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CONGRUENT NUMBERS OVER REAL NUMBER FIELDS

BY

TOMASZ JĘDRZEJAK (Szczecin)

Abstract. It is classical that a natural number n is congruent iff the rank of Q-
points on En : y2 = x3−n2x is positive. In this paper, following Tada (2001), we consider
generalised congruent numbers. We extend the above classical criterion to several infinite
families of real number fields.

1. Introduction. A positive integer n is called a congruent number if
it is the area of a right triangle all of whose sides have rational lengths, i.e.
if there are positive rationals a, b, c with

(1) a2 + b2 = c2 and ab = 2n.

Without loss of generality we may (and will) assume that n is squarefree.
The problem of determining whether or not a given positive integer is a
congruent number is very old. Thanks to Euclid’s characterization of the
Pythagorean triples it is easy to decide whether there exists a right triangle
of given area and integer sides. However, the case of rational sides, called
the congruent number problem, is not completely understood. Immediately
we can see that 6 is a congruent number. Fibonacci showed that also 5 is
a congruent number (one may take a = 3/2, b = 20/3, c = 41/6). Fermat
found that 1, 2 and 3 are not congruent numbers.

In the spirit of Euclid’s proof of the infinitude of prime numbers, one can
also show that there are infinitely many (squarefree) congruent numbers.
Chahal [Ch] established that the residue classes of 1, 2, 3, 5, 6, 7 modulo 8
contain infinitely many congruent numbers. Bennett [Be] extended this result
by showing that if k and m are positive integers such that gcd(k,m) is
squarefree then the residue class of a modulo m contains infinitely many
congruent numbers. Next Rajan and Ramaroson [RR] proved that if k and
m are positive, squarefree, coprime integers then there exist infinitely many
squarefree integers n such that both nk and nm are congruent numbers.

There is a fruitful translation of the congruent number problem into the
language of elliptic curves (see Koblitz [Ko] for details). If n is a congruent
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number then it follows from (1) that there exist three rational squares in
arithmetic progression of common difference n, namely x−n, x, x+n where
x = c2/4. Therefore we obtain the rational point (c2/4, c(a2 − b2)/8) on the
elliptic curve

(2) En : y2 = x3 − n2x.
Conversely, given a rational point (x, y) on En with y 6= 0, one may take

(3) a =

∣∣∣∣yx
∣∣∣∣, b = 2n

∣∣∣∣xy
∣∣∣∣, c =

x2 + n2

|y|
to obtain a right triangle with rational sides a, b, c and area n.

The rational points (x, y) with y 6= 0 have infinite order in the Mordell–
Weil group En(Q), since it is well known that its torsion subgroup consists
only of points of order 2, namely (0, 0), (±n, 0), and the point at infinity ∞.
This is the key point in the proof of the following criterion.

Criterion 0. A positive integer n is a congruent number if and only if
En (Q) has a point of infinite order.

From this one can deduce the fact (already known to Fermat) that for
a given congruent number n there are infinitely many right triangles with
rational sides a, b, c satisfying (1), since scalar multiplication of that point
in the Mordell–Weil group En(Q) yields new right triangles of area n.

Note that the correspondence between rational points on En and right
triangles with rational sides is not bijective. Solving (3) for x and y with
given a, b and c gives the two points

(4) x =
1

2
a(a± c), y = ax.

The congruent number problem has been solved almost completely by
Tunnell [Tu] who gave a simple equivalence criterion, which however, depends
on the truth of a weak form of the Birch and Swinnerton-Dyer conjecture
for the family of elliptic curves En : y2 = x3 − n2x (the conjecture has been
checked by Nemenzo [Ne] for n < 42553). More precisely, Tunnell showed
that if n is an odd congruent number then

#{x, y, z ∈ Z : 2x2+ y2+8z2 = n} = 2#{x, y, z ∈ Z : 2x2+ y2+32z2 = n},
and the converse is also true provided the Birch and Swinnerton-Dyer conjec-
ture for the family En holds (i.e. the rank of the elliptic curve En is positive
if and only if the associated L-function vanishes at the central point 1). He
gave a similar criterion when n is even.

If n is not a congruent number, one can ask if n is the area of a right
triangle with three sides in some number field. This leads to the following
natural generalization:
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Definition 1. We say that a positive integer n is a congruent number
over a number field K (or for short, a K-congruent number) if there exist
a, b, c ∈ K such that (1) holds.

The idea to study the congruent number problem over algebraic exten-
sions dates back at least to Tada [Ta] who considered real quadratic fields.
Note that when K is a subfield of R the geometric interpretation still holds.
Also other generalizations are possible. For example Fujiwara [Fu] extended
the concept of congruent numbers by considering not necessarily right tri-
angles with rational sides and an angle θ (so called θ-congruent numbers).
However this generalization is not a topic of our paper.

It is easy to see that, for instance, 1 is a congruent number over Q
(√

2
)

(one may take a = b =
√
2, c = 2). But equations (4) lead to the points(

1±
√
2, 2±

√
2
)
which are all torsion points in E1

(
Q
(√

2
))
. Therefore we

do not get infinitely many different right triangles from these points. This
example motivates the following definition:

Definition 2. We say that a positive integer n is a properlyK-congruent
number if (1) has infinitely many solutions a, b, c ∈ K.

In this paper we give infinite families of real number fields K for which all
K-congruent numbers are properly K-congruent. Of course all Q-congruent
numbers are properly Q-congruent. Note that n is properly K-congruent if
and only if En (K) has a point of infinite order. Hence we also obtain a
variant of Criterion 0 for such fields.

2. Congruent numbers over number fields of type (2, . . . , 2). For
a number field K let Tn(K) denote the group of K-rational torsion points
of En defined in (2), with n ∈ N squarefree. It is well known that Tn(Q) =
En[2] = {∞, (0, 0), (±n, 0)}.

Let K2,d denote the real number field of type (2, . . . , 2), i.e. K2,d =
Q(
√
m1, . . . ,

√
md), mi positive integers. Without loss of generality we may

assume that [K2,d : Q] = 2d, mi are squarefree (1 ≤ i ≤ d) and no mi,
divides any other. Tada [Ta, Theorem 1] showed that n is Q(

√
m)-congruent

(where m 6= 2) if and only if En(Q(
√
m)) has a point of infinite order. We

have the following generalizations of this (and of Criterion 0).

Theorem 1. Assume that
√
2 /∈ K2,d. Then n is a congruent number

over K2,d if and only if En (K2,d) has a point of infinite order.

Remark 2. It is easy to see that the above assumption is satisfied if
all mi are odd. Moreover it is easy to check that

√
2 /∈ K2,2 if and only if

m1 6= 2 and m2 6= 2.

The proof of Theorem 1 is divided into a few lemmas.
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Lemma 3. For every subfield K of R a positive integer n is a congruent
number over K if and only if En(K) \ En[2] 6= ∅.

Proof. This is a well known result. See, for instance, the beginning of the
proof of Theorem 1 in [Ta].

Lemma 4. Assume that Tn(K) = En[2]. Then n is a congruent number
over K if and only if En(K) has a point of infinite order.

Proof. This follows easily from Lemma 3.

Therefore, it is important to know Tn (K) for fields mentioned in The-
orem 1. For example, the assumptions of Lemma 4 are satisfied for K =
Q (
√
m) for squarefree integers m > 2 (see [Ta]). The next lemma general-

izes this result.

Lemma 5. If
√
2 /∈ K2,d then Tn(K2,d) = En[2].

Proof. Observe that the quadratic twist Emn : y2 = x3 − m2n2x of the
curve En is isomorphic (over Q) to Emn. Therefore Emn (Q)tors = Tmn(Q) '
Z/2Z ⊕ Z/2Z. Then from [QZ, remark after Theorem 2 and Lemma 3] we
know that Tn(K2,d) is a 2-group, i.e. has no point of an odd order. Hence
to finish the proof we must show that Tn(K2,d) has no point of order 4. It
is clear that P ∈ En(K2,d) is of order 4 if and only if 2P = (0, 0), (n, 0) or
(−n, 0). By [Kn, Theorem 4.2, p. 85] we have the following cases to consider:

(a) 2P = (0, 0)⇔ −n and n are perfect squares in K2,d,
(b) 2P = (n, 0)⇔ n and 2n are perfect squares in K2,d,
(c) 2P = (−n, 0)⇔ −n and −2n are perfect squares in K2,d.

In cases (a) and (c) we have
√
−n ∈ K2,d for some positive integer n, which

is impossible because K2,d ⊂ R. In case (b) we conclude that
√
2 belongs to

K2,d, and the assertion follows.

Proof of Theorem 1. This follows immediately from Lemmas 4 and 5.

Corollary 6. Assume that
√
2 /∈ K2,d. Then n is a congruent number

over K2,d if and only if at least one of the 2d numbers nme1
1 · · ·m

ed
d (ei = 0, 1)

is a congruent number over Q.

To prove this corollary we need the following proposition.

Proposition 7 (Theorem B in [Ta]). Assume that E is an elliptic curve
over a number field k and D ∈ k \ k2. Then

rank(E(k(
√
D))) = rank(E(k)) + rank(ED(k)),

where ED is the twist of E over k(
√
D).

Proof. See for example [Se, p. 63].
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Proof of Corollary 6. By easy induction, from Proposition 7 and the first
sentence of the proof of Lemma 5 we conclude that

rank(En(K2,d)) =
∑

rank(Enme1
1 ···med

d
(Q)),

where summation is over all d -tuples ei ∈ {0, 1}, i = 1, . . . , d. By Theorem 1
we know that n is a congruent number over K2,d ⇔ rank(En(K2,d)) > 0.
Hence in particular at least one summand in this sum is positive. Using
Criterion 0 we are done.

Remark 8. From Tunnell’s criterion ([Tu]) it follows, in particular,
that any squarefree n ≡ 5, 6, 7 (mod 8) is conditionally a congruent num-
ber over Q. Corollary 6 then implies that, conjecturally, every odd positive
integer is a congruent number over Q(

√
5) and every even positive integer is

a congruent number over Q(
√
3). Therefore, hypothetically every squarefree

positive integer is a congruent number over Q(
√
3,
√
5).

Corollary 9. Assume that
√
2 /∈ K2,d. If n is a congruent number

over K2,d, then n is a congruent number over Q or over some real quadratic
subfield Q(

√
me1

1 · · ·m
ed
d ) ⊂ K2,d.

Proof. This follows easily from Corollary 6.

Remark 10. Any positive integer n is a congruent number over the
field Q(

√
2,
√
n). Indeed, it is enough to take a = b =

√
2n and c = 2

√
n.

Then equations (4) lead to the points P = (n(1 ±
√
2), n
√
2n(1 ±

√
2)) ∈

En(Q(
√
2,
√
n)) such that 2P = (n, 0). Taking an odd n such that neither

n nor 2n are congruent numbers over Q (e.g. n = 1, 33) we see that the
assumption

√
2 /∈ K2,d in Theorem 1 and in Corollaries 6 and 9 is necessary.

In particular such an n is not properly Q(
√
2,
√
n)-congruent.

3. Congruent numbers over other real number fields. Now we
consider real number fields of degree 6= 2d (or = 4). We obtain the following
counterpart of Theorem 1.

Theorem 11. Let K ⊂ R be a number field such that
√
2,
√
3,
√
5 /∈ K.

Suppose that [K : Q] is odd or [K : Q] = 2p, where p is a prime. Then n
is a congruent number over K if and only if En(K) has a point of infinite
order.

To prove Theorem 11 we require a bound on the torsion subgroup of
En(K). We write down the following two general results about torsion of
CM elliptic curves.

Theorem 12 (SPY-bounds). Let E be an elliptic curve over a number
field K of degree d with CM by an order O in an imaginary quadratic field L.
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Let P ∈ E(K) be a point of order N, let M be the order of the torsion
subgroup of E(K) and µ be the number of roots of unity in O. Then

(i) ϕ(N) ≤ (µ/2)d if L ⊂ K,
(ii) ϕ(M) ≤ 2d if K ∩ L = Q,

where ϕ denotes Euler’s totient function.

Proof. See the papers of Silverberg [Si] or Prasad and Yogananda [PY].

Theorem 13. With the above notation and assumptions suppose fur-
thermore that O is a maximal order in L = Q(

√
D), K ∩ L = Q and N is

an odd prime. Then be the number of roots of unity in O. Then

(i) if
(
D
N

)
= 1, then (N − 1)2h(L)µ | d,

(ii) if
(
D
N

)
= 0, then (N − 1)h(L)µ | d,

(iii) if
(
D
N

)
= −1, then (N2 − 1)h(L)µ | d,

where h(L) is the class number of L.

Proof. See [CCS, Theorem 2].

Lemma 14. If a number field K ⊂ R satisfies the assumptions of Theo-
rem 11 then Tn(K) = En[2].

Proof. Let [K : Q] = s. It is obvious that the curve En has complex
multiplication by Z[i]. From Theorem 12 we get ϕ(#Tn(K)) ≤ 2[K : Q] =
2s. Since Z/2Z⊕ Z/2Z ⊂ Tn(K) we have Tn(K) ' Z/2Z⊕ Z/2NZ for some
positive integer N. Next for any squarefree positive integer n > 1 we have√
−n,
√
2 /∈ K, hence (see the proof of Lemma 5) Tn(K) has no point of

order 4. Therefore N is odd and we obtain ϕ(N) ≤ s. Thus in order to finish
the proof it will be sufficient to check that Tn(K) has no point of order N ,
where N is an odd prime ≤ s+ 1.

Now we use Theorem 13 which in some cases refines SPY-bounds. Assume
that Tn(K) has a point of an odd prime orderN ≤ s+1. ThenN ≡ 1 (mod 4)

implies N−1
2 | s, and N ≡ 3 (mod 4) implies N2−1

4 | s. In either case, we have
a contradiction if s is odd. Hence we can assume that s = 2p.

Let N ≡ 1 (mod 4). Note that N−1
2 | 2p if and only if N = 5. Similarly

for N ≡ 3 (mod 4) we have N2−1
4 | 2p if and only if N = 3. Hence it will be

sufficient to consider N = 3, 5.
If P ∈ En(K) has an odd order N, then x

([
N+1
2

]
P
)
= x

([
− N−1

2

]
P
)
. So

using the group law formulas we obtain homogeneous polynomial equations
FN (x, n) = 0 (for N = 3, 5) where

F3(x, n) = n4 + 6n2x2 − 3x4,

F5(x, n) = n12 + 50n10x2 − 125n8x4 + 300n6x6 − 105n4x8 − 62n2x10 + 5x12
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(we have used Mathematica for symbolic computations). Let fN (x) :=

FN (x, 1) be the dehomogenization of FN (x, n). We find that ±
√

(3+2
√
3)/3

are all real roots of polynomials f3 and check that if
√
3 /∈ K then f3 has

no roots in K. Similarly we can compute all real roots of f5 and check that
they do not belong to K if

√
5 /∈ K. The assertion follows.

Proof of Theorem 11. This follows immediately from Lemmas 4 and 14.

Corollary 15. If a real number field K satisfies the assumptions of
Theorems 1 or 11 then a number n is K-congruent if and only if n is properly
K-congruent.

Proof. For such fields K a number n is K-congruent if and only if
rank(En(K)) > 0. The correspondence between K-rational points on En
and right triangles with sides in K (cf. (3)) finishes the proof.

Questions. 1) One can ask whether there exists a real number field F
such that any n ∈ N is a congruent number over F . Such a field must have the
following property: for every n ∈ N either the group Tn(F ) is strictly larger
than En[2] or rank(En(F )) > 0. Of course the field F = Q (

√
n : n ∈ N) has

the desired property unconditionally but [F : Q] = ∞. Hypothetically, we
may take F = Q

(√
3,
√
5
)
(see Remark 8).

2) One can ask whether for any positive integer d there exists a number
field F of degree d over Q such that Tn(F ) = En[2] for all squarefree n. We
have proved that the answer is positive when d is a power of 2 or an odd
number or d = 2p, where p is a prime.

3) In [GGGSS] it is proved that any number n is properly congruent over
some real quadratic and some real cubic field. One can ask whether for a
given positive integer d every n ∈ N is properly congruent over some real
field of degree d.

4) It would be of interest to characterize all real number fields with the
property given in Corollary 15.
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