (G) (

2). Hence

U⊗n|H⊗ninv (G) ' U
⊗n|⊕oG

k=1 F~ik
.

Moreover, for any ~i,~j ∈ I we have U⊗n|F~i ' U⊗n|F~j (the isomorphism is
given by Uπ for an appropriate π ∈ S(n)). Therefore

(3.3) U⊗n|H⊗ninv (G) '
oG⊕
k=1

U⊗n|F(1,...,n)
.

To complete the proof, it suffices to show that U⊗n|F(1,...,n)
has simple spec-

trum. This is however true since the condition (3.3) for G = S(n) means
that
(3.4) U�n ' U⊗n|F(1,...,n)

.

Corollary 3.7. Let n ≥ 1. If the maximal spectral type of U is contin-
uous then U⊗n has homogeneous spectrum of multiplicity n! if and only if
U�n has simple spectrum.

Proof. Fix n ≥ 1. If the operator U�n has simple spectrum then applying
Proposition 3.6 to G = {Id} we see that U⊗n has homogeneous spectrum of
multiplicity n!.

Now assume that U�n does not have simple spectrum. First we consider
the case when U itself has simple spectrum. By conditions (3.4) and (3.3)
from (the proof of) Proposition 3.6 we have

U⊗n '
n!⊕
k=1

U⊗n|F(1,...,n)
'

n!⊕
k=1

U�n.

Therefore the spectral multiplicity of U⊗n is at least 2n!. Now if U does not
have simple spectrum then H ⊃ Z(x1) ⊕ Z(x2) for some x1, x2 ∈ H with

(2) We have projF ◦W =W ◦ projF for any bounded linear operator W on a Hilbert
space H and any W - and W ∗-invariant subspace F ⊂ H.
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σx1 = σx2 . Therefore H⊗n ⊃ Z(x1)⊗n ⊕ Z(x2)⊗n and H�n ⊃ Z(x1)�n ⊕
Z(x2)�n. The same arguments as before now show that the spectral multi-
plicity is again at least 2n!.

Remark 3.8. Let n ≥ 1 and assume that U has simple spectrum and
its maximal spectral type is continuous. As in the above corollary, it follows
from conditions (3.4) and (3.3) in Proposition 3.6 that

(3.5) U⊗n '
n!⊕
k=1

U�n.

Therefore U�n has homogeneous spectrum of multiplicity k for some k ≥
1 if and only if U⊗k has homogeneous spectrum of multiplicity n! · k. As
noted in [23], formula (3.5) remains true also in the general case, i.e. without
assuming simplicity of the spectrum of U .

Lemma 3.9. If for some k ≥ 1 the operator U�k has simple spectrum
then also for 1 ≤ j ≤ k − 1 the operators U�j have simple spectrum.

Proof. By Remark 3.3, we may assume that U = Vσ where σ = σU ,
and we may moreover assume that σ is a probability measure. We will show
that, when k ≥ 2, spectral simplicity of V �kσ implies spectral simplicity for
V
�(k−1)
σ . Suppose that V �(k−1)σ does not have simple spectrum. This means

that

(3.6) for any Borel F ⊂ Tk−1, σ⊗(k−1)(F ) = 1 the map Ck−1 is not one-
to-one modulo coordinate permutations on F .

Take any Borel set E ⊂ Tk such that σ⊗k(E) = 1. We claim that Ck is not
one-to-one modulo coordinate permutations on E. Let F ⊂ Tk−1 be defined
by

F = {(z1, . . . , zk−1) ∈ Tk−1 : σ({y ∈ T : (z1, . . . , zk−1, y) ∈ E}) = 1}.
Then σ⊗(k−1)(F ) = 1. By (3.1) it follows that there exist (z1, . . . , zk−1)
and (z′1, . . . , z

′
k−1) in F with Ck−1(z1, . . . , zk−1) = Ck−1(z

′
1, . . . , z

′
k−1) which

cannot be obtained from one another by a coordinate permutation.
By the definition of F , we can find z ∈ T such that both (z1, . . . , zk−1, z)

and (z′1, . . . , z
′
k−1, z) are inE. Clearly Ck(z1, . . . , zk−1, z)=Ck(z′1, . . . , z′k−1, z)

and these points are not equal modulo coordinate permutations either, which
completes the proof.

Proposition 3.10. Let k,m ≥ 1. Assume that σ is a continuous mea-
sure on T and that the operator V �mkσ has simple spectrum. Then the op-
erator (Vσ∗k)⊗m has homogeneous spectrum of multiplicity (mk)!/(k!)m with
maximal spectral type σ∗mk.

Proof. The maximal spectral type of V ⊗m
σ∗k

is (σ∗k)∗m = σ∗mk. We have
to determine its spectral multiplicity.
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Since by Lemma 3.9 the operator V �kσ has simple spectrum and its max-
imal spectral type is σ∗k, we have Vσ∗k ' V �kσ . Hence

(Vσ∗k)
⊗m ' (V �kσ )⊗m = (V ⊗kσ |H�k)⊗m = V ⊗kmσ |(H�k)⊗m ,

where H = L2(T, σ).
We identify {1, . . . ,mk} with {1, . . . , k} × {1, . . . ,m}. Consider the sub-

group G of S(mk) of all permutations

π : (i, j) 7→ (πj(i), j), 1 ≤ i ≤ k, 1 ≤ j ≤ m,
where πj ∈ S(k) for 1 ≤ j ≤ m. Then #G = (k!)m and it follows from
Remark 3.5 that

projH⊗mkinv (G) =
1

(k!)m

∑
π∈G

Uπ

=
1

(k!)m

∑
(π1,...,πm)∈S(k)m

Uπ1 ⊗ · · · ⊗ Uπm =
m⊗
j=1

projH�k ,

so
(H�k)⊗m = H⊗mkinv (G).

Therefore, as V �mkσ has simple spectrum, by Proposition 3.6, V ⊗mkσ |(H�k)⊗m
has homogeneous spectrum of multiplicity

oG =
(mk)!

#G
=

(mk)!

(k!)m
.

Using Proposition 3.10 and Remark 3.8, we obtain the following.

Corollary 3.11. Let σ be a continuous measure on T such that the
spectrum of Fsym(Vσ) is simple. Then for k ≥ 1 and m ≥ 1 the operator
(Vσ∗k)

�m has homogeneous spectrum of multiplicity
(mk)!

(k!)m
· 1

m!
.

Remark 3.12. Notice that Corollary 3.11 yields a generalization of the
example provided by A. I. Danilenko and V. V. Ryzhikov [5] which shows that
there exists a unitary operator U for which the set of spectral multiplicities
of
⊕

m≥1 U
�m is equal to

{1, 1 · 3, 1 · 3 · 5, 1 · 3 · 5 · 7, . . .}.
This is the special case of Corollary 3.11 with k = 2 and it shows that the set
of spectral multiplicities for a Gaussian system need not be a multiplicative
subsemigroup of N (contrary to the claim of A. E. Robinson from [21]).

Remark 3.13. Let µ1, . . . , µn be continuous measures on T. Then by
Fubini’s theorem

µ1 ⊗ · · · ⊗ µn({(z1, . . . , zn) ∈ Tn : zε11 · . . . · z
εn
n = c}) = 0

for ε1, . . . , εn ∈ {−1, 0, 1} with
∑n

i=1 ε
2
i 6= 0 and every c ∈ T.
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Theorem 3.14. Let σ be a continuous measure on T. If V �mkσ has simple
spectrum, then σ∗k has the CS(n) property for any n such that (m!)n >
(mk)!/(k!)m.

This theorem is proved for the case where k = 1 and m = 2 in [19]. Here
we provide the proof in full generality.

Proof. Let k, n,m ∈ N be such that (m!)n > (mk)!/(k!)m. Assume that
for some continuous measures σ1, . . . , σn we have

(3.7) σ∗k 6⊥ σ1 ∗ · · · ∗ σn.
We may assume that σ, σ1, . . . , σn are probability measures. By Proposi-
tions 3.10 and 3.1, the map Cm is (mk)!/(k!)m-to-one on some set F ⊂ Tm
with (σ∗k)⊗m(F ) = 1. We claim that under our assumptions this yields a
contradiction: we will find (m!)n distinct points from the set F with the
same product of coordinates, which is not possible since by assumption
(m!)n > (mk)!/(k!)m.

Since we have assumed (3.7), there exists a Borel set A ⊂ T with σ1 ∗
· · · ∗ σn(A) > 0 such that

σ1 ∗ · · · ∗ σn|A � σ∗k.

Therefore
(σ1 ∗ · · · ∗ σn)⊗m(Am ∩ F c) = 0,

whence

(3.8) (σ1 ⊗ · · · ⊗ σn)⊗m(Ãm ∩ F̃ c) = 0,

where Ã = C−1n (A) and F̃ = ((Cn)
m)−1(F ).

Now fix ε > 0. There exist sets B1, . . . , Bn ∈ B(T) such that

σ1 ⊗ · · · ⊗ σn(B1 × · · · ×Bn) > 0

and the “parallelepiped” B1×· · ·×Bn is included in Ã up to ε, more precisely

(3.9) σ1⊗ · · · ⊗ σn(B1× · · · ×Bn \ Ã) < ε · σ1⊗ · · · ⊗ σn(B1× · · · ×Bn).
We identify again {1, . . . ,mn} with {1, . . . , n} × {1, . . . ,m}. Let now

G ⊂ S(mn) be the subgroup of permutations of the form π = (πi)1≤i≤n
with πi ∈ S(m) (1 ≤ i ≤ n) defined by

π : (i, j) 7→ (i, πi(j)), 1 ≤ i ≤ n, 1 ≤ j ≤ m,
and acting on (Tn)m by

(zi,j)1≤i≤n, 1≤j≤m 7→ (zπ(i,j))1≤i≤n, 1≤j≤m.

Notice that such permutations π preserve the measure (σ1⊗· · ·⊗σn)⊗m and
that the sets (B1× · · · ×Bn)m are invariant under the action of G. Without
loss of generality we can also assume that F̃ is invariant under G (we can
restrict to

⋂
π∈G π

−1(F̃ ), which is still of full measure).
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Since

(B1 × · · · ×Bn)m \ Ãm ⊂
m⋃
j=1

(Tn)j−1 × (B1 × · · · ×Bn \ Ã)× (Tn)m−j ,

by (3.9) we have

(σ1 ⊗ · · · ⊗ σn)⊗m((B1 × · · · ×Bn)m \ Ãm)

≤ mε · σ1 ⊗ · · · ⊗ σn(B1 × · · · ×Bn),
whence for all π ∈ G,

(σ1 ⊗ · · · ⊗ σn)⊗m((B1 × · · · ×Bn)m \ π−1(Ãm))

≤ mε · σ1 ⊗ · · · ⊗ σn(B1 × · · · ×Bn).
Therefore

(σ1 ⊗ · · · ⊗ σn)⊗m((B1 × · · · ×Bn)m \
⋂
π∈G

π−1(Ãm))

≤ #G ·mε · σ1 ⊗ · · · ⊗ σn(B1 × · · · ×Bn).
So, if ε is small enough, by (3.8) we have

(σ1 ⊗ · · · ⊗ σn)⊗m
(
(B1 × · · · ×Bn)m ∩

⋂
π∈G

π−1(Ãm) ∩ F̃
)
> 0,

and, since σ1, . . . , σn are continuous measures, by Remark 3.13 we can find
an element (zi,j) in this set for which moreover

z1,j1 · . . . · zn,jn 6= z1,j′1 · . . . · zn,j′n
whenever (j1, . . . , jn) and (j′1, . . . , j

′
n) are distinct elements of {1, . . . ,m}n.

If π = (πi)1≤i≤n, π
′ = (π′i)1≤i≤n ∈ G are distinct, there exists 1 ≤ i ≤ n

such that πi(j) 6= π′i(j) for some 1 ≤ j ≤ m, whence

(π1(j), . . . πn(j)) 6= (π′1(j), . . . π
′
n(j))

and thus
z1,π1(j) · . . . · zn,πn(j) 6= z1,π′1(j) · . . . · zn,π′n(j).

Therefore the elements

(z1,π1(1) · . . . · zn,πn(1), . . . , z1,π1(m) · . . . · zn,πn(m)) ∈ F
for π = (πi)1≤i≤n ∈ G are all distinct. Clearly they have the same product
of coordinates, and #G = (m!)n, which completes the proof.

Corollary 3.15. Let σ be a continuous measure on T. If V �nσ has
simple spectrum for infinitely many n ∈ N then for every k ≥ 1 the measure
σ∗k has the CS(k + 1) property.

Proof. By Lemma 3.9, V �nσ has simple spectrum for every n ∈ N. In
particular, when k ≥ 1 is fixed, V �mkσ has simple spectrum for every m ≥ 1.
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Let then, for m ≥ 1,

am = (m!)k+1 · (k!)
m

(mk)!
·

By Theorem 3.14, it suffices to show that am > 1 for m large enough. We
have

am+1 = am · (m+ 1)k+1 · k!

(mk + 1) · . . . · ((m+ 1)k)

≥ am · (m+ 1)k+1 · k!

((m+ 1)k)k
= am

k!

kk
(m+ 1).

Since k is fixed, am+1/am tends to infinity as m increases, which ends the
proof.

Corollary 3.16. For every n ≥ 1 the Cartesian product of n copies of a
weakly mixing automorphism whose reduced maximal spectral type generates
a Gaussian system with simple spectrum has the CS(n+ 1) property.

Proof. Let T : (X,B, µ) → (X,B, µ) be a weakly mixing automorphism
whose reduced maximal spectral type σ generates a Gaussian system with
simple spectrum. Recall that this implies that V �nσ has simple spectrum
for all n. By Corollary 3.15 the measure σ∗k is singular with respect to the
convolution of any k + 1 continuous measures on T for k ≥ 1. Therefore

σT×n = δ0 +
n∑
k=1

σ∗k ⊥ µ1 ∗ · · · ∗ µn+1

for any continuous measures µi (1 ≤ i ≤ n+ 1), which ends the proof.

Remark 3.17. It is known that a typical automorphism (with respect to
the weak operator topology) is weakly mixing (Halmos [11]) and its reduced
maximal spectral type generates a Gaussian system with simple spectrum
(Ageev [1]).

Corollary 3.18. For every n ≥ 1 the Cartesian product of n copies of
a typical automorphism (with respect to the weak operator topology) has the
CS(n+ 1) property.

Proof. This is a direct consequence of Corollary 3.16 and Remark 3.17.

3.2. Spectral simplicity of Fsym(U). Let U : H → H be a unitary
operator acting on a separable Hilbert space, with continuous maximal spec-
tral type. Let Fsym(U) be the corresponding operator on the symmetric Fock
space Fsym(H). The spectrum of Fsym(U) is simple if the following two con-
ditions hold:

1. The spectrum of each U�k for k ≥ 1 is simple.
2. The maximal spectral types of U�k are pairwise orthogonal: σ∗kU ⊥ σ∗lU

for k 6= l.
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These two conditions are not independent: the first one implies the second.
This follows directly from Corollary 3.15, Remark 3.3 and Lemma 3.9. We
also provide below a more precise consequence of the spectral simplicity of
symmetric tensor products, with a direct proof.

Proposition 3.19. Let σ be a continuous measure on T. Let n,m ≥ 1.
If V �(m+n)

σ has simple spectrum then σ∗n ⊥ σ∗m ∗ δa whenever n 6= m or
a 6= 1.

Proof. We may assume that σ is a probability measure. Suppose that,
for two positive integers m ≤ n and some a ∈ T,
(3.10) σ∗n 6⊥ σ∗m ∗ δa.
We will show that, if n 6= m or a 6= 1, then Cm+n : Tm+n → T is not
one-to-one modulo coordinate permutations on any Borel set F ⊂ Tm+n

with σ⊗(m+n)(F ) = 1, i.e. V �(m+n)
σ does not have simple spectrum.

To avoid further discussion of measurability of direct images, notice that
if A is a Borel set in Tk with σ⊗k(A) = 1, it contains a σ-compact set of
full measure whose image under Ck is still σ-compact and carries σ∗k. Thus
Ck(A) is measurable, with σ∗k(CkA) = 1.

Let a Borel set F ⊂ Tm+n with σ⊗(m+n)(F ) = 1 be given and consider
the sets

A1 = {x ∈ Tm : σ⊗n({y ∈ Tn : (x, y) ∈ F}) = 1},
A2 = {y ∈ Tn : σ⊗m({x ∈ Tm : (x, y) ∈ F}) = 1}.

By the above observation concerning measurability, σ∗m(CmA1)=σ
∗n(CnA2)

= 1 and thus (3.10) implies CmA1 ∩ a−1CnA2 6= ∅.
Choose s ∈ CmA1∩a−1CnA2, x = (x1, . . . , xm) ∈ A1 and y = (y1, . . . , yn)

∈ A2 such that
Cmx = a−1Cny = s.

By definition of the sets A1 and A2 there exist Borel sets B1 ⊂ Tm with
σ⊗m(B1) = 1 and B2 ⊂ Tn with σ⊗n(B2) = 1 such that

(x′, y) ∈ F for all x′ ∈ B1, (x, y′) ∈ F for all y′ ∈ B2.

Moreover, since σ is continuous, the set of y′ ∈ Tn with a given coordinate
has zero σ⊗n-measure and we can restrict B2 to those y′ = (y′1, . . . , y

′
n) which

have every coordinate y′i different from every coordinate yj of y.
By (3.10) we get again CmB1 ∩ a−1CnB2 6= ∅, so we can choose s′ ∈

CmB1 ∩ a−1CnB2, x′ = (x′1, . . . , x
′
m) ∈ B1 and y′ = (y′1, . . . , y

′
n) ∈ B2 with

Cmx
′ = a−1Cny

′ = s′.

Then (x, y′) ∈ F, (x′, y) ∈ F , and Cm+n(x, y
′) = Cm+n(x

′, y) = a · s · s′.
If m < n, at least one of the coordinates y′i does not appear among the x′j

and by the latter assumption on B2 it is not one of the yj either, so (x, y′) is
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not equal to (x′, y) modulo a coordinate permutation, which ends the proof
in this case.

If m = n and a 6= 1 then y′ cannot be a coordinate permutation of x′
since the products of the coordinates are different, and the result follows by
the same argument.

Remark 3.20. In the above proof we have not used the fact that we
are dealing with unitary Z-actions. The assertion remains true for continu-
ous unitary representations of any locally compact second countable abelian
group.

Remark 3.21. Let m > 1 and k ≥ 1. For a continuous measure σ on T,
the condition that the spectrum of V �mkσ is simple is essentially stronger
than the CS(n) property for n ∈ N such that (m!)n > (mk)!/(k!)m (Theo-
rem 3.14). Indeed, it suffices to take as σ a measure on T such that the op-
erator V �mkσ has simple spectrum and consider the representation Vσ+σ∗δa
for some a ∈ T, a 6= 1. The operator V �mkσ+σ∗a does not have simple spec-
trum, since this would imply that V �2σ+σ∗δa has simple spectrum, while clearly
(σ + σ ∗ δa) ∗ δa 6⊥ σ + σ ∗ δa, which would contradict Proposition 3.19. On
the other hand, by Corollary 3.15, σ has the CS(n) property, whence also
σ+ σ ∗ δa has the CS(n) property as a sum of two measures which have the
property under consideration.

In particular, spectral simplicity of V �2σ is a condition essentially stronger
than the CS property for the measure σ.

In view of Remark 3.20, the above discussion also remains valid for other
abelian group actions—instead of measures on T one needs to consider mea-
sures on Ĝ, where G is the acting group.

3.3. Girsanov’s theorem. Proposition 3.19, together with methods
similar to those used to prove it, yield a new proof of the well-known fact
that the multiplicity function of a Gaussian system is either identically 1 or
unbounded.

Theorem 3.22 ([9]). Let U be a unitary operator whose (reduced ) max-
imal spectral type σ is continuous. Then the set of spectral multiplicities of⊕∞

n=1 U
�n is either equal to {1} or it is unbounded.

Proof. Again, we may assume that σ is a probability measure. Suppose
that the spectrum of

⊕∞
n=1 U

�n is not simple. By Proposition 3.19, there
exists n ≥ 1 such that the spectrum of U�n is not simple. Assume that for
some n ≥ 1 the spectral multiplicity of U�n is at least q for some integer
q ≥ 2. This means that for every measurable set F ⊂ Tn of full σ⊗n-measure
we can find s ∈ T and q points

xi = (x1i , . . . , x
n
i ) ∈ F (1 ≤ i ≤ q)
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so that x1i · . . . ·xni = s for 1 ≤ i ≤ q but none of the points xi can be obtained
from any other one in this set by a coordinate permutation.

Let E be any Borel set in T2n with σ⊗2n(E) = 1 and

A = {x ∈ Tn : σ⊗n{y ∈ Tn : (x, y) ∈ E} = 1}.
We have

σ⊗n(A) = 1.

Let s∈T and xi= (x1i , . . . , x
n
i )∈A (1≤ i≤ q) be such that x1i · . . . · xni = s

for 1 ≤ i ≤ q and none of the points xi can be obtained from any other one
in this set by a coordinate permutation. Let

B = {y ∈ Tn : (xi, y) ∈ E for all 1 ≤ i ≤ q}.
Notice that σ⊗n(B) = 1 and, since σ is continuous, we can assume without
loss of generality that the coordinates of points in B are different from all of
the coordinates of the points xi for 1 ≤ i ≤ q.

Let s′ ∈ T and yj ∈ B (1 ≤ j ≤ q) be such that y1j · . . . · ynj = s′ for
1 ≤ j ≤ q and none of the points yj can be obtained from any other one in
this set by a coordinate permutation. Then

(xi, yj) ∈ E and x1i · . . . · xni · y1j · . . . · ynj = s · s′

for 1 ≤ i, j ≤ q. Moreover none of the points (xi, yj) for 1 ≤ i, j ≤ q can be
obtained from any other one from this set by a permutation of coordinates.
Therefore the spectral multiplicity of the operator U�2n is at least q2. It
follows inductively that the spectral multiplicity function of

⊕∞
n=1 U

�n is
unbounded, which completes the proof.

4. CS(n) implies JP(n − 1). Let n ≥ 1, let T be an ergodic automor-
phism acting on (X,B, µ) and Si be weakly mixing automorphisms acting
respectively on (Yi, Ci, νi) for 1 ≤ i ≤ n. Notice that

(4.1) L2
0(Y1 × · · · × Yn) =

⊕
1≤k≤n

⊕
1≤i1<···<ik≤n

LYi1,...,ik ,

where for 1 ≤ i1 < · · · < ik ≤ n,

LYi1,...,ik =

k⊗
j=1

L2
0(Yij ). (3)

For 1 ≤ i1 < · · · < ik ≤ n let

pi1,...,ik : L
2(Y1 × · · · × Yn)→ L2(Yi1 × · · · × Yik)

and
p0 : L

2(Y1 × · · · × Yn)→ C
stand for the orthogonal projections.

(3) For k ≥ 1 we treat the elements of LYi1,...,ik as functions of n variables.



DISJOINTNESS PROPERTIES FOR CARTESIAN PRODUCTS 169

Recall the following well-known fact.

Lemma 4.1. Given T : (X,B, µ) → (X,B, µ), S : (Y, C, ν) → (Y, C, ν), a
factor of A ⊂ C of S and λ ∈ J(T ), projL2(A) ◦ Φλ is the Markov operator
corresponding to the relatively independent extension of λ|B⊗A.

Proof. Let B ∈ B and C ∈ C. Since the orthogonal projection is a self-
adjoint operator, looking at the scalar product we have�

Y

projL2(A) ◦ Φλ(1B)(x)1C(x) dµ =
�

Y

Φλ(1B)(x) projL2(A)(1C)(x) dµ(x)

=
�

X×Y
1B(x)E(1C |A)(y) dλ(x, y).

We will use the above lemma in the situation where S is a direct product
of its factor S|A and some other transformation.

Lemma 4.2. Let λ ∈ Je(T, S1 × · · · × Sn). If
Φλ(L

2(X,B, µ)) ⊥ LY1,...,n
then there exists 1 ≤ i ≤ n such that

λ = λX,Y1,...,Yi−1,Yi+1,...,Yn ⊗ νi.
Proof. Let p = projLY1,...,n

. Then

p =
n⊗
i=1

(Id− qi),

where qi : L2(Yi) → C, 1 ≤ i ≤ n, stands for the orthogonal projection.
Notice that for 1 ≤ i1 < · · · < il ≤ n,

qi1 ⊗ · · · ⊗ qil = pj1,...,jn−l ,

where {j1, . . . , jn−l} = {1, . . . , n} \ {i1, . . . , il}. We have

proj(LY1,...,n)⊥
= Id− p = Id−

n⊗
i=1

(Id− qi)

=

n∑
l=1

(−1)l−1
∑

1≤i1<···<il≤n
qi1 ⊗ · · · ⊗ qil

= (−1)n−1p0 +
n−1∑
k=0

(−1)n−k−1
∑

1≤i1<···<ik≤n
pi1,...,ik .

By the assumption that Φλ(L2(X)) ⊥ LY1,...,n, it follows that

Φλ = (−1)n−1p0 ◦ Φλ +
n−1∑
k=0

(−1)n−k−1
∑

1≤i1<···<ik≤n
pi1,...,ik ◦ Φλ.
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By Lemma 4.1 the Markov operator pi1,...,ik ◦Φλ corresponds to the relatively
independent extension of λX,Yi1 ,...,Yik , i.e. λX,Yi1 ,...,Yik⊗νj′1⊗· · ·⊗νj′n−k where
{j′1, . . . , j′n−k} = {1, . . . , n} \ {i1, . . . , ik}. Hence

λ = (−1)n−1ν1 ⊗ · · · ⊗ νn(4.2)

+
n−1∑
k=0

(−1)n−k−1
∑

1≤i1<···<ik≤n
λX,Yi1 ,...,Yik ⊗ νj′1 ⊗ · · · ⊗ νj′n−k .

All the joinings appearing in the above expression are ergodic:

• λ as a member of Je(R,S1 × · · · × Sn) by assumption,
• λX,Yi1 ,...,Yik as a projection of the ergodic measure λ,
• λX,Yi1 ,...,Yik ⊗νj1⊗· · ·⊗νjn−k by the assumption that the Si are weakly

mixing.

Now we write (4.2) as an equality between sums of ergodic joinings. By
the uniqueness of the ergodic decomposition, λ is equal to one of the other
measures, which completes the proof.

Theorem 4.3. Let T be an ergodic automorphism of a standard proba-
bility Borel space (X,B, µ). Whenever it enjoys the CS(n) property for some
n ≥ 2, it also enjoys the JP(n− 1) property.

Proof. Let T : (X,B, µ) → (X,B, µ) satisfy the assumptions of the the-
orem. Let n ≥ 2 and let λ ∈ Je(T, S1 × · · · × Sn) for some weakly mixing
automorphisms S1, . . . , Sn. Recall that for any f ∈ L2(X,µ) we have

σΦλ(f) � σf � σT

(see e.g. [17]) and that the maximal spectral type of S1 × · · · × Sn on
LY1,...,n is the convolution of the maximal spectral types of the automorphisms
S1, . . . , Sn on L2

0(Y1), . . . , L
2
0(Yn) respectively. Using the decomposition (4.1)

of L2
0(Y1× · · · × Yn) and the assumption that σT ⊥ µ1 ∗ · · · ∗µn for any con-

tinuous measures µ1, . . . , µn, we obtain

Φλ(L
2(X,B, µ)) ⊥ LY1,...,n.

Therefore the assumption of Lemma 4.2 is satisfied, which completes the
proof.

5. JP(n − 1) ( JP(n) for n ≥ 2. In this section we will show that
JP(n − 1) 6= JP(n) for n ≥ 2 by giving examples of automorphisms which
are in JP(n) but not in JP(n− 1).

Lemma 5.1. Let T : (X,B, µ) → (X,B, µ) be a weakly mixing automor-
phism. Then T×n /∈ JP(n− 1) for n ≥ 2.
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Proof. Let n ≥ 2. To see that the assertion is true, it suffices to consider
the diagonal joining ∆ of T×n with itself (4).

As a direct consequence of Corollary 3.16 and Theorem 4.3 we obtain the
following.

Corollary 5.2. For any n ≥ 1 and any weakly mixing automorphism
T whose reduced maximal spectral type σ generates a Gaussian system with
simple spectrum, the Cartesian product T×n of n copies of T has the JP(n)
property. In particular, for any n ≥ 1 the Cartesian product of n copies of
a typical automorphism (with respect to the weak operator topology) has the
JP(n) property.

Moreover, using Corollary 5.2 and Lemma 5.1 we have:

Corollary 5.3. For n ≥ 2 the class of automorphisms enjoying the
JP(n−1) property is a proper subclass of automorphisms enjoying the JP(n)
property.

Remark 5.4. In [16] there is an example of a JP(2) system which is not
in the class JP(1). The methods used there are different from those we used
to obtain Corollary 5.3. It would be interesting to know if it is possible to
find examples of systems in JP(n) \ JP(n− 1) without using the methods of
the present paper.

Remark 5.5. Recall [16] that the class JP is closed under taking distal
extensions which are weakly mixing. The proof from [16] can be rewritten
almost word for word to deduce that

(i) each JP(n) class is closed under taking distal extensions which are
weakly mixing.

Moreover,

(ii) each JP(n) class is closed under taking factors and inverse limits.

Moreover (see [16]),

(iii) every system which is distally simple (5) has the JP(n) property,
(iv) the class of distally simple systems is closed under factors, distal

extensions and inverse limits.

(4) Given an automorphism S : (Y, C, ν) → (Y, C, ν) the diagonal self-joining ∆ is
defined by the formula ∆(A×B) = ν(A ∩B).

(5) The notion of distal simplicity was defined in [7]. It imposes a restriction on
the self-joinings of the system considered and is a generalization of the notion of quasi-
simplicity [24].
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In [4] a necessary condition for lifting the JP property to the so-called
Rokhlin extensions is provided (6). This yields a class of automorphisms
with the JP property but without the DS property.

We do not know if the examples from Remark 5.4, from [4], from Corol-
lary 5.3 and (i)–(iv) are the only “ways” to obtain systems with the JP(n)
property.

6. JP(n) property and disjointness from ID systems. In [16] Le-
mańczyk, Parreau and Roy showed that

(6.1) all systems with the JP(n) property are disjoint from ergodically
infinitely divisible automorphisms.

Let us recall that an ergodic automorphism T : (X,B, µ)→ (X,B, µ) is said
to be infinitely divisible if there exists a sequence {Bω : ω ∈ {0, 1}∗} (7) of
factors of B where Bε = B, Bω = Bω0 ⊗ Bω1 and for each f ∈ L2

0(X,B, µ)
and η ∈ {0, 1}N,

lim
n→∞

E(f |Bη[0,n)) = 0.

In this section we will deal with another notion of infinite divisibility, namely
we will consider dynamical systems arising from stationary infinitely divisible
processes. Let us recall the definition of such processes.

Definition 6.1 (see e.g. [16]). An ergodic stationary process (Xn)n∈Z
on a standard probability Borel space (X,B, µ) is infinitely divisible (ID) if
its distribution P on (RZ,B⊗Z) is such that for any k ≥ 1 there exists a
probability measure Pk on (RZ,B⊗Z) such that P = P ∗kk (8).

Remark 6.2 (see e.g. [16]). A stationary process (Xn)n∈Z is infinitely
divisible if and only if for all k ≥ 1 and n ∈ N there exist pairwise indepen-
dent random variables X(1,k)

n , . . . , X
(k,k)
n such that Xn = X

(1,k)
n + · · ·+X(k,k)

n

and the processes (X
(i,k)
n )n∈Z, 1 ≤ i ≤ k, are stationary with the same dis-

tribution Pk.

The following proposition describes the relation between systems arising
from ID stationary processes and ergodically ID automorphisms.

Proposition 6.3 ([16]). ID stationary processes are factors of ergodi-
cally ID dynamical systems.

(6) Recall that given a locally compact groupG, a cocycle ϕ : X → G and a measurable
G-action S = (Sg)g∈G on (Y, C, ν) the Rokhlin extension of T : (X,B, µ) → (X,B, µ) is
given by Tϕ,S(x, y) = (Tx, Sϕ(x)(y)).

(7) {0, 1}∗ stands for the set of all finite sequences with entries 0 and 1.
(8) Recall that P ∗kk stands for the kth convolution power of Pk.
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An immediate consequence of (6) and of the above proposition is the
following corollary.

Corollary 6.4 ([16]). All systems with the JP(n) property are disjoint
from systems arising from ID stationary processes.

We will provide another proof of this result which will be based on a
more general proposition. Let us first recall some definitions and introduce
the necessary notation.

Definition 6.5. Let T be an automorphism on a standard probability
Borel space (X,B, µ) and let k ≥ 1. The sub-σ-algebra of B⊗k which consists
of all sets invariant under permutations of coordinates is called the symmetric
factor of T×k. It is denoted by Fk(T ).

Remark 6.6 ([16]). The dynamical system determined by a stationary
ID process is, for any integer k ≥ 1, a factor of the symmetric factor of the
Cartesian kth power of a dynamical system.

Proposition 6.7. (9) Fix n ≥ 1 and let T be an automorphism of a
standard probability space (X,B, µ). Assume that, for each g ∈ L2(X,B, µ),
there exists a sequence (kj)j≥1 of integers going to infinity and a sequence
(Sj)j≥1 of weakly mixing automorphisms such that T is a factor of S×kjj and
moreover

dist(g, L2(Fkj (Sj))) = o(1/k
n/2
j ).

Then T is disjoint from every JP(n) automorphism.

Proof. Let λ0 ∈ Je(R, T ), where R : (Z,D, ρ) → (Z,D, ρ) is an ergodic
automorphism with the JP(n) property and let f ∈ L2

0(Z,D, ρ). It is enough
to show that g := Φλ0(f) = 0.

By assumption, given any ε > 0, there exist an arbitrarily large integer
k ≥ n and a weakly mixing automorphism S on a standard space (Y, C, ν)
such that T is a factor of S×k and

(6.2) dist(g, L2(Fk(S))) ≤
ε

kn/2
.

Let λ̂0 be the relatively independent extension of λ0 to a joining of R
with S×k, so that Φλ̂0 is the composition of Φλ0 and the embedding of
L2(X,B, µ) into L2(Y ×k, C⊗k, ν⊗k). For simplicity of notation we will as-
sume that B ⊂ C⊗k and µ = ν⊗k|B. Then Φλ̂0(f) = Φλ0(f) = g.

Consider now the ergodic decomposition of λ̂0:

λ̂0 =
�

Je(R,S×k)

λ dP (λ).

(9) Lemańczyk, Parreau and Roy [16, Proposition 5] cover the case n = 1.
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Since R has the JP(n) property, for each λ ∈ Je(R,S×k) there exist 1 ≤
iλ,1 < · · · < iλ,n ≤ k such that

Φλ(f) ∈ L2
0(Yiλ,1 × · · · × Yiλ,n).

Then (see (4.1))

(6.3) Φλ(f) =

n∑
m=1

∑
j1<···<jm

{j1,...,jm}⊂{iλ,1,...,iλ,n}

p′j1,...,jm ◦ Φλ(f),

where p′j1,...,jm stands for the orthogonal projection from L2(Y1 × · · · × Yn)
onto LYj1,...,jm . For 1 ≤ j1 < · · · < jm ≤ k we also have

(6.4) p′j1,...,jm ◦ Φλ(f) = 0 whenever {j1, . . . , jm} 6⊂ {iλ,1, . . . , iλ,n}.

Hence, letting for 1 ≤ m ≤ n,

fj1,...,jm =
�

Je(R,S×k)

p′j1,...,jm ◦ Φλ(f) dP (λ)

for 1 ≤ j1 < · · · < jm ≤ k, and

gm =
∑

1≤j1<···<jm≤k
fj1,...,jm ∈

⊕
1≤j1<···<jm≤k

LYj1,...,jm ,

we deduce from (6.3) and (6.4) that

g =
n∑

m=1

gm.

Fix 1 ≤ m ≤ n. By (6.4) for each λ ∈ Je(R,S×k) at most
(
n
m

)
out of

the
(
k
m

)
projections p′s1,...,sm ◦ Φλ(f) do not vanish. Therefore there exist

j01 < · · · < j0m such that

P ({λ : p′j01 ,...,j0m ◦ Φλf 6= 0}) ≤
(
n
m

)(
k
m

) ,
whence

(6.5) ‖fj01 ,...,j0m‖ ≤
(
n
m

)(
k
m

)‖f‖.
Now we claim that for all j1 < · · · < jm,

(6.6)
∣∣‖fj1,...,jm‖ − ‖fj01 ,...,j0m‖∣∣ ≤ 2ε

kn/2
.

Indeed, consider a permutation π of {1, . . . , k} sending each j0s to js for all s ∈
{1, . . . ,m}, and the corresponding unitary operator Uπ on L2(Y ×k, C⊗k, ν⊗k).
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Since all functions in L2(Fk(S)) are fixed by Uπ,

‖fj1,...,jm − fj01 ,...,j0m‖ ≤
( ∑

1≤l≤n

∑
1≤i1<···<il≤k

‖fπ(i1),...,π(il) − fi1,...,il‖
2
)1/2

= ‖Uπg − g‖ ≤ 2 dist(g, L2(Fk(S))),

and (6.6) follows from (6.2).
So, by (6.5),

‖fj1,...jm‖ ≤
(
n
m

)(
k
m

)‖f‖+ 2ε

kn/2
.

Therefore

‖gm‖ =
( ∑

1≤j1<···<jm≤n
‖fj1,...,jm‖2

)1/2
≤
(
k

m

)1/2((n
m

)(
k
m

)‖f‖+ 2ε

kn/2

)
≤

(
n
m

)(
k
m

)1/2 ‖f‖+ 2ε.

Since k was arbitrarily large and ε arbitrarily small, this proves that gm = 0.
Hence g =

∑n
m=1 gm = 0.

Corollary 6.8. Let n ≥ 1. Any non-zero root of an automorphism
with the JP(n) property is disjoint from all automorphisms arising from ID
stationary processes.

Proof. It suffices to notice that whenever the assumptions of Proposi-
tion 6.7 are satisfied for some automorphism T , then they are also satis-
fied for any non-zero power of it. This implies the disjointness of roots of
automorphisms with the JP(n) property from those automorphisms T , in
particular the disjointness from automorphisms arising from stationary ID
processes.

One of the consequences of the fact that JP systems are disjoint from
systems coming from ID stationary processes is the following example of a
system which has the so-called Kolmogorov group property, i.e. the convo-
lution of two copies of its maximal spectral type is absolutely continuous
with respect to its maximal spectral type. Let T acting on (X,B, µ) be
an automorphism whose reduced maximal spectral type generates a Gaus-
sian system with simple spectrum, and let Ti : (Xi,Bi, µi) → (Xi,Bi, µi)
for i ≥ 1 be isomorphic copies of it. Consider the infinite Cartesian prod-
uct R = T1 × T2 × · · · . Denote by σ the maximal spectral type of T .
Then exp(σ) :=

∑∞
n=1 σ

∗n/n! is the maximal spectral type of R and clearly
σR ∗σR � σR. We claim that R is disjoint from automorphisms arising from
stationary ID processes. Let S : (Y, C, ν) → (Y, C, ν) be such an automor-
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phism and consider an ergodic joining λ ∈ Je(R,S). Then for any n ∈ N,

λ|X1,...,Xn,Y ∈ J(T1 × · · · × Tn, S).
By Corollary 5.2 and Proposition 6.7,

λ|X1,...,Xn,Y = µ1 ⊗ · · · ⊗ µn ⊗ ν.
This implies that λ = (µ1 ⊗ µ2 ⊗ · · · )⊗ ν.
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