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Abstract. Derdziński and Shen’s theorem on the restrictions on the Riemann tensor
imposed by existence of a Codazzi tensor holds more generally when a Riemann compat-
ible tensor exists. Several properties are shown to remain valid in this broader setting.
Riemann compatibility is equivalent to the Bianchi identity for a new “Codazzi devia-
tion tensor”, with a geometric significance. The above general properties are studied, with
their implications on Pontryagin forms. Examples are given of manifolds with Riemann
compatible tensors, in particular those generated by geodesic mappings. Compatibility
is extended to generalized curvature tensors, with an application to Weyl’s tensor and
general relativity.

1. Introduction. The Riemann tensor Rijk
m and its contractions,

Rkl = Rkml
m and R = gklRkl, are the fundamental tensors to describe

the local structure of a Riemannian manifold (Mn, g) of dimension n. In a
remarkable theorem [9, 3] Derdziński and Shen showed that the existence of
a nontrivial Codazzi tensor imposes strong constraints on the structure of
the Riemann tensor. Because of their geometric relevance, Codazzi tensors
have been studied by several authors, including Berger and Ebin [1], Bour-
guignon [4], Derdziński [7, 8], Derdziński and Shen [9], Ferus [10], Simon [28];
an overview of results is found in Besse’s book [3]. Recently, we showed [21]
that the Codazzi differential condition

(1.1) ∇ibjk −∇jbik = 0,

sufficient for the theorem to hold, can be replaced by the more general notion
of Riemann compatibility, which is instead algebraic:

Definition 1.1. A symmetric tensor bij is Riemann compatible (R-com-
patible) if

(1.2) bimRjkl
m + bjmRkil

m + bkmRijl
m = 0.

With this requirement, we proved the following extension of Derdziński
and Shen’s theorem:
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Theorem 1.2 ([21]). Suppose that a symmetric R-compatible tensor bij
exists. Then, if X, Y and Z are three eigenvectors of the matrix brs at a
point of the manifold, with eigenvalues λ, µ and ν, then RijklX

i Y j Zk = 0
provided that both λ and µ are different from ν.

The concept of compatibility allows for a further extension of the the-
orem, where the Riemann tensor R is replaced by a generalized curvature
tensor K, and b is required to be K-compatible [21].

The present paper studies the properties of Riemann compatibility, and
its implications for the geometry of the manifold. In Section 2 R-compati-
bility is shown to be equivalent to the Bianchi identity for a new tensor, the
Codazzi deviation. In Section 3 the irreducible components of the covariant
derivative of a symmetric tensor are classified in a simple manner, based on
a decomposition into traceless terms. This is helpful in the study of various
structures suited for R-compatibility.

The general properties of Riemann compatibility are presented in Sec-
tion 4. In Section 5 several properties of manifolds in the presence of a
Riemann compatible tensor that were obtained by Derdziński and Shen and
Bourguignon for manifolds with a Codazzi tensor, are recovered. In partic-
ular, it is shown that R-compatibility implies pureness, a property of the
Riemann tensor introduced by Maillot that implies the vanishing of Pon-
tryagin forms. Manifolds that carry R-compatible tensors are exhibited in
Section 6; interesting examples are generated by geodesic mappings which
induce metric tensors that are R-compatible. Finally, in Section 7, K-tensors
and K-compatibility are considered, with applications to the standard cur-
vature tensors. In the end, an application to general relativity is mentioned,
to be fully discussed elsewhere.

2. The Codazzi deviation tensor and R-compatibility. Since Co-
dazzi tensors are Riemann compatible, for a non-Codazzi differentiable sym-
metric tensor field b it is useful to define its deviation from the Codazzi
condition. This tensor satisfies an unexpected relation that generalizes Love-
lock’s identity for the Riemann tensor, and shows that Riemann compatibil-
ity amounts to closedness of certain 2-forms.

Definition 2.1. The Codazzi deviation of a symmetric tensor bkl is

(2.1) Cjkl := ∇jbkl −∇kbjl.

Simple properties are: Cjkl = −Ckjl and Cjkl + Cklj + Cljk = 0.
The following identity holds in general, and relates the Bianchi differential

combination for C to the Riemann compatibility of b:
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Proposition 2.2.

(2.2) ∇iCjkl +∇jCkil +∇kCijl = bimRjkl
m + bjmRkil

m + bkmRijl
m.

Proof. We have

∇iCjkl +∇jCkil +∇kCijl = [∇i,∇j ]bkl + [∇k,∇i]bjl + [∇j ,∇k]bil

= bml(Rijk
m +Rkij

m +Rjki
m) + bimRjkl

m + bjmRkil
m + bkmRijl

m

and the first term on the right-hand side vanishes by the first Bianchi iden-
tity.

Remark 2.3. The identity (2.2) holds true if bij is replaced by b′ij =
bij + χaij , where aij is a Codazzi tensor and χ a scalar field. Then C ′jkl =
Cjkl − (akl∇j − ajl∇k)χ.

The deviation tensor is associated to the 2-form Cl = 1
2Cjkldx

j ∧ dxk.
The closedness condition 0 = DCl = 1

2∇iCjkldx
i ∧ dxj ∧ dxk (D is the

exterior covariant derivative) is the second Bianchi identity for the Codazzi
deviation:∇iCjkl+∇jCkil+∇kCijl = 0. This gives a geometric interpretation
of Riemann compatibility:

Theorem 2.4. bij is Riemann compatible if and only if DCl = 0.

Remark 2.5. The Codazzi deviation of the Ricci tensor is, by the con-
tracted second Bianchi identity, Cjkl := ∇jRkl − ∇kRjl = −∇mRjkl

m. For
the Ricci tensor the identity (2.2) amounts to Lovelock’s identity [17] for the
Riemann tensor:

(2.3) ∇i∇mRjkl
m +∇j∇mRkil

m +∇k∇mRijl
m

= −RimRjkl
m −RjmRkil

m −RkmRijl
m.

Also a Veblen-like identity holds that corresponds to (4.2) (for bij = Rij it
specializes to Veblen’s identity for the divergence of the Riemann tensor [19]):

Proposition 2.6.

(2.4) ∇iCjlk +∇jCkil +∇kClji +∇lCikj

= bimRjlk
m + bjmRkil

m + bkmRlji
m + blmRikj

m.

Proof. Write four versions of equation (2.2) with cyclically permuted
indices i, j, k, l and sum up. Then simplify by means of the first Bianchi
identity for the Riemann tensor and the cyclic identity Cjkl + Cklj + Cljk

= 0.

3. Irreducible components of ∇jbkl and R-compatibility. We be-
gin with a simple procedure to classify the O(n)-invariant components of
the tensor ∇jbkl. They will guide us in the study of R-compatibility. If b is
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the Ricci tensor, this simple construction reproduces the seven equations lin-
ear in ∇iRjk, invariant under the O(n) group, that are discussed in Besse’s
treatise [3].

For a symmetric tensor bkl with ∇jbkl 6= 0, the tensor ∇jbkl can be
decomposed into O(n)-invariant terms, where B0

jkl is traceless (B
0
jk

j = B0
kj

j

= 0) [13, 16]:

∇jbkl = B0
jkl +Ajgkl +Bkgjl +Blgjk,(3.1)

Aj =
(n+ 1)∇jb

m
m − 2∇mb

m
j

n2 + n− 2
, Bj = −∇jb

m
m − n∇mb

m
j

n2 + n− 2
.(3.2)

The traceless tensor can then be written as a sum of orthogonal compo-
nents [17]:

(3.3) B0
jkl =

1

3
[B0

jkl + B0
klj + B0

ljk] +
1

3
[B0

jkl −B0
kjl] +

1

3
[B0

jlk −B0
ljk].

The orthogonal decomposition (3.1), (3.3) provides O(n)-invariant sub-
spaces, characterized by invariant equations linear in ∇jbkl that are now dis-
cussed. The trivial subspace: ∇jbkl = 0. The subspace I (we follow Gray’s
notation, [12]) where B0

jkl = 0:

∇jbkl = Ajgkl +Bkgjl +Blgjk.

The complement I⊥ is characterized by Aj , Bj = 0, i.e. ∇jbkl is trace-
less. This gives two invariant equations: ∇jb

j
l = 0, and ∇jb

m
m = 0. Since

∇jbkl = B0
jkl, the structure of B0 specifies two orthogonal subspaces, so

that I⊥ = A⊕ B. In A:
∇jbkl +∇kblj +∇lbjk = 0.

In B:
∇jbkl −∇kbjl = 0.

The subspace I ⊕ A contains tensors with traceless part ∇jbkl − Ajgkl −
Bkgjl −Blgjk that satisfies the cyclic condition[

∇jbkl −
1

n+ 2
(∇jb

m
m + 2∇mb

m
j)gkl

]
+ cyclic = 0.

The subspace I ⊕ B contains tensors with traceless part that satisfies the
Codazzi condition:[
∇jbkl−

1

n− 1
(∇jb

m
m−∇mb

m
j)gkl

]
=

[
∇kbjl−

1

n− 1
(∇kb

m
m−∇mb

m
k)gjl

]
.

Accordingly, the Codazzi deviation tensor has the (unique) decomposi-
tion into irreducible components

(3.4) Cjkl = C 0
jkl + λjgkl − λkgjl, λj = Aj −Bj =

∇jb
m

m −∇mb
m

j

n− 1
,
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where C 0 is traceless. Then (2.2) becomes

(3.5) bimRjkl
m + bjmRkil

m + bkmRijl
m = ∇iC

0
jkl +∇jC

0
kil +∇kC

0
ijl

+ gil(∇jλk −∇kλj) + gjl(∇kλi −∇iλk) + gkl(∇iλj −∇jλi).

There are only two orthogonally invariant cases:
• C 0

jkl = 0; then b is R-compatible if and only if λ is closed. If b is the
Ricci tensor, this requirement gives nearly conformally symmetric (NCS)n
manifolds, introduced by Roter [27].
• ∇jb

m
m − ∇mb

m
j = 0; then b is R-compatible if and only if C = C 0

satisfies the second Bianchi identity. If b is the Ricci tensor, this corresponds
to ∇jR = 0.

Remark 3.1. The decomposition (3.4) for the deviation of the Ricci
tensor turns out to be

(3.6) Cjkl = −n− 2

n− 3
∇mCjkl

m +
1

2(n− 1)
[gkl∇jR− gjl∇kR]

where Cjkl
m is the conformal curvature tensor, or Weyl’s tensor. In this case

the λ covector is closed.

4. Riemann compatibility: general properties. The existence of a
Riemann compatible tensor has various implications. The first one is the
existence of a new generalized curvature tensor. This leads to the generaliza-
tion of the Derdziński–Shen theorem and other relations that were obtained
for Codazzi tensors.

We need a definition from Kobayashi and Nomizu’s book [15]:

Definition 4.1. A tensor Kijlm is a generalized curvature tensor (or,
briefly, aK-tensor) if it has the symmetries of the Riemann curvature tensor:

(a) Kijkl = −Kjikl = −Kijlk,
(b) Kijkl = Kklij ,
(c) Kijkl +Kjkil +Kkijl = 0 (first Bianchi identity).

It follows that the tensor Kjk := −Kmjk
m is symmetric.

In [21, Lemma 2.2] we proved this interesting fact:

Theorem 4.2. If b is R-compatible then Kijkl := Rijpqb
p
kb

q
l is a K-

tensor.

The next result reveals the relevance of the local basis of eigenvectors of
the Ricci tensor. Another symmetric contraction of the Riemann tensor was
introduced by Bourguignon [4]:

(4.1) R̊ij := bpqRpijq.
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Theorem 4.3. If b is R-compatible then:

(1) bimRj
m − bjmRi

m = 0,
(2) bimR̊j

m − bjmR̊i
m = 0.

Proof. The first identity is proven by transvecting (1.2) with gkl. The
second one is a restatement of the symmetry of the tensor Kij .

Remark 4.4. (A) Identities (1) and (2) are here obtained directly from
R-compatibility. Bourguignon [4] obtained them fromWeitzenböck’s formula
for Codazzi tensors, and Derdziński and Shen [9] from their theorem.

(B) As the symmetric matrices bij , Rij , R̊ij commute, they share at each
point of the manifold an orthonormal set of n eigenvectors.

(C) If b′ is a symmetric tensor that commutes with a Riemann compa-
tible b, then it can be shown that R̊′ij := b′pqRpijq commutes with b.

Finally, this Veblen-type identity holds:

Proposition 4.5. If b is R-compatible, then

(4.2) bimRjlk
m + bjmRkil

m + bkmRlji
m + blmRikj

m = 0.

Proof. Write four versions of (1.2) with cyclically permuted indices i, j,
k, l, sum up, and use the first Bianchi identity.

5. Pure Riemann tensors and Pontryagin forms. Riemann com-
patibility and nondegeneracy of the eigenvalues of b imply directly that the
Riemann tensor is pure and Pontryagin forms vanish.

We quote two results from Maillot’s paper [18]:

Definition 5.1. In a Riemann manifold Mn, the Riemann curvature
tensor is pure if at each point of the manifold there is an orthonormal basis
of n tangent vectorsX(1), . . . , X(n),X(a)iX(b)i = δab, such that the tensors
X(a)i ∧X(b)j =: X(a)iX(b)j −X(a)jX(b)i, a < b, diagonalize it:

(5.1) Rij
lmX(a)i ∧X(b)j = λabX(a)l ∧X(b)m.

Theorem 5.2. If a Riemannian manifold has pure Riemann curvature
tensor, then all Pontryagin forms vanish.

Consider the maps on tangent vectors, built with the Riemann tensor,

ω4(X1, . . . , X4) = Rija
bRklb

a(Xi
1 ∧X

j
2)(Xk

3 ∧X l
4),

ω8(X1, . . . , X8) = Rija
bRklb

cRmnc
dRpqd

a(Xi
1 ∧X

j
2) · · · (Xp

7 ∧X
q
8),

. . .

They are antisymmetric under exchange of vectors in each pair, and under
cyclic permutation of pairs. The Pontryagin forms [25] Ω4k result from total
antisymmetrization of ω4k:Ω4k(X1, . . . , X4k) =

∑
P (−1)Pω4k(Xi1 , . . . , Xi4k)
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where P is the permutation taking (1 . . . 4k) to (i1 . . . i4k). We have Ω4k = 0
if two vectors repeat; the intermediate forms Ω4k−2 vanish identically.

Pontryagin forms on generic tangent vectors are linear combinations of
forms evaluated on basis vectors.

If the Riemann tensor is pure, all Pontryagin forms on the basis of eigen-
vectors of the Riemann tensor vanish. For example, if X,Y, Z,W are or-
thogonal, then ω4(X,Y, Z,W ) = λXY λZW (Xa ∧ Y b)(Zb ∧ Wa) = 0 and
Ω4(X,Y, Z, U) = 0.

A consequence of the extended Derdziński–Shen Theorem 1.2 is the fol-
lowing:

Theorem 5.3. If there exists a symmetric tensor field bij that is R-
compatible and has distinct eigenvalues at each point of the manifold, then
the Riemann tensor is pure and all Pontryagin forms vanish.

Proof. At each point of the manifold the symmetric matrix bij(x) is diag-
onalized by n tangent orthonormal vectors X(a), with distinct eigenvalues.
Since b is R-compatible, Theorem 1.2 holds and, because of antisymmetry
of R in the first two indices,

0 = Rij
klX(a)i ∧X(b)jX(c)k, a 6= b 6= c.

This means that all column vectors of the matrix V (a, b)kl = Rij
klX(a)i

∧X(b)j are orthogonal to the vectors X(c), i.e. they belong to the subspace
spanned by X(a) and X(b). Because of antisymmetry in k, l, we have V (a, b)
= λabX(a) ∧X(b), i.e. the Riemann tensor is pure.

This property has been checked by Petersen [26] in various examples
with rotationally invariant metrics, by giving explicit orthonormal frames
such that R(ei, ej)ek = 0.

6. Structures for Riemann compatibility. We exhibit some differ-
ential structures that yield Riemann compatibility. Of particular interest
are geodesic mappings, which leave the condition for R-compatibility form-
invariant, and generate R-compatible tensors. Other examples where b is the
Ricci tensor are discussed in [20, 22].

6.1. Pseudo-K-symmetric manifolds. They are characterized by a
generalized curvature tensor K such that ([5, 23])

∇iKjkl
m = 2AiKjkl

m +AjKikl
m +AkKjil

m +AlKjki
m +AmKjkli.

The tensor bjk := Kjmk
m is symmetric. It is R-compatible if its Codazzi de-

viation Cikl = Aibkl−Akbil+3AmKikl
m satisfies the second Bianchi identity.

This is ensured by Am being concircular, i.e. ∇iAm = AiAm + γ gim.
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6.2. Generalized Weyl tensors. A Riemannian manifold is (NCS)n
[27] if the Ricci tensor satisfies

∇jRkl −∇kRjl =
1

2(n− 1)
[gkl∇jR− gjl∇kR].

The Ricci tensor is then the Weyl tensor, and the left-hand side is its Codazzi
deviation. This condition, by (3.6), is equivalent to ∇mCjkl

m = 0. This
suggests a class of deviations of a symmetric tensor b with C 0

jkl = 0 in (3.4):

(6.1) Cjkl = λjgkl − λkgjl.
Proposition 6.1. b is R-compatible if and only if λi is closed.

Proof. Transvect (3.5) with gkl to obtain

−bimRjm + bj
mRim = (n− 2)(∇iλj −∇jλi).

Then b commutes with the Ricci tensor if and only if λ is closed and, by the
previous equation, b is R-compatible.

An example is provided by spaces with

(6.2) ∇jbkl = Ajgkl +Bkgjl +Blgjk,

where Cjkl = λjgkl − λkgjl with λj = Aj − Bj . Sinyukov manifolds [29] are
of this sort, with bij being the Ricci tensor itself.

6.3. Geodesic mappings. Riemann compatible tensors arise naturally
in the study of geodesic mappings, i.e. mappings that preserve geodesic lines
[24, 11]. Their importance comes from the fact that Sinyukov manifolds are
(NCS)n manifolds and they always admit a nontrivial geodesic mapping.

Geodesic mappings preserve Weyl’s projective curvature tensor [29]. We
show that they also preserve the form of the compatibility relation.

A map f : (Mn, g) → (Mn, g) is geodesic if and only if the Christoffel
symbols are related by Γ k

ij = Γ k
ij + δkiXj + δkjXi where, on a Riemannian

manifold, X is closed (∇iXj = ∇jXi). This condition is equivalent to

(6.3) ∇kgjl = 2Xkgjl +Xjgkl +Xlgkj ,

which has the form (6.2). The corresponding relation between Riemann ten-
sors is

(6.4) Rjkl
m = Rjkl

m + δmj Pkl − δmk Pjl

where Pkl = ∇kXl −XkXl is the deformation tensor. The symmetry Pkl =
Plk is ensured by closedness of X.

Proposition 6.2. Geodesic mappings preserve R-compatibility:

(6.5) bimRjkl
m+bjmRkil

m+bkmRijl
m = bimRjkl

m+bjmRkil
m+bkmRijl

m

where b is a symmetric tensor.



RIEMANN COMPATIBLE TENSORS 205

Proof. Let us show that the difference of the two sides is zero. (6.4) gives

bim(δmj Pkl − δmk Pjl) + bjm(δmk Pil − δmi Pkl) + bkm(δmi Pjl − δmj Pil)

= bijPkl − bikPjl + bjkPil − bjiPkl + bkiPjl − bkjPil = 0.

Since g is trivially R-compatible (first Bianchi identity), form invariance
implies:

Corollary 6.3. g is R-compatible.

7. Generalized curvature tensors. Several results that are valid for
the Riemann tensor with a Riemann compatible tensor extend to gener-
alized curvature tensors Kijkl (hereafter referred to as K-tensors) with a
K-compatible symmetric tensor bjk. The classical curvature tensors are K-
tensors. The compatibility with the Ricci tensor is then examined.

Definition 7.1. A symmetric tensor bij is K-compatible if

(7.1) bimKjkl
m + bjmKkil

m + bkmKijl
m = 0.

The metric tensor is always K-compatible, as (7.1) then coincides with
the first Bianchi identity for K.

Proposition 7.2. If Kijlm is a K-tensor and bkl is K-compatible, then
K̂ijkl := Kijrsbk

rbl
s is a K-tensor.

We quote without proof the extension of the Derdziński and Shen theorem
to generalized curvature tensors [21]:

Theorem 7.3. Suppose that Kijkl is a K-tensor, and there exists a sym-
metric K-compatible tensor bij. Then, if X, Y and Z are three eigenvectors
of the matrix brs at a point x of the manifold, with eigenvalues λ, µ and ν,
we have Xi Y j ZkKijkl = 0 provided that both λ and µ are different from ν.

Proposition 7.4. If b is K-compatible, and b commutes with a tensor h,
then the symmetric tensor K̊kl := Kjklmh

jm commutes with b.

Proof. Multiply the relation of K-compatibility for b by hkl. The last
term vanishes by symmetry. The remaining terms give the null commutation
relation.

In [19, Prop. 2.4] we proved that a generalization of Lovelock’s identity
(2.3) holds for certain K-tensors, including all classical curvature tensors:

Proposition 7.5. Let Kjkl
m be a K-tensor with the property

(7.2) ∇mKjkl
m = α∇mRjkl

m + β(akl∇j − ajl∇k)ϕ,
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where α, β are non zero constants, ϕ is a real scalar function and akl is a
Codazzi tensor. Then

(7.3) ∇i∇mKjkl
m +∇j∇mKkil

m +∇k∇mKijl
m

= −α(RimRjkl
m +RjmRkil

m +RkmRijl
m).

7.1. ABC curvature tensors. A class of curvature tensors with the
structure (7.2) is formed by the ABC curvature tensors. They are combi-
nations of the Riemann tensor and its contractions (A, B, C are constants
unless otherwise stated):

Kjkl
m = Rjkl

m +A(δj
mRkl − δkmRjl) +B(Rj

mgkl −Rk
mgjl)(7.4)

+ C(Rδj
mgkl −Rδkmgjl).

The canonical curvature tensors are of this sort:

• Conformal tensor Cijkl: A = B = 1
n−2 , C = − 1

(n−1)(n−2) ;
• Conharmonic tensor Nijkl: A = B = 1

n−2 , C = 0;
• Projective tensor Pijkl: A = 1

n−1 , B = C = 0;
• Concircular tensor C̃ijkl: A = B = 0, C = 1

n(n−1) .

ABC tensors are generalized curvature tensors (in the sense of Kobayashi
and Nomizu, Def. 4.1) only for A = B. If A 6= B the (0, 4) tensor is not
antisymmetric in the last two indices.

Proposition 7.6. Let Kjkl
m be an ABC tensor (A, B, C may be scalar

functions) and bij a symmetric tensor.

(1) If b is R-compatible then b is K-compatible.
(2) If b is K-compatible and B 6= 1

n−2 then b is R-compatible.

Proof. The following identity holds for ABC tensors and a symmetric
tensor b:

(7.5) bimKjkl
m + bjmKkil

m + bkmKijl
m

= bimRjkl
m + bjmRkil

m + bkmRijl
m

+B[gkl(bimRj
m − bjmRi

m) + gil(bjmRk
m − bkmRj

m)

+ gjl(bkmRi
m − bimRk

m)].

(1) By Theorem 4.3, if b is R-compatible then it commutes with the Ricci
tensor, and K-compatibility follows.

(2) If b is K-compatible it commutes with Kij . Contraction with gkl gives

bimKj
m − bjmKi

m = (bimRj
m − bjmRi

m)[1−B(n− 2)].

Hence, if B 6= 1
n−2 , b commutes with the Ricci tensor and by (7.5) it is

R-compatible.
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The first statement of the proposition was proven for A = B in [21,
Prop. 3.4].

Proposition 7.7. Let K be an ABC tensor with constant A 6= 1 and B.
If

∇i∇mKjkl
m +∇j∇mKkil

m +∇k∇mKijl
m = 0(7.6)

then the Ricci tensor is K-compatible.

Proof. If A and B are constants, one finds that

∇mKjkl
m = (1−A)∇mRjkl

m +
1

2
(B + 2C)(gkl∇jR− gjl∇kR),(7.7)

and Lovelock’s identity (2.3) for the Riemann tensor implies

(7.8) ∇i∇mKjkl
m +∇j∇mKkil

m +∇k∇mKijl
m

= −(1−A)(RimRjkl
m +RjmRkil

m +RkmRijl
m).

On the right-hand side the Riemann tensor can be replaced by the tensor K
by using (7.5) written for the Ricci tensor.

Sufficient conditions for (7.6) to hold are: K is harmonic, K is recurrent
(with closed recurrency 1-form, see [19, (3.13)]). Note that Proposition 7.7
remains valid for the Weyl conformal tensor, which is traceless.

8. Weyl compatibility and general relativity. In general relativity,
the Ricci tensor is related to the energy-momentum tensor by the Einstein
equation: Rjl = 1

2Rgjl + kTjl with scalar curvature R = −2kT/(n − 2)

(T = T k
k). The contracted second Bianchi identity gives

∇mRjkl
m = k(∇kTjl −∇jTkl) +

1

2
(gjl∇kR− gkl∇jR).

Let K be an ABC tensor with constant A, B, C. Its divergence (7.7) can
be expressed in terms of the gradient of the trace of the energy-momentum
tensor Tij . In the same way Einstein’s equations and (7.8) give an equation
which is local in the energy-momentum tensor:

(8.1) ∇i∇mKjkl
m +∇j∇mKkil

m +∇k∇mKijl
m

= −(1−A)k(TimKjkl
m + TjmKkil

m + TkmKijl
m).

The Weyl tensor Cjkl
m is the traceless part of the Riemann tensor, and it

is an ABC tensor. There are advantages in discussing general relativity by
taking the Weyl tensor as the fundamental geometrical quantity [2, 14, 6].
The first equation (7.7)

∇mCjkl
m = k

n− 3

n− 2

[
∇kTjl −∇jTkl +

1

n− 1
(gjl∇kT − gkl∇jT )

]
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is reported in textbooks, such as De Felice–Clarke [6], Hawking–Ellis [14],
Stephani [30], and in the paper [2]. A further derivation yields a Bianchi-
like equation for the divergence, (8.1), which contains no derivatives of the
sources:

(8.2) ∇i∇mCjkl
m +∇j∇mCkil

m +∇k∇mCijl
m

= −kn− 3

n− 2
(TimCjkl

m + TjmCkil
m + TkmCijl

m).

It can be viewed as a condition for Weyl compatibility for the energy-
momentum tensor.

In view of Proposition 7.4 and the previous equation, the following holds:

Proposition 8.1. If Tij is Weyl compatible, the symmetric tensor C̊kl :=
T jmCjklm commutes with Tij.

In four dimensions, given a time-like velocity field ui, Weyl’s tensor can be
decomposed into longitudinal (electric) and transverse (magnetic) tensorial
components [2]

Ekl = ujumCjklm, Hkl =
1

4
ujum(εpqjkC

pq
lm + εpqjlC

pq
km)

that solve equations that resemble Maxwell’s equations with source. There-
fore, the tensor Ekl = C̊kl can be viewed as a generalized electric field. It
coincides with the standard definition if Tij = (p + ρ)uiuj + pgij (perfect
fluid). The generalized magnetic field is

Hkl =
1

4
T jm(εpqjkC

pq
lm + εpqjlC

pq
km).

Proposition 8.2. If Tkl is Weyl compatible then Hkl = 0.

Proof. From the condition for Weyl compatibility we obtain

εijkp[T
imCjk

lm + T jmCki
lm + T kmCij

lm] = 0.

The first and the second terms are modified as follows:

εijkpT
imCjk

lm = εkijpT
kmCij

lm = εijkpT
kmCij

lm,

εijkpT
jmCki

lm = εjkipT
kmCij

lm = εijkpT
kmCij

lm.

Then, since the sum becomes εijkpT kmCij
lm = 0, the magnetic part of Weyl’s

tensor is zero.
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