RIEMANN COMPATIBLE TENSORS

BY

CARLO ALBERTO MANTICA and LUCA GUIDO MOLINARI (Milano)

Abstract

Derdziński and Shen's theorem on the restrictions on the Riemann tensor imposed by existence of a Codazzi tensor holds more generally when a Riemann compatible tensor exists. Several properties are shown to remain valid in this broader setting. Riemann compatibility is equivalent to the Bianchi identity for a new "Codazzi deviation tensor", with a geometric significance. The above general properties are studied, with their implications on Pontryagin forms. Examples are given of manifolds with Riemann compatible tensors, in particular those generated by geodesic mappings. Compatibility is extended to generalized curvature tensors, with an application to Weyl's tensor and general relativity.

1. Introduction. The Riemann tensor $R_{i j k}^{m}$ and its contractions, $R_{k l}=R_{k m l}{ }^{m}$ and $R=g^{k l} R_{k l}$, are the fundamental tensors to describe the local structure of a Riemannian manifold $\left(\mathscr{M}_{n}, g\right)$ of dimension n. In a remarkable theorem [9, 3] Derdziński and Shen showed that the existence of a nontrivial Codazzi tensor imposes strong constraints on the structure of the Riemann tensor. Because of their geometric relevance, Codazzi tensors have been studied by several authors, including Berger and Ebin [1], Bourguignon [4], Derdziński [7, 8], Derdziński and Shen [9], Ferus [10], Simon [28]; an overview of results is found in Besse's book [3]. Recently, we showed [21] that the Codazzi differential condition

$$
\begin{equation*}
\nabla_{i} b_{j k}-\nabla_{j} b_{i k}=0 \tag{1.1}
\end{equation*}
$$

sufficient for the theorem to hold, can be replaced by the more general notion of Riemann compatibility, which is instead algebraic:

Definition 1.1. A symmetric tensor $b_{i j}$ is Riemann compatible (R-compatible) if

$$
\begin{equation*}
b_{i m} R_{j k l}^{m}+b_{j m} R_{k i l}^{m}+b_{k m} R_{i j l}^{m}=0 . \tag{1.2}
\end{equation*}
$$

With this requirement, we proved the following extension of Derdziński and Shen's theorem:

[^0]Theorem $1.2([21])$. Suppose that a symmetric R-compatible tensor $b_{i j}$ exists. Then, if X, Y and Z are three eigenvectors of the matrix $b_{r}{ }^{s}$ at a point of the manifold, with eigenvalues λ, μ and ν, then $R_{i j k l} X^{i} Y^{j} Z^{k}=0$ provided that both λ and μ are different from ν.

The concept of compatibility allows for a further extension of the theorem, where the Riemann tensor R is replaced by a generalized curvature tensor K, and b is required to be K-compatible [21].

The present paper studies the properties of Riemann compatibility, and its implications for the geometry of the manifold. In Section $2 R$-compatibility is shown to be equivalent to the Bianchi identity for a new tensor, the Codazzi deviation. In Section 3 the irreducible components of the covariant derivative of a symmetric tensor are classified in a simple manner, based on a decomposition into traceless terms. This is helpful in the study of various structures suited for R-compatibility.

The general properties of Riemann compatibility are presented in Section 4. In Section 5 several properties of manifolds in the presence of a Riemann compatible tensor that were obtained by Derdziński and Shen and Bourguignon for manifolds with a Codazzi tensor, are recovered. In particular, it is shown that R-compatibility implies pureness, a property of the Riemann tensor introduced by Maillot that implies the vanishing of Pontryagin forms. Manifolds that carry R-compatible tensors are exhibited in Section 6; interesting examples are generated by geodesic mappings which induce metric tensors that are R-compatible. Finally, in Section $7, K$-tensors and K-compatibility are considered, with applications to the standard curvature tensors. In the end, an application to general relativity is mentioned, to be fully discussed elsewhere.
2. The Codazzi deviation tensor and R-compatibility. Since Codazzi tensors are Riemann compatible, for a non-Codazzi differentiable symmetric tensor field b it is useful to define its deviation from the Codazzi condition. This tensor satisfies an unexpected relation that generalizes Lovelock's identity for the Riemann tensor, and shows that Riemann compatibility amounts to closedness of certain 2-forms.

Definition 2.1. The Codazzi deviation of a symmetric tensor $b_{k l}$ is

$$
\begin{equation*}
\mathscr{C}_{j k l}:=\nabla_{j} b_{k l}-\nabla_{k} b_{j l} . \tag{2.1}
\end{equation*}
$$

Simple properties are: $\mathscr{C}_{j k l}=-\mathscr{C}_{k j l}$ and $\mathscr{C}_{j k l}+\mathscr{C}_{k l j}+\mathscr{C}_{l j k}=0$.
The following identity holds in general, and relates the Bianchi differential combination for \mathscr{C} to the Riemann compatibility of b :

Proposition 2.2.

$$
\begin{equation*}
\nabla_{i} \mathscr{C}_{j k l}+\nabla_{j} \mathscr{C}_{k i l}+\nabla_{k} \mathscr{C}_{i j l}=b_{i m} R_{j k l}^{m}+b_{j m} R_{k i l}^{m}+b_{k m} R_{i j l}^{m} \tag{2.2}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& \nabla_{i} \mathscr{C}_{j k l}+\nabla_{j} \mathscr{C}_{k i l}+\nabla_{k} \mathscr{C}_{i j l}=\left[\nabla_{i}, \nabla_{j}\right] b_{k l}+\left[\nabla_{k}, \nabla_{i}\right] b_{j l}+\left[\nabla_{j}, \nabla_{k}\right] b_{i l} \\
& \quad=b_{m l}\left(R_{i j k}^{m}+R_{k i j}^{m}+R_{j k i}^{m}\right)+b_{i m} R_{j k l}^{m}+b_{j m} R_{k i l}^{m}+b_{k m} R_{i j l}^{m}
\end{aligned}
$$

and the first term on the right-hand side vanishes by the first Bianchi identity.

REMARK 2.3. The identity (2.2) holds true if $b_{i j}$ is replaced by $b_{i j}^{\prime}=$ $b_{i j}+\chi a_{i j}$, where $a_{i j}$ is a Codazzi tensor and χ a scalar field. Then $\mathscr{C}_{j k l}^{\prime}=$ $\mathscr{C}_{j k l}-\left(a_{k l} \nabla_{j}-a_{j l} \nabla_{k}\right) \chi$.

The deviation tensor is associated to the 2 -form $\mathscr{C}_{l}=\frac{1}{2} \mathscr{C}_{j k l} d x^{j} \wedge d x^{k}$. The closedness condition $0=D \mathscr{C}_{l}=\frac{1}{2} \nabla_{i} \mathscr{C}_{j k l} d x^{i} \wedge d x^{j} \wedge d x^{k}(D$ is the exterior covariant derivative) is the second Bianchi identity for the Codazzi deviation: $\nabla_{i} \mathscr{C}_{j k l}+\nabla_{j} \mathscr{C}_{k i l}+\nabla_{k} \mathscr{C}_{i j l}=0$. This gives a geometric interpretation of Riemann compatibility:

Theorem 2.4. $b_{i j}$ is Riemann compatible if and only if $D \mathscr{C}_{l}=0$.
Remark 2.5. The Codazzi deviation of the Ricci tensor is, by the contracted second Bianchi identity, $\mathscr{C}_{j k l}:=\nabla_{j} R_{k l}-\nabla_{k} R_{j l}=-\nabla_{m} R_{j k l}{ }^{m}$. For the Ricci tensor the identity (2.2) amounts to Lovelock's identity [17] for the Riemann tensor:

$$
\begin{align*}
& \nabla_{i} \nabla_{m} R_{j k l}^{m}+\nabla_{j} \nabla_{m} R_{k i l}^{m}+\nabla_{k} \nabla_{m} R_{i j l}^{m} \tag{2.3}\\
&=-R_{i m} R_{j k l}^{m}-R_{j m} R_{k i l}^{m}-R_{k m} R_{i j l}^{m}
\end{align*}
$$

Also a Veblen-like identity holds that corresponds to (4.2) (for $b_{i j}=R_{i j}$ it specializes to Veblen's identity for the divergence of the Riemann tensor [19]):

Proposition 2.6.

$$
\begin{align*}
\nabla_{i} \mathscr{C}_{j l k}+\nabla_{j} \mathscr{C}_{k i l} & +\nabla_{k} \mathscr{C}_{l j i}+\nabla_{l} \mathscr{C}_{i k j} \tag{2.4}\\
& =b_{i m} R_{j l k}^{m}+b_{j m} R_{k i l}^{m}+b_{k m} R_{l j i}^{m}+b_{l m} R_{i k j}^{m}
\end{align*}
$$

Proof. Write four versions of equation (2.2) with cyclically permuted indices i, j, k, l and sum up. Then simplify by means of the first Bianchi identity for the Riemann tensor and the cyclic identity $\mathscr{C}_{j k l}+\mathscr{C}_{k l j}+\mathscr{C}_{l j k}$ $=0$.
3. Irreducible components of $\nabla_{j} b_{k l}$ and R-compatibility. We begin with a simple procedure to classify the $O(n)$-invariant components of the tensor $\nabla_{j} b_{k l}$. They will guide us in the study of R-compatibility. If b is
the Ricci tensor, this simple construction reproduces the seven equations linear in $\nabla_{i} R_{j k}$, invariant under the $O(n)$ group, that are discussed in Besse's treatise [3].

For a symmetric tensor $b_{k l}$ with $\nabla_{j} b_{k l} \neq 0$, the tensor $\nabla_{j} b_{k l}$ can be decomposed into $O(n)$-invariant terms, where $\mathscr{B}_{j k l}^{0}$ is traceless $\left(\mathscr{B}_{j k}^{0}{ }^{j}=\mathscr{B}_{k j}^{0}{ }^{j}\right.$ $=0)$ 13, 16]:

$$
\begin{gather*}
\nabla_{j} b_{k l}=\mathscr{B}_{j k l}^{0}+A_{j} g_{k l}+B_{k} g_{j l}+B_{l} g_{j k} \tag{3.1}\\
A_{j}=\frac{(n+1) \nabla_{j} b^{m}{ }_{m}-2 \nabla_{m} b^{m}{ }_{j}}{n^{2}+n-2}, \quad B_{j}=-\frac{\nabla_{j} b^{m}{ }_{m}-n \nabla_{m} b^{m}{ }_{j}}{n^{2}+n-2} . \tag{3.2}
\end{gather*}
$$

The traceless tensor can then be written as a sum of orthogonal components [17]:

$$
\begin{equation*}
\mathscr{B}_{j k l}^{0}=\frac{1}{3}\left[\mathscr{B}_{j k l}^{0}+\mathscr{B}_{k l j}^{0}+\mathscr{B}_{l j k}^{0}\right]+\frac{1}{3}\left[\mathscr{B}_{j k l}^{0}-\mathscr{B}_{k j l}^{0}\right]+\frac{1}{3}\left[\mathscr{B}_{j l k}^{0}-\mathscr{B}_{l j k}^{0}\right] \tag{3.3}
\end{equation*}
$$

The orthogonal decomposition (3.1), (3.3) provides $O(n)$-invariant subspaces, characterized by invariant equations linear in $\nabla_{j} b_{k l}$ that are now discussed. The trivial subspace: $\nabla_{j} b_{k l}=0$. The subspace \mathcal{I} (we follow Gray's notation, [12]) where $\mathscr{B}_{j k l}^{0}=0$:

$$
\nabla_{j} b_{k l}=A_{j} g_{k l}+B_{k} g_{j l}+B_{l} g_{j k}
$$

The complement \mathcal{I}^{\perp} is characterized by $A_{j}, B_{j}=0$, i.e. $\nabla_{j} b_{k l}$ is traceless. This gives two invariant equations: $\nabla_{j} b^{j}{ }_{l}=0$, and $\nabla_{j} b^{m}{ }_{m}=0$. Since $\nabla_{j} b_{k l}=\mathscr{B}_{j k l}^{0}$, the structure of \mathscr{B}^{0} specifies two orthogonal subspaces, so that $\mathcal{I}^{\perp}=\mathcal{A} \oplus \mathcal{B}$. In \mathcal{A} :

$$
\nabla_{j} b_{k l}+\nabla_{k} b_{l j}+\nabla_{l} b_{j k}=0
$$

In \mathcal{B} :

$$
\nabla_{j} b_{k l}-\nabla_{k} b_{j l}=0
$$

The subspace $\mathcal{I} \oplus \mathcal{A}$ contains tensors with traceless part $\nabla_{j} b_{k l}-A_{j} g_{k l}-$ $B_{k} g_{j l}-B_{l} g_{j k}$ that satisfies the cyclic condition

$$
\left[\nabla_{j} b_{k l}-\frac{1}{n+2}\left(\nabla_{j} b_{m}^{m}+2 \nabla_{m} b_{j}^{m}\right) g_{k l}\right]+\text { cyclic }=0 .
$$

The subspace $\mathcal{I} \oplus \mathcal{B}$ contains tensors with traceless part that satisfies the Codazzi condition:

$$
\left[\nabla_{j} b_{k l}-\frac{1}{n-1}\left(\nabla_{j} b_{m}^{m}-\nabla_{m} b^{m}{ }_{j}\right) g_{k l}\right]=\left[\nabla_{k} b_{j l}-\frac{1}{n-1}\left(\nabla_{k} b_{m}^{m}-\nabla_{m} b_{k}^{m}\right) g_{j l}\right] .
$$

Accordingly, the Codazzi deviation tensor has the (unique) decomposition into irreducible components

$$
\begin{equation*}
\mathscr{C}_{j k l}=\mathscr{C}_{j k l}^{0}+\lambda_{j} g_{k l}-\lambda_{k} g_{j l}, \quad \lambda_{j}=A_{j}-B_{j}=\frac{\nabla_{j} b^{m}{ }_{m}-\nabla_{m} b^{m}{ }_{j}}{n-1} \tag{3.4}
\end{equation*}
$$

where \mathscr{C}^{0} is traceless. Then 2.2 becomes

$$
\begin{align*}
& b_{i m} R_{j k l}^{m}+b_{j m} R_{k i l}^{m}+b_{k m} R_{i j l}^{m}=\nabla_{i} \mathscr{C}_{j k l}^{0}+\nabla_{j} \mathscr{C}_{k i l}^{0}+\nabla_{k} \mathscr{C}_{i j l}^{0} \tag{3.5}\\
& \quad+g_{i l}\left(\nabla_{j} \lambda_{k}-\nabla_{k} \lambda_{j}\right)+g_{j l}\left(\nabla_{k} \lambda_{i}-\nabla_{i} \lambda_{k}\right)+g_{k l}\left(\nabla_{i} \lambda_{j}-\nabla_{j} \lambda_{i}\right)
\end{align*}
$$

There are only two orthogonally invariant cases:

- $\mathscr{C}_{j k l}^{0}=0$; then b is R-compatible if and only if λ is closed. If b is the Ricci tensor, this requirement gives nearly conformally symmetric (NCS $)_{n}$ manifolds, introduced by Roter [27].
- $\nabla_{j} b^{m}{ }_{m}-\nabla_{m} b^{m}{ }_{j}=0$; then b is R-compatible if and only if $\mathscr{C}=\mathscr{C}^{0}$ satisfies the second Bianchi identity. If b is the Ricci tensor, this corresponds to $\nabla_{j} R=0$.

REmARK 3.1. The decomposition (3.4) for the deviation of the Ricci tensor turns out to be

$$
\begin{equation*}
\mathscr{C}_{j k l}=-\frac{n-2}{n-3} \nabla_{m} C_{j k l}^{m}+\frac{1}{2(n-1)}\left[g_{k l} \nabla_{j} R-g_{j l} \nabla_{k} R\right] \tag{3.6}
\end{equation*}
$$

where $C_{j k l}{ }^{m}$ is the conformal curvature tensor, or Weyl's tensor. In this case the λ covector is closed.
4. Riemann compatibility: general properties. The existence of a Riemann compatible tensor has various implications. The first one is the existence of a new generalized curvature tensor. This leads to the generalization of the Derdziński-Shen theorem and other relations that were obtained for Codazzi tensors.

We need a definition from Kobayashi and Nomizu's book [15]:
Definition 4.1. A tensor $K_{i j l m}$ is a generalized curvature tensor (or, briefly, a K-tensor) if it has the symmetries of the Riemann curvature tensor:
(a) $K_{i j k l}=-K_{j i k l}=-K_{i j l k}$,
(b) $K_{i j k l}=K_{k l i j}$,
(c) $K_{i j k l}+K_{j k i l}+K_{k i j l}=0$ (first Bianchi identity).

It follows that the tensor $K_{j k}:=-K_{m j k}^{m}$ is symmetric.
In [21, Lemma 2.2] we proved this interesting fact:
TheOrem 4.2. If b is R-compatible then $K_{i j k l}:=R_{i j p q} b^{p}{ }_{k} b^{q}{ }_{l}$ is a K tensor.

The next result reveals the relevance of the local basis of eigenvectors of the Ricci tensor. Another symmetric contraction of the Riemann tensor was introduced by Bourguignon [4]:

$$
\begin{equation*}
\stackrel{\circ}{R}_{i j}:=b^{p q} R_{p i j q} \tag{4.1}
\end{equation*}
$$

Theorem 4.3. If b is R-compatible then:
(1) $b_{i m} R_{j}{ }^{m}-b_{j m} R_{i}{ }^{m}=0$,
(2) $b_{i m} \dot{R}_{j}{ }^{m}-b_{j m} \hat{R}_{i}^{m}=0$.

Proof. The first identity is proven by transvecting (1.2) with $g^{k l}$. The second one is a restatement of the symmetry of the tensor $K_{i j}$.

Remark 4.4. (A) Identities (1) and (2) are here obtained directly from R-compatibility. Bourguignon (4) obtained them from Weitzenböck's formula for Codazzi tensors, and Derdziński and Shen [9] from their theorem.
(B) As the symmetric matrices $b_{i j}, R_{i j}, \AA_{i j}$ commute, they share at each point of the manifold an orthonormal set of n eigenvectors.
(C) If b^{\prime} is a symmetric tensor that commutes with a Riemann compatible b, then it can be shown that $\stackrel{\circ}{R}_{i j}^{\prime}:=b^{\prime p q} R_{p i j q}$ commutes with b.

Finally, this Veblen-type identity holds:
Proposition 4.5. If b is R-compatible, then

$$
\begin{equation*}
b_{i m} R_{j l k}^{m}+b_{j m} R_{k i l}^{m}+b_{k m} R_{l j i}^{m}+b_{l m} R_{i k j}^{m}=0 . \tag{4.2}
\end{equation*}
$$

Proof. Write four versions of (1.2) with cyclically permuted indices i, j, k, l, sum up, and use the first Bianchi identity.
5. Pure Riemann tensors and Pontryagin forms. Riemann compatibility and nondegeneracy of the eigenvalues of b imply directly that the Riemann tensor is pure and Pontryagin forms vanish.

We quote two results from Maillot's paper [18]:
Definition 5.1. In a Riemann manifold \mathscr{M}_{n}, the Riemann curvature tensor is pure if at each point of the manifold there is an orthonormal basis of n tangent vectors $X(1), \ldots, X(n), X(a)^{i} X(b)_{i}=\delta_{a b}$, such that the tensors $X(a)^{i} \wedge X(b)^{j}=: X(a)^{i} X(b)^{j}-X(a)^{j} X(b)^{i}, a<b$, diagonalize it:

$$
\begin{equation*}
R_{i j}{ }^{l m} X(a)^{i} \wedge X(b)^{j}=\lambda_{a b} X(a)^{l} \wedge X(b)^{m} . \tag{5.1}
\end{equation*}
$$

Theorem 5.2. If a Riemannian manifold has pure Riemann curvature tensor, then all Pontryagin forms vanish.

Consider the maps on tangent vectors, built with the Riemann tensor,

$$
\begin{aligned}
& \omega_{4}\left(X_{1}, \ldots, X_{4}\right)=R_{i j a}{ }^{b} R_{k l b}{ }^{a}\left(X_{1}^{i} \wedge X_{2}^{j}\right)\left(X_{3}^{k} \wedge X_{4}^{l}\right), \\
& \omega_{8}\left(X_{1}, \ldots, X_{8}\right)=R_{i j a}{ }^{b} R_{k l b}{ }^{c} R_{m n c}{ }^{d} R_{p q d}{ }^{a}\left(X_{1}^{i} \wedge X_{2}^{j}\right) \cdots\left(X_{7}^{p} \wedge X_{8}^{q}\right),
\end{aligned}
$$

They are antisymmetric under exchange of vectors in each pair, and under cyclic permutation of pairs. The Pontryagin forms [25] $\Omega_{4 k}$ result from total antisymmetrization of $\omega_{4 k}: \Omega_{4 k}\left(X_{1}, \ldots, X_{4 k}\right)=\sum_{P}(-1)^{P} \omega_{4 k}\left(X_{i_{1}}, \ldots, X_{i_{4 k}}\right)$
where P is the permutation taking $(1 \ldots 4 k)$ to $\left(i_{1} \ldots i_{4 k}\right)$. We have $\Omega_{4 k}=0$ if two vectors repeat; the intermediate forms $\Omega_{4 k-2}$ vanish identically.

Pontryagin forms on generic tangent vectors are linear combinations of forms evaluated on basis vectors.

If the Riemann tensor is pure, all Pontryagin forms on the basis of eigenvectors of the Riemann tensor vanish. For example, if X, Y, Z, W are orthogonal, then $\omega_{4}(X, Y, Z, W)=\lambda_{X Y} \lambda_{Z W}\left(X^{a} \wedge Y^{b}\right)\left(Z_{b} \wedge W_{a}\right)=0$ and $\Omega_{4}(X, Y, Z, U)=0$.

A consequence of the extended Derdziński-Shen Theorem 1.2 is the following:

TheOrem 5.3. If there exists a symmetric tensor field $b_{i j}$ that is R compatible and has distinct eigenvalues at each point of the manifold, then the Riemann tensor is pure and all Pontryagin forms vanish.

Proof. At each point of the manifold the symmetric matrix $b_{i j}(x)$ is diagonalized by n tangent orthonormal vectors $X(a)$, with distinct eigenvalues. Since b is R-compatible, Theorem 1.2 holds and, because of antisymmetry of R in the first two indices,

$$
0=R_{i j}^{k l} X(a)^{i} \wedge X(b)^{j} X(c)_{k}, \quad a \neq b \neq c
$$

This means that all column vectors of the matrix $V(a, b)^{k l}=R_{i j}{ }^{k l} X(a)^{i}$ $\wedge X(b)^{j}$ are orthogonal to the vectors $X(c)$, i.e. they belong to the subspace spanned by $X(a)$ and $X(b)$. Because of antisymmetry in k, l, we have $V(a, b)$ $=\lambda_{a b} X(a) \wedge X(b)$, i.e. the Riemann tensor is pure.

This property has been checked by Petersen [26] in various examples with rotationally invariant metrics, by giving explicit orthonormal frames such that $R\left(e_{i}, e_{j}\right) e_{k}=0$.
6. Structures for Riemann compatibility. We exhibit some differential structures that yield Riemann compatibility. Of particular interest are geodesic mappings, which leave the condition for R-compatibility forminvariant, and generate R-compatible tensors. Other examples where b is the Ricci tensor are discussed in [20, 22].
6.1. Pseudo- K-symmetric manifolds. They are characterized by a generalized curvature tensor K such that ([5, 23])

$$
\nabla_{i} K_{j k l}^{m}=2 A_{i} K_{j k l}^{m}+A_{j} K_{i k l}^{m}+A_{k} K_{j i l}^{m}+A_{l} K_{j k i}^{m}+A^{m} K_{j k l i} .
$$

The tensor $b_{j k}:=K_{j m k}{ }^{m}$ is symmetric. It is R-compatible if its Codazzi deviation $\mathscr{C}_{i k l}=A_{i} b_{k l}-A_{k} b_{i l}+3 A_{m} K_{i k l}{ }^{m}$ satisfies the second Bianchi identity. This is ensured by A_{m} being concircular, i.e. $\nabla_{i} A_{m}=A_{i} A_{m}+\gamma g_{i m}$.
6.2. Generalized Weyl tensors. A Riemannian manifold is $(N C S)_{n}$ [27] if the Ricci tensor satisfies

$$
\nabla_{j} R_{k l}-\nabla_{k} R_{j l}=\frac{1}{2(n-1)}\left[g_{k l} \nabla_{j} R-g_{j l} \nabla_{k} R\right] .
$$

The Ricci tensor is then the Weyl tensor, and the left-hand side is its Codazzi deviation. This condition, by (3.6), is equivalent to $\nabla_{m} C_{j k l}{ }^{m}=0$. This suggests a class of deviations of a symmetric tensor b with $\mathscr{C}_{j k l}^{0}=0$ in (3.4):

$$
\begin{equation*}
\mathscr{C}_{j k l}=\lambda_{j} g_{k l}-\lambda_{k} g_{j l} . \tag{6.1}
\end{equation*}
$$

Proposition 6.1. b is R-compatible if and only if λ_{i} is closed.
Proof. Transvect (3.5) with $g^{k l}$ to obtain

$$
-b_{i}{ }^{m} R_{j m}+b_{j}{ }^{m} R_{i m}=(n-2)\left(\nabla_{i} \lambda_{j}-\nabla_{j} \lambda_{i}\right) .
$$

Then b commutes with the Ricci tensor if and only if λ is closed and, by the previous equation, b is R-compatible.

An example is provided by spaces with

$$
\begin{equation*}
\nabla_{j} b_{k l}=A_{j} g_{k l}+B_{k} g_{j l}+B_{l} g_{j k} \tag{6.2}
\end{equation*}
$$

where $\mathscr{C}_{j k l}=\lambda_{j} g_{k l}-\lambda_{k} g_{j l}$ with $\lambda_{j}=A_{j}-B_{j}$. Sinyukov manifolds [29] are of this sort, with $b_{i j}$ being the Ricci tensor itself.
6.3. Geodesic mappings. Riemann compatible tensors arise naturally in the study of geodesic mappings, i.e. mappings that preserve geodesic lines [24, 11]. Their importance comes from the fact that Sinyukov manifolds are $(N C S)_{n}$ manifolds and they always admit a nontrivial geodesic mapping.

Geodesic mappings preserve Weyl's projective curvature tensor [29]. We show that they also preserve the form of the compatibility relation.

A map $f:\left(\mathscr{M}_{n}, g\right) \rightarrow\left(\mathscr{M}_{n}, \bar{g}\right)$ is geodesic if and only if the Christoffel symbols are related by $\bar{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}+\delta_{i}^{k} X_{j}+\delta_{j}^{k} X_{i}$ where, on a Riemannian manifold, X is closed ($\left.\nabla_{i} X_{j}=\nabla_{j} X_{i}\right)$. This condition is equivalent to

$$
\begin{equation*}
\nabla_{k} \bar{g}_{j l}=2 X_{k} \bar{g}_{j l}+X_{j} \bar{g}_{k l}+X_{l} \bar{g}_{k j}, \tag{6.3}
\end{equation*}
$$

which has the form 6.2. The corresponding relation between Riemann tensors is

$$
\begin{equation*}
\bar{R}_{j k l}^{m}=R_{j k l}{ }^{m}+\delta_{j}^{m} P_{k l}-\delta_{k}^{m} P_{j l} \tag{6.4}
\end{equation*}
$$

where $P_{k l}=\nabla_{k} X_{l}-X_{k} X_{l}$ is the deformation tensor. The symmetry $P_{k l}=$ $P_{l k}$ is ensured by closedness of X.

Proposition 6.2. Geodesic mappings preserve R-compatibility:

$$
\begin{equation*}
b_{i m} \bar{R}_{j k l}^{m}+b_{j m} \bar{R}_{k i l}^{m}+b_{k m} \bar{R}_{i j l}^{m}=b_{i m} R_{j k l}{ }^{m}+b_{j m} R_{k i l^{m}}{ }^{m}+b_{k m} R_{i j l}{ }^{m} \tag{6.5}
\end{equation*}
$$

where b is a symmetric tensor.

Proof. Let us show that the difference of the two sides is zero. (6.4) gives

$$
\begin{aligned}
& b_{i m}\left(\delta_{j}^{m} P_{k l}-\delta_{k}^{m} P_{j l}\right)+b_{j m}\left(\delta_{k}^{m} P_{i l}-\delta_{i}^{m} P_{k l}\right)+b_{k m}\left(\delta_{i}^{m} P_{j l}-\delta_{j}^{m} P_{i l}\right) \\
&=b_{i j} P_{k l}-b_{i k} P_{j l}+b_{j k} P_{i l}-b_{j i} P_{k l}+b_{k i} P_{j l}-b_{k j} P_{i l}=0 .
\end{aligned}
$$

Since \bar{g} is trivially \bar{R}-compatible (first Bianchi identity), form invariance implies:

Corollary 6.3. \bar{g} is R-compatible.
7. Generalized curvature tensors. Several results that are valid for the Riemann tensor with a Riemann compatible tensor extend to generalized curvature tensors $K_{i j k l}$ (hereafter referred to as K-tensors) with a K-compatible symmetric tensor $b_{j k}$. The classical curvature tensors are K tensors. The compatibility with the Ricci tensor is then examined.

Definition 7.1. A symmetric tensor $b_{i j}$ is K-compatible if

$$
\begin{equation*}
b_{i m} K_{j k l}{ }^{m}+b_{j m} K_{k i l}^{m}+b_{k m} K_{i j l}^{m}=0 . \tag{7.1}
\end{equation*}
$$

The metric tensor is always K-compatible, as (7.1) then coincides with the first Bianchi identity for K.

Proposition 7.2. If $K_{i j l m}$ is a K-tensor and $b_{k l}$ is K-compatible, then $\hat{K}_{i j k l}:=K_{i j r s} b_{k}{ }^{r} b_{l}{ }^{s}$ is a K-tensor.

We quote without proof the extension of the Derdziński and Shen theorem to generalized curvature tensors [21]:

Theorem 7.3. Suppose that $K_{i j k l}$ is a K-tensor, and there exists a symmetric K-compatible tensor $b_{i j}$. Then, if X, Y and Z are three eigenvectors of the matrix $b_{r}{ }^{s}$ at a point x of the manifold, with eigenvalues λ, μ and ν, we have $X^{i} Y^{j} Z^{k} K_{i j k l}=0$ provided that both λ and μ are different from ν.

Proposition 7.4. If b is K-compatible, and b commutes with a tensor h, then the symmetric tensor $\dot{K}_{k l}:=K_{j k l m} h^{j m}$ commutes with b.

Proof. Multiply the relation of K-compatibility for b by $h^{k l}$. The last term vanishes by symmetry. The remaining terms give the null commutation relation.

In [19, Prop. 2.4] we proved that a generalization of Lovelock's identity (2.3) holds for certain K-tensors, including all classical curvature tensors:

Proposition 7.5. Let $K_{j k l}{ }^{m}$ be a K-tensor with the property

$$
\begin{equation*}
\nabla_{m} K_{j k l}^{m}=\alpha \nabla_{m} R_{j k l}^{m}+\beta\left(a_{k l} \nabla_{j}-a_{j l} \nabla_{k}\right) \varphi, \tag{7.2}
\end{equation*}
$$

where α, β are non zero constants, φ is a real scalar function and $a_{k l}$ is a Codazzi tensor. Then

$$
\begin{align*}
& \nabla_{i} \nabla_{m} K_{j k l}{ }^{m}+\nabla_{j} \nabla_{m} K_{k i l}{ }^{m}+\nabla_{k} \nabla_{m} K_{i j l}{ }^{m} \tag{7.3}\\
&=-\alpha\left(R_{i m} R_{j k l}{ }^{m}+R_{j m} R_{k i l}{ }^{m}+R_{k m} R_{i j l}{ }^{m}\right) .
\end{align*}
$$

7.1. ABC curvature tensors. A class of curvature tensors with the structure $\sqrt{7.2}$ is formed by the $A B C$ curvature tensors. They are combinations of the Riemann tensor and its contractions (A, B, C are constants unless otherwise stated):

$$
\begin{align*}
K_{j k l}{ }^{m}= & R_{j k l}{ }^{m}+A\left(\delta_{j}{ }^{m} R_{k l}-\delta_{k}{ }^{m} R_{j l}\right)+B\left(R_{j}{ }^{m} g_{k l}-R_{k}{ }^{m} g_{j l}\right) \tag{7.4}\\
& +C\left(R \delta_{j}{ }^{m} g_{k l}-R \delta_{k}{ }^{m} g_{j l}\right) .
\end{align*}
$$

The canonical curvature tensors are of this sort:

- Conformal tensor $C_{i j k l}: A=B=\frac{1}{n-2}, C=-\frac{1}{(n-1)(n-2)}$;
- Conharmonic tensor $N_{i j k l}: A=B=\frac{1}{n-2}, C=0$;
- Projective tensor $P_{i j k l}: A=\frac{1}{n-1}, B=C=0$;
- Concircular tensor $\tilde{C}_{i j k l}: A=B=0, C=\frac{1}{n(n-1)}$.
$A B C$ tensors are generalized curvature tensors (in the sense of Kobayashi and Nomizu, Def. 4.1) only for $A=B$. If $A \neq B$ the $(0,4)$ tensor is not antisymmetric in the last two indices.

Proposition 7.6. Let $K_{j k l}{ }^{m}$ be an $A B C$ tensor (A, B, C may be scalar functions) and $b_{i j}$ a symmetric tensor.
(1) If b is R-compatible then b is K-compatible.
(2) If b is K-compatible and $B \neq \frac{1}{n-2}$ then b is R-compatible.

Proof. The following identity holds for $A B C$ tensors and a symmetric tensor b :

$$
\begin{align*}
& b_{i m} K_{j k l}{ }^{m}+b_{j m} K_{k i l}{ }^{m}+b_{k m} K_{i j l}{ }^{m} \tag{7.5}\\
& =b_{i m} R_{j k l}{ }^{m}+b_{j m} R_{k i l}{ }^{m}+b_{k m} R_{i j l}{ }^{m} \\
& +B\left[g_{k l}\left(b_{i m} R_{j}{ }^{m}-b_{j m} R_{i}{ }^{m}\right)+g_{i l}\left(b_{j m} R_{k}{ }^{m}-b_{k m} R_{j}{ }^{m}\right)\right. \\
& \left.+g_{j l}\left(b_{k m} R_{i}{ }^{m}-b_{i m} R_{k}{ }^{m}\right)\right] .
\end{align*}
$$

(1) By Theorem 4.3, if b is R-compatible then it commutes with the Ricci tensor, and K-compatibility follows.
(2) If b is K-compatible it commutes with $K_{i j}$. Contraction with $g^{k l}$ gives

$$
b_{i m} K_{j}{ }^{m}-b_{j m} K_{i}^{m}=\left(b_{i m} R_{j}{ }^{m}-b_{j m} R_{i}{ }^{m}\right)[1-B(n-2)] .
$$

Hence, if $B \neq \frac{1}{n-2}, b$ commutes with the Ricci tensor and by (7.5) it is R-compatible.

The first statement of the proposition was proven for $A=B$ in 21, Prop. 3.4].

Proposition 7.7. Let K be an $A B C$ tensor with constant $A \neq 1$ and B. If

$$
\begin{equation*}
\nabla_{i} \nabla_{m} K_{j k l}^{m}+\nabla_{j} \nabla_{m} K_{k i l}^{m}+\nabla_{k} \nabla_{m} K_{i j l}^{m}=0 \tag{7.6}
\end{equation*}
$$

then the Ricci tensor is K-compatible.
Proof. If A and B are constants, one finds that

$$
\begin{equation*}
\nabla_{m} K_{j k l}^{m}=(1-A) \nabla_{m} R_{j k l}^{m}+\frac{1}{2}(B+2 C)\left(g_{k l} \nabla_{j} R-g_{j l} \nabla_{k} R\right) \tag{7.7}
\end{equation*}
$$

and Lovelock's identity (2.3) for the Riemann tensor implies

$$
\begin{align*}
\nabla_{i} \nabla_{m} K_{j k l}^{m} & +\nabla_{j} \nabla_{m} K_{k i l}^{m}+\nabla_{k} \nabla_{m} K_{i j l}^{m} \tag{7.8}\\
& =-(1-A)\left(R_{i m} R_{j k l}^{m}+R_{j m} R_{k i l}^{m}+R_{k m} R_{i j l}^{m}\right)
\end{align*}
$$

On the right-hand side the Riemann tensor can be replaced by the tensor K by using (7.5) written for the Ricci tensor.

Sufficient conditions for (7.6) to hold are: K is harmonic, K is recurrent (with closed recurrency 1-form, see [19, (3.13)]). Note that Proposition 7.7 remains valid for the Weyl conformal tensor, which is traceless.
8. Weyl compatibility and general relativity. In general relativity, the Ricci tensor is related to the energy-momentum tensor by the Einstein equation: $R_{j l}=\frac{1}{2} R g_{j l}+k T_{j l}$ with scalar curvature $R=-2 k T /(n-2)$ $\left(T=T_{k}^{k}\right)$. The contracted second Bianchi identity gives

$$
\nabla_{m} R_{j k l}^{m}=k\left(\nabla_{k} T_{j l}-\nabla_{j} T_{k l}\right)+\frac{1}{2}\left(g_{j l} \nabla_{k} R-g_{k l} \nabla_{j} R\right)
$$

Let K be an $A B C$ tensor with constant A, B, C. Its divergence (7.7) can be expressed in terms of the gradient of the trace of the energy-momentum tensor $T_{i j}$. In the same way Einstein's equations and 7.8 give an equation which is local in the energy-momentum tensor:

$$
\begin{align*}
\nabla_{i} \nabla_{m} K_{j k l}{ }^{m} & +\nabla_{j} \nabla_{m} K_{k i l}^{m}+\nabla_{k} \nabla_{m} K_{i j l}^{m} \tag{8.1}\\
& =-(1-A) k\left(T_{i m} K_{j k l}^{m}+T_{j m} K_{k i l}^{m}+T_{k m} K_{i j l}{ }^{m}\right)
\end{align*}
$$

The Weyl tensor $C_{j k l}{ }^{m}$ is the traceless part of the Riemann tensor, and it is an $A B C$ tensor. There are advantages in discussing general relativity by taking the Weyl tensor as the fundamental geometrical quantity [2, 14, 6]. The first equation 7.7)

$$
\nabla_{m} C_{j k l}^{m}=k \frac{n-3}{n-2}\left[\nabla_{k} T_{j l}-\nabla_{j} T_{k l}+\frac{1}{n-1}\left(g_{j l} \nabla_{k} T-g_{k l} \nabla_{j} T\right)\right]
$$

is reported in textbooks, such as De Felice-Clarke [6], Hawking-Ellis [14], Stephani [30], and in the paper [2]. A further derivation yields a Bianchilike equation for the divergence, 8.1), which contains no derivatives of the sources:

$$
\begin{align*}
\nabla_{i} \nabla_{m} C_{j k l}{ }^{m}+ & \nabla_{j} \nabla_{m} C_{k i l}{ }^{m}+\nabla_{k} \nabla_{m} C_{i j l}{ }^{m} \tag{8.2}\\
& =-k \frac{n-3}{n-2}\left(T_{i m} C_{j k l}{ }^{m}+T_{j m} C_{k i l}{ }^{m}+T_{k m} C_{i j l}{ }^{m}\right) .
\end{align*}
$$

It can be viewed as a condition for Weyl compatibility for the energymomentum tensor.

In view of Proposition 7.4 and the previous equation, the following holds:
Proposition 8.1. If $T_{i j}$ is Weyl compatible, the symmetric tensor $\dot{C}_{k l}:=$ $T^{j m} C_{j k l m}$ commutes with $T_{i j}$.

In four dimensions, given a time-like velocity field u^{i}, Weyl's tensor can be decomposed into longitudinal (electric) and transverse (magnetic) tensorial components [2]

$$
E_{k l}=u^{j} u^{m} C_{j k l m}, \quad H_{k l}=\frac{1}{4} u^{j} u^{m}\left(\epsilon_{p q j k} C^{p q}{ }_{l m}+\epsilon_{p q j l} C_{k m}^{p q}\right)
$$

that solve equations that resemble Maxwell's equations with source. Therefore, the tensor $E_{k l}=\dot{C}_{k l}$ can be viewed as a generalized electric field. It coincides with the standard definition if $T_{i j}=(p+\rho) u_{i} u_{j}+p g_{i j}$ (perfect fluid). The generalized magnetic field is

$$
H_{k l}=\frac{1}{4} T^{j m}\left(\epsilon_{p q j k} C^{p q}{ }_{l m}+\epsilon_{p q j l} C^{p q}{ }_{k m}\right) .
$$

Proposition 8.2. If $T_{k l}$ is Weyl compatible then $H_{k l}=0$.
Proof. From the condition for Weyl compatibility we obtain

$$
\epsilon_{i j k p}\left[T^{i m} C^{j k}{ }_{l m}+T^{j m} C^{k i}{ }_{l m}+T^{k m} C^{i j}{ }_{l m}\right]=0 .
$$

The first and the second terms are modified as follows:

$$
\begin{aligned}
& \epsilon_{i j k p} T^{i m} C^{j k}{ }_{l m}=\epsilon_{k i j p} T^{k m} C^{i j}{ }_{l m}=\epsilon_{i j k p} T^{k m} C^{i j}{ }_{l m}, \\
& \epsilon_{i j k p} T^{j m} C^{k i}{ }_{l m}=\epsilon_{j k i p} T^{k m} C^{i j}{ }_{l m}=\epsilon_{i j k p} T^{k m} C^{i j}{ }_{l m} .
\end{aligned}
$$

Then, since the sum becomes $\epsilon_{i j k p} T^{k m} C^{i j}{ }_{l m}=0$, the magnetic part of Weyl's tensor is zero.

REFERENCES

[1] M. Berger and D. Ebin, Some characterizations of the space of symmetric tensors on a Riemannian manifold, J. Differential Geom. 3 (1969), 379-392.
[2] E. Bertschinger and A. J. S. Hamilton, Lagrangian evolution of the Weyl tensor, Astroph. J. 435 (1994), 1-7.
[3] A. L. Besse, Einstein Manifolds, Springer, 1987.
[4] J.-P. Bourguignon, Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein, Invent. Math. 63 (1981), 263-286.
[5] U. C. De, On weakly symmetric structures on Riemannian manifolds, Facta Univ. Ser. Mech. Automatic Control Robotics 3 (2003), 805-819.
[6] F. De Felice and C. J. S. Clarke, Relativity on Curved Manifolds, Cambridge Univ. Press, 2001.
[7] A. Derdziński, Some remarks on the local structure of Codazzi tensors, in: Global Differential Geometry and Global Analysis, Lecture Notes in Math. 838, Springer, 1981, 251-255.
[8] A. Derdziński, On compact Riemannian manifolds with harmonic curvature, Math. Ann. 259 (1982), 145-152.
[9] A. Derdziński and C. L. Shen, Codazzi tensor fields, curvature and Pontryagin forms, Proc. London Math. Soc. 47 (1983), 15-26.
[10] D. Ferus, A remark on Codazzi tensors in constant curvature spaces, in: Global Differential Geometry and Global Analysis, Lecture Notes in Math. 838, Springer, 1981, 257.
[11] S. Formella, On some class of nearly conformally symmetric manifolds, Colloq. Math. 68 (1995), 149-164.
[12] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280.
[13] M. Hamermesh, Group Theory and its Application to Physical Problems, Dover, 1989.
[14] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Univ. Press, 1973.
[15] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Interscience, New York, 1963.
[16] D. Krupka, The trace decomposition problem, Beiträge Algebra Geom. 36 (1995), 303-315.
[17] D. Lovelock and H. Rund, Tensors, Differential Forms and Variational Principles, Dover, 1988.
[18] H. Maillot, Sur les variétés riemanniennes à opérateur de courbure pur, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1127-1130.
[19] C. A. Mantica and L. G. Molinari, A second order identity for the Riemann tensor and applications, Colloq. Math. 122 (2011), 69-82.
[20] C. A. Mantica and L. G. Molinari, Weakly Z-symmetric manifolds, Acta Math. Hungar. 135 (2012), 80-96.
[21] C. A. Mantica and L. G. Molinari, Extended Derdziński-Shen theorem for curvature tensors, Colloq. Math. (2012), to appear.
[22] C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Modern Phys. 9 (2012), no. 1, 1250004, 21 pp.
[23] C. A. Mantica and Y. J. Suh, The closedness of some generalized 2-forms on a Riemannian manifold I, Publ. Math. Debrecen (2012), to appear.
[24] J. Mikes, Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. 78 (1996), 311-334.
[25] M. Nakahara, Geometry, Topology and Physics, Hilger, 1990.
[26] P. Petersen, Riemannian Geometry, Springer, 2006.
[27] W. Roter, On a generalization of conformally symmetric metrics, Tensor (N.S.) 46 (1987), 278-286.
[28] U. Simon, Codazzi tensors, in: Global Differential Geometry and Global Analysis, Lecture Notes in Math. 838, Springer, 1981, 289-296.
[29] N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces, Nauka, Moscow, 1979 (in Russian).
[30] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Hertl, Exact Solutions of Einstein's Field Equations, 2nd ed., Cambridge Univ. Press, 2003.

Carlo Alberto Mantica
I.I.S. Lagrange

Via L. Modignani 65
20161, Milano, Italy
E-mail: carloalberto.mantica@libero.it

Luca Guido Molinari
Physics Department
Università degli Studi di Milano
and
I.N.F.N. sezione di Milano

Via Celoria 16
20133 Milano, Italy
E-mail: luca.molinari@unimi.it

[^0]: 2010 Mathematics Subject Classification: Primary 53B20, Secondary 53B21.
 Key words and phrases: Codazzi tensor, Riemann tensor, Riemann compatibility, generalized curvature tensor, geodesic mapping, Pontryagin forms.

