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LIMIT THEOREMS FOR STOCHASTIC RECURSIONS WITH
MARKOV DEPENDENT COEFFICIENTS

BY

DARIUSZ BURACZEWSKI (Wrocław) and MAŁGORZATA LETACHOWICZ (Opole)

Abstract. We consider the stochastic recursion Xn = AnXn−1 + Bn for Markov
dependent coefficients (An, Bn) ∈ R+ × R. We prove the central limit theorem, the local
limit theorem and the renewal theorem for the partial sums Sn = X1 + · · ·+Xn.

1. Introduction. In this paper we consider the affine stochastic recur-
sion on R defined by the action of the affine group on the real line:

Xx
0 = x,

Xx
n = AnX

x
n−1 +Bn, n ∈ Z+,

(1.1)

where {(An, Bn)}n≥1 is a stationary and ergodic sequence of random vari-
ables valued in R+ × R. It was proved by Brandt [2] that if E[logA1] < 0
and E[log |B1|] <∞, then the recursion has a unique stationary measure ν.
MoreoverXx

n converges in distribution to a random variable R with the law ν
and the limit R does not depend on the starting point x.

One can also consider the two-sided infinite affine recursion

(1.2) Xn = AnXn−1 +Bn, n ∈ Z,

where {(An, Bn)}n≥1 is a stationary and ergodic sequence. Then under the
assumptions stated above the extended recursion has a unique solution

(1.3) Xn =
∞∑
j=0

( n∏
i=n+1−j

Ai

)
Bn−j

and all Xn’s are distributed according to ν.
The recursion (1.1) has been studied for almost forty years mainly un-

der the assumption of independence of the random coefficients (An, Bn).
The most significant result is due to Kesten [13] (see also Goldie [6]) who
proved that if EAα = 1 for some α > 0 (and of course a number of fur-
ther assumptions are satisfied), then the stationary measure ν is α-regularly
varying. After this result an enormous number of further properties of the
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process {Xn} has been proved, including limit theorems for the partial sums
Sn = X1 + · · ·+Xn (see [1, 4, 8, 18]).

During the last several years substantial progress has been made in un-
derstanding the case of dependent coefficients (An, Bn). Here one should
mention the results of Collamore [5] and Roitershtein [17] who, under dif-
ferent sets of assumptions, independently proved the Kesten theorem for
(An, Bn) depending on an underlying Markov chain. Collamore [5], indeed,
considered more general recursions.

The main purpose of the present paper is to prove limit theorems related
to the partial sums Sn. We study here the case when {(An, Bn)}n∈Z is a
stationary sequence of random variables modulated by some Markov process.
More precisely, let (S,S) be a measurable space with countably generated
σ-field S and {sn}n∈Z be a stationary Markov chain with transition kernel H
and stationary measure π. For any measurable function f on S we denote by
‖f‖ the essential supremum of f with respect to the measure π. We assume
that there exists a kernel G on S × S × B, where B is the Borel σ-field on
R+ ×R, such that the transition kernel H̃ on (S ×R+ ×R,S ×B) given by

H̃((s, ζ), U ×W ) =
�

U

H(s, dt)G(s, t,W )

defines a Markov modulated process (MMP) associated with {sn}, i.e. a
stationary Markov chain {(sn, ζn)}n∈Z on the product space S × (R+ × R),
where ζn = (An, Bn) (cf. [17]). Notice that (sn, ζn) depends only on sn−1.
The stationary measure π̃ of this Markov chain is given by

π̃(U ×W ) =
�

S

H̃((s, ξ), U ×W )π(ds) =
�

S

�

U

H(s, dt)G(s, t,W )π(ds)

Given such a sequence we consider the real valued stationary process
{Xx

n} or {Xn} defined by (1.1) or (1.2), respectively.
Our main results do not deeply depend on the structure of the underlying

Markov chain sn. The only property of the process we need is convergence
of the powers of the Markov operator H to the stationary measure π, i.e. we
assume that

(1.4) lim
n→∞

Hn(f)(s) = π(f) π-a.s.,

for any bounded function f . This is satisfied for a large class of Markov
chains, e.g. when sn is an aperiodic Harris recurrent Markov chain (see [16,
Corollary 6.7]).

To avoid considerations of the degenerate case, when Xn = x a.s. for
some x ∈ R, we assume that

(1.5) P[A0x+B0 = x] < 1 for every x ∈ R.
Our main results are the following:
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Theorem 1.6 (Central Limit Theorem). Assume that (1.4) and (1.5)
are satisfied and there exists γ > 2 such that

(1.7) Λ(γ) = ‖Es[Aγ1 . . . A
γ
n]‖ < 1 and ‖Es[Bγ

1 ]‖ <∞.

Then 1√
n
(Sn−nm) converges in distribution to the normal law N(0, σ2), for

some σ2 > 0 and m = EX0.

Remark. The parameter σ2 can be explicitly computed by applying the
methods described in [4, Lemma 6.2].

Theorem 1.8 (Local limit theorem). Under the hypotheses of the theo-
rem above, for every compact set I ⊂ R with negligible boundary,

lim
n→∞

√
nP[Sn − nm ∈ I] = C0l(I),

where l denotes the Lebesgue measure and C0 =
1
2π

	
R e
−t2σ2/2 dt.

Theorem 1.9 (Renewal theorem). Let U(I) =
∑

n≥1 E[1I(Sn)]. Assume
that m > 0 and that (1.4), (1.5) and (1.7) hold for some γ > 1. Then

lim
y→∞

U(I + y) =
l(I)

m

for any compact set I with negligible boundary.

Proofs of the results stated above are based on the spectral method intro-
duced in the fifties by Nagaev to study limit theorems for certain classes of
Markov chains and strongly developed during last years (see e.g. [8, 7, 9, 11]).
We investigate the spectral properties of the Markov operator P related to
the Markov chain (Xx

n , sn) and of its perturbations Pt by Fourier characters.
On appropriately defined Banach spaces the operator P is quasi-compact
and has a unique peripheral eigenvalue (i.e. the eigenvalue whose modulus
is equal to the spectral radius) equal to 1. It turns out that for small t
the peripheral eigenvalue k(t) of Pt is also unique and the corresponding
eigenspace is one-dimensional. Thus, the study of the characteristic function
Es[eitS

x
n ] = Pnt 1(x, s), which is asymptotically close to kn(t), can be reduced

to studying the behavior of k(t) close to 1 for small values of t.

2. Fourier operators and their spectral properties. Given x ∈ R
we consider on R × S the Markov chain (Xx

n , sn), where Xx
n is defined in

(1.1) and s0 = s for some s ∈ S. We denote by P the corresponding Markov
operator

Pf(x, s) = Es[f(Xx
1 , s1)]

and by ν̃(f) = E[f(X0, s0)] its stationary measure, for X0 as in (1.3), where
f is an arbitrary bounded measurable function on R× S.
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On functions on R× S we introduce the seminorm

[f ]ε,λ =

∥∥∥∥sup
x 6=y

|f(x, s)− f(y, s)|
|x− y|ε(1 + |x|)λ(1 + |y|)λ

∥∥∥∥
and the two norms

|f |θ =
∥∥∥∥sup

x

|f(x, s)|
(1 + |x|)θ

∥∥∥∥, ‖f‖θ,ε,λ = |f |θ + [f ]ε,λ.

Given γ, we may assume that the parameters ε, λ, γ satisfy
(2.1) ε < 1, λ+ 3ε < θ < 2λ < γ − 3ε, 1 + ε < γ.

Moreover we assume that all the assumptions of the limit theorems are sat-
isfied, and from now we will refer to them without any further mention.

The norms define the Banach spaces
Cθ = {f : |f |θ <∞}, Bθ,ε,λ = {f : ‖f‖θ,ε,λ <∞}.

On these Banach spaces we consider a family of Fourier operators related to
the Markov kernel P . For t ∈ R we define

Ptf(x, s) = Es[eitX
x
1 f(Xx

1 , s1)].

We notice that by the Markov property,
(2.2) (Pnt f)(x, s) = Es[eitS

x
nf(Xx

n , sn)],

where Sxn =
∑n

k=1X
x
k . In particular if 1 is the function on R× S identically

equal to 1, then
(Pnt 1)(x, s) = Es[eitS

x
n ],

i.e. Pnt 1 is just the characteristic function of Sxn, which explains the role of
the operator Pt in studying limit theorems related to Sxn.

Notice that by the Jensen inequality, (1.7) implies E[logA0] < 0. There-
fore the sequence {(An, Bn)} satisfies the assumptions of Brandt’s theo-
rem [2]. Hence (1.2) has a unique solution given by (1.3).

Lemma 2.3. For every θ < γ,∥∥∥sup
n∈N

Es[|X0
n|θ]
∥∥∥ < C(θ) <∞.

Proof. We consider two cases. If θ > 1, then we use the Minkowski
inequality. By the Markov property and (1.7) we have

‖(Es[|X0
n|θ])1/θ‖ ≤

∥∥∥ n∑
j=1

(
Es
[
|Bj |θ

n∏
i=j+1

Aθi

])1/θ∥∥∥
≤

n∑
j=1

∥∥∥Es[|Bj |θEs[Es′[n−i∏
i=1

Aθi

] ∣∣∣ sj = s′
]]∥∥∥

≤ Cθ
∞∑
j=1

ρ
j/θ
θ ≤ C(θ).
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For θ ≤ 1 we can repeat the calculations above, but we use the inequality
(a+b)θ ≤ aθ+bθ valid for any a, b > 0, instead of the Minkowski inequality.

Lemma 2.4. For every t ∈ R,
|Pnt f |θ ≤ C1|f |θ.

Moreover there exists ρ < 1 such that

[Pnt f ]ε,λ ≤ C2ρ
n[f ]ε,λ + C3|t|ε|f |θ.

Finally, for every η satisfying λ+ 2ε ≤ η ≤ θ, δ < ε and s, t ∈ R,
|(Ps − Pt)f |η ≤ C4|s− t|δ‖f‖θ,ε,λ.

We omit the proof since the arguments are exactly as in the i.i.d. case.
See e.g. [4] for more details. One just has to use (1.7) and Lemma 2.3.

Lemma 2.5. The unique eigenvalue of modulus 1 of P acting on Bθ,ε,λ
is 1 and the corresponding eigenspace is C1.

Proof. Assume that Pf = zf for some nonzero f ∈ Bθ,ε,λ and z ∈ C,
|z| = 1. Then for π-almost every s and every x by Lemma 2.4 we have

|f(x, s)− f(0, s)| = |Pnf(x, s)− Pnf(0, s)| ≤ Cρn[f ]ε,λ · |x|ε(1 + |x|)λ.
Since ρ < 1, the value above tends to 0 as n tends to∞. Therefore f(0, s) =
f(x, s) for s, π-a.s., and f depends only on the second coordinate. The
operator P acting on functions defined on S coincides with the transition
probability H. Therefore, by (1.4), we have

znf(s) = Pnf(s) = Hnf(s)→ π(f).

So, z must be equal to 1 and then

f(s) = Hnf(s)→ π(f),

hence f(s) = π(f) π-a.s.

In view of the last lemma we may use the Ionescu Tulcea–Marinescu
theorem [12] (see also [9]) for the operator P . It says that the operator
P on Bθ,ε,λ is quasi-compact, i.e. in our case the Banach space Bθ,ε,λ can
be decomposed into a sum of two closed P -invariant subspaces: Bθ,ε,λ =
{C1} ⊕ H, where H = {f ∈ Bθ,ε,λ : ν̃(f) = 0}, and moreover r(P|H) < 1.
For our purpose we need a uniform control of the spectra σ(Pt) for small t,
and this is provided by the Keller–Liverani theorem [14].

Proposition 2.6. There exist t0 > 0, δ > 0 and ρ < 1− δ such that for
every |t| < t0:

• The spectrum of Pt acting on Bθ,ε,λ is contained in D = {z : |z| ≤ ρ}
∪ {z : |z − 1| < δ}.
• The set σ(Pt)∩{z : |z−1| < δ} consists of exactly one eigenvalue k(t),
the corresponding eigenspace is one-dimensional, and limt→0 k(t) = 1.
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• If πt is the projection of Pt onto the eigenspace mentioned above, then
there exists an operator Qt with spectral radius at most ρ, πtQt =
Qtπt = 0 and for every n,

Pnt f = k(t)nπt(f) +Qnt (f), f ∈ Bθ,ε,λ.
For any z belonging to the complement of D,

‖(z − Pt)−1f‖θ,ε,λ ≤ C‖f‖θ,ε,λ
for some constant C independent of t.

The identity embedding of Bθ,ε,λ into Bθ,ε,λ+ε is continuous and the de-
composition Pt = k(t)πt +Qt coincides on both spaces and

‖(πt − π0)f‖θ,ε,λ+ε ≤ C|t|ε‖f‖θ,ε,λ.
Finally

|k(t)− 1| ≤ C|t|ε.
We omit the proof of the proposition; see [8] and [4] for details.

Lemma 2.7. For every t 6= 0, the spectral radius of Pt is strictly smaller
than 1.

Proof. Assume that there exists a nonzero function f belonging to Bθ,ε,λ
and z of modulus 1 such that

Ptf = zf.

The function f is bounded, since by Lemma 2.3,
|f(x, s)| = |Ptf(x, s)| ≤ P (|f |)(x, s) ≤ |f |θEs[(1 + |Xx

1 |θ)] <∞.
Therefore for every n,

ν̃(Pn|f | − |f |) = 0.

However, the integrated function is positive:
|f(x, s)| = |znf(x, s)| = |Pnt f(x, s)| ≤ Pn(|f |)(x, s).

Therefore for every n,
|f(x, s)| = Pn(|f |)(x, s) ν̃-a.s.

In view of Lemma 2.5, |f | must be constant.
Next a convexity argument implies that for every n, s π-a.s. and for

every x,
znf(x, s) = eitS

x
nf(Xx

n , sn) P-a.s.
Hence

f(x, s)

f(y, s)
eit(y−x)

∑n
j=0 A1...Aj =

f(Xx
n , sn)

f(Xy
n, sn)

P-a.s.

Notice that the left hand side has a limit P-a.s. as n tends to infinity. Since

lim
n→∞

E
∣∣∣∣f(Xx

n , sn)

f(Xy
n, sn)

− 1

∣∣∣∣ = 0
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(this can be proved exactly as in [4, Lemma 3.14]), the limit of the right
hand side is 1, P-a.s. Therefore

f(x, s)

f(y, s)
= eit(x−y)

∑∞
j=0 A1...Aj .

Since the left hand side is nonrandom and the right one is random and
nonconstant, t must be 0. Thus, zf = Pf and in view of Lemma 2.5, z must
be 1, and f must be constant.

Now our aim is to prove the following proposition, which will be crucial
in proving limit theorems.

Proposition 2.8. If γ > 1, then there exists δ > 0 such that

k(t) = 1 + itm+ o(t1+δ)

for m =
	
R x ν(dx) = EX0 and ε < δ < γ − 1. If γ > 2, then

k(t) = 1 + itm− t2σ2/2 + o(t2)

for some σ2 > 0.

Proof. First applying rather standard arguments (see [9, 10]) we will
prove the second part of the proposition.

Assume γ > 2. Fix two triples (θ, ε, λ) and (θ′, ε, λ′) satisfying (2.1) and
additionally such that θ > θ′ + 2 and λ > λ′ + 2. For k = 1, 2 define

Lk,tf(x, s) = Es[(iXx
1 )
keitX

x
1 f(Xx

1 , s1)].

Then Lk,t is a bounded operator from Bθ′,ε,λ′ to Bθ,ε,λ and (cf. [10, Proposi-
tion 6.3])

(2.9) lim
h→0

1

|h|n

∥∥∥∥Pt+h − Pt − n∑
k=1

hk

k!
Lk,t

∥∥∥∥
Bθ′,ε,λ′ ,Bθ,ε,λ

= 0.

Let ht ∈ Bθ′,ε,λ′ ⊂ Bθ,ε,λ be the eigenfunction of Pt,

Pt(ht) = k(t)ht,

such that ν̃(ht) = 1. Then ht = πt(1)/ν̃(πt(1)). Notice that

(2.10) ν̃(χtht) = k(t),

where χt(x, s) = eitx. We will prove that t 7→ ht is twice differentiable.
Indeed, it is enough to prove that πt has, second derivative.

To compute the first derivative of πt we will use the formula (see [14])

πt =
1

2πi

�

|z−1|=δ

(z − Pt)−1 dz.
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Then for f ∈ Bθ′,ε,λ′ we write

1

h
(πt+h − πt)f =

1

h

1

2πi

�

|z−1|=δ

((z − Pt+h)−1 − (z − Pt)−1)f dz

=
1

h

1

2πi

�

|z−1|=δ

(z − Pt+h)−1(Pt+h − Pt)(z − Pt)−1f dz

=
1

2πi

�

|z−1|=δ

(z − Pt)−1L1,t(z − Pt)−1f dz

+
1

2πi

�

|z−1|=δ

((z − Pt+h)−1 − (z − Pt)−1)L1,t(z − Pt)−1f dz

+
1

2πi

�

|z−1|=δ

(z − Pt+h)−1
(
Pt+h − Pt − hL1,t

h

)
(z − Pt)−1f dz.

By Proposition 2.6 and (2.9) the second and the third integrals go to 0. So,
the derivative π(1)t of πt is a bounded operator from Bθ′,ε,λ′ to Bθ′+1,ε,λ′+1

and
π
(1)
t f =

1

2πi

�

|z−1|=δ

(z − Pt)−1L1,t(z − Pt)−1f dz.

In the same we may compute the second derivative of πt:

π
(2)
t f =

1

2πi

�

|z−1|=δ

(z − Pt)−1L2,t(z − Pt)−1f dz.

Therefore ht and hence k(t) are twice differentiable at 0. In particular k(t)
can be expanded in a Taylor series

k(t) = 1 + k′(0)t+
k′′(0)

2
t2 + o(t2).

To compute the derivative of k denote by ζ the derivative of t 7→ ht at 0.
Then differentiating (2.10) we obtain

k′(0) = im+ ν̃(ζ).

Since differentiating the equation ν̃(ht) = 1 at zero we obtain ν̃(ζ) = 0, it
follows that

k′(0) = im.

Proceeding as in [4, Lemmas 6.2 and 6.7] one can explicitly compute the
value of k′′(0), i.e. of σ2 = −k′′(0) in terms of the function ζ, and then to
prove that Lemma 2.7 implies σ2 > 0.

Assume now γ > 1. We proceed as in [15]. Although that paper uses
much stronger assumptions, including a heavy tail of ν, the method can be
adapted to our situation.
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Let δtf(x, s) = f(tx, s). We define another family of Fourier operators
on Bθ,ε,λ:

Ttf(x, s) = δ−1t Ptδtf(x, s) = Es[ei(A1x+tB1)f(A1x+ tB1, s1)], t 6= 0,

T f(x, s) = T0f(x, s) = Es[ei(A1x)f(A1x, s1)].

Notice that for t 6= 0, a function f is an eigenvalue of Pt if and only if δ−1t f
is an eigenvalue of Tt. Moreover the function

h(x, s) = Es[eix
∑∞
j=1 A1...Aj ]

is the unique eigenfunction of T corresponding to eigenvalue 1 and there are
no other eigenvalues of modulus 1. Indeed, by the Markov property,

Th(x, s) = Es[eiA1xh(A1x, s1)] = Es
[
eiA1xEs1

[
eiA1x

∑∞
j=2 A2...Aj

]]
= Es

[
eix

∑∞
j=1 A1...Aj

]
= h(x, s).

To prove uniqueness one has to argue as in the proof of Lemma 2.5.
One can prove that for θ, ε, λ satisfying (2.1) the family Tt satisfies the

conclusion Proposition 2.6 (in place of Pt), and in particular for small values
of t, Ttf = k(t)π̃(t)f + Q̃(t)f with the same eigenvalue k(t) as for Pt.

Notice that ht = δtπ̃th is an eigenfunction of Pt and since ν̃P = ν̃ we
have

(k(t)− 1)ν̃(ht) = ν̃Pt(ht)− ν̃(ht) = ν̃((χt − 1)ht).

Therefore, denoting by g the function g(x, s) = x, we obtain

k(t)− 1− itm =
1

ν̃(ht)
[ν̃((χt − 1)ht)− itm+ itm(1− ν̃(ht))]

=
1

ν̃(ht)
[ν̃(χt−1− itx) + ν̃((χt−1)(ht−1)) + itmν̃(1−ht)].

Now, reasoning exactly as in [15] (see the proof of Theorem 6.3 there and
the last inequality in it) we find that for any ρ, δ such that 0 < ρ < γ − 1
and ε < δ < γ − 1 there exists C such that

|ht(x, s)− 1| ≤ Ctδ(1 + |x|)ρ.
Then, since ν̃(ht) converges to 1 as t tends to 0 and ν̃(x1+ρ) <∞, we obtain

|k(t)− 1− itm| ≤ C[ν̃((tx)1+δ) + ν̃(tx · tδ(1 + |x|)ρ) + tmν̃(tδ(1 + |x|)ρ)]
≤ Ct1+δ.

3. Limit theorems. Now we are going to prove the limit theorems
related to the partial sums Sn = X1 + · · · +Xn. In fact the main work has
been done in the previous section and in view of Proposition 2.8 the proof is
rather classical (see e.g. [9]). However for the reader’s convenience we present
some details.
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Proof of Theorem 1.6. By Proposition 2.6, for fixed t we have

lim
n→∞

E
[
e
itSn−mn√

n
]
= lim

n→∞

�
Es
[
e
it
Sxn−mn√

n
]
ν̃(dx ds)

= lim
n→∞

�
e−itm

√
nPnt/

√
n(1)(x, s) ν̃(dx ds)

= lim
n→∞

(
e−itm/

√
nk(t/

√
n)
)n · lim

n→∞

�
πt/
√
n(1)(x, s) ν̃(dx ds)

+ lim
n→∞

�
Qnt/
√
n(1)(x, s) ν̃(dx ds)

and

lim
n→∞

∣∣∣ �πt/√n(1)(x, s) ν̃(dx ds)− 1
∣∣∣

= lim
n→∞

∣∣∣ � (πt/√n(1)(x, s)− π(1)(x, s)) ν̃(dx ds)∣∣∣
≤ C lim

n→∞

∣∣∣ � |t/√n|ε(1 + |x|θ) ν̃(dx ds)∣∣∣ = 0,

lim
n→∞

∣∣∣ �Qnt/√n(1)(x, s) ν̃(dx ds)∣∣∣ ≤ C lim
n→∞

ρn
�
(1 + |x|θ) ν(dx) = 0.

Therefore it is sufficient to prove

lim
n→∞

(
e
−i tm√

nk(t/
√
n)
)n

= elimn→∞(n(e−itm/
√
nk(t/

√
n)−1))(3.1)

= e−t
2/2σ2

.

For this purpose applying Proposition 2.8 we write

lim
n→∞

(
n
(
e
−i tm√

nk(t/
√
n)− 1

))
= lim

n→∞

[
n

(
1− itm√

n
+
t2m2

n
+O(n−3/2)

)(
1 + i

tm√
n
− t2σ2

2n
+ o(1/n)

)
− 1

]
= − t

2

2
σ2.

Proof of Theorem 1.8. In view of [3, Theorem 10.7] it is sufficient to prove

lim
n→∞

n1/2E[h(Sn − nm)] = C0I(h)

for any h ∈ L1 such that the Fourier transform of h is compactly supported.
Take M such that supp ĥ ⊂ [−M,M ] and fix 0 < δ < t0. By the Fourier
inversion formula and Proposition 2.6 we have

√
nE[h(Sn − nm)] =

√
n

2π

�

R

E[eit(Sn−nm)ĥ(t)] dt

=

√
n

2π

� �

R

e−itnmPnt (1)(x, s)ĥ(t) dt ν̃(dx ds)
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=

√
n

2π

� �

|t|<δ

e−itnmk(t)nπt(1)(x, s)ĥ(t) dt ν̃(dx ds)

+

√
n

2π

� �

|t|<δ

e−itnmQnt (1)(x, s)ĥ(t) dt ν̃(dx ds)

+

√
n

2π

� �

δ<|t|<M

e−itnmPnt (1)(x, s)ĥ(t) dt ν̃(dx ds);

since the function t 7→ lim supn→∞ ‖Pnt 1‖1/n is upper semicontinuous, r(Pt)
< 1 (Lemma 2.7) and by Proposition 2.6, r(Qt) < 1 for t < δ, the second
and the third expressions converge to 0 as n tends to infinity. Therefore,
since h(0) = l(h), by the Lebesgue theorem and (3.1) we have

lim
n→∞

√
nE[h(Sn − nm)]

= lim
n→∞

√
n

2π

� �

|t|<δ

e−itnmk(t)nπt(1)(x, s)ĥ(t) dt ν̃(dx ds)

= lim
n→∞

1

2π

� �

|t|<δ
√
n

(
e−itm/

√
nk(t/

√
n)
)n
πt/
√
n(1)(x, s)ĥ(t/

√
n) dt ν̃(dx ds)

=
l(h)

2π

�

R

e−t
2σ2/2 dt.

Proof of Theorem 1.9. It is sufficient to prove

lim
y→∞

U(hy) =
l(h)

m

where h ∈ L1, the Fourier transform of h is differentiable and compactly
supported and hy(x) = h(x − y). We assume that the support of ĥ is con-
tained in the interval [−M,M ] for someM > 0. Since ĥy(t) = e−ityĥ(t), also
supp ĥy ⊂ [−M,M ]. For η < 1 define

Uη(h) =
∑
n≥1

ηnE[h(Sn)].

Then by the Fourier inversion theorem and Proposition 2.6 for δ < t0 we have

Uη(hy) =
1

2π

�

R

ĥy(t)
∑
n≥1

ηnE[eitSn ] dt

=
1

2π

� �

R

ĥy(t)
∑
n≥1

ηnPnt (1)(x, s) dt ν̃(dx ds)

=
1

2π

� �

|t|<δ

ĥy(t)
∑
n≥1

ηnkn(t)πt(1)(x, s) dt ν̃(dx ds)
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+
1

2π

� �

|t|<δ

ĥy(t)
∑
n≥1

ηnQnt (1)(x, s) dt ν̃(dx ds)

+
1

2π

� �

δ<|t|<M

ĥy(t)
∑
n≥1

ηnPnt (1)(x, s) dt ν̃(dx ds).

The second and the third summand converge to 0 as η → 1 and y → ∞.
Indeed, notice first that since

� ∣∣∣ĥ(t)∑
n≥1

ηnQnt (1)(x, s)
∣∣∣ν̃(dx ds) ≤ ∣∣∣∣ĥ(t) · ρη

1− ρη

∣∣∣∣,
for ρ being as in Proposition 2.6, the function on the left hand side is inte-
grable on [−δ, δ]. Therefore, by the Riemann–Lebesgue theorem,

lim
y→∞

lim
η→1

∣∣∣ � �

|t|<δ

e−iytĥ(t)
∑
n≥1

ηnQnt (1)(x, s) dt ν̃(dx ds)
∣∣∣ = 0.

Similarly we deal with the third term. To estimate the first summand we
decompose it further into three terms:

1

2π

� �

|t|<δ

e−ity
ηk(t)ĥ(t)

1− ηk(t)
πt(1)(x, s) dt ν̃(dx ds)

=
η

2π

� �

|t|<δ

e−ity
(
ĥ(t)k(t)

1− ηk(t)
− ĥ(0)

1− η(1 + imt)

)
πt(1)(x, s) dt ν̃(dx ds)

+
η

2π

� �

|t|<δ

e−ityĥ(0)
πt(1)(x, s)− 1

1− η(1 + imt)
dt ν̃(dx ds)+

ηĥ(0)

2π

�

|t|<δ

e−ity

1−η(1+imt)
dt

= I(η, y) + II(η, y) + III(η, y).

We will prove that I and II converge to 0 as η → 1 and y → ∞. Indeed,
notice that for t sufficiently small and η close to 1,

|1− ηk(t)| ≥ m|t|/2 and |1− η(1 + imt)| ≥ m|t|/2.

Since both k and ĥ are differentiable there exists a continuous function ψ
such that ĥ(t)k(t) = ĥ(0) + tψ(t). Therefore, writing

F (η, t) =
ĥ(t)k(t)

1− ηk(t)
− ĥ(0)

1− η(1 + imt)

=
tψ(t)

1− ηk(t)
+ ĥ(0) · k(t)− 1− imt

(1− ηk(t))(1− η(1 + imt))
,

we see that F̃ (t) = limη→1 F (η, t) is an integrable function on the interval
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[−δ, δ]. Then by the Riemann–Lebesgue theorem,

lim
y→∞

lim
η→1

I(η, y) = lim
y→∞

� �
e−iyt1{|t|≤δ}F̃ (t)πt(1)(x, s) dt ν̃(dx ds) = 0.

Similarly we prove that II converges to 0. Indeed, Proposition 2.6 implies
integrability of the function

t 7→
	
(πt(1)(x, s)− 1) ν̃(dx ds)

imt
.

Finally

lim
y→∞

U(hy) = lim
y→∞

lim
η→1

Uη(hy) = lim
y→∞

lim
η→1

1

2π

�

|t|<δ

e−ity

1− η(1 + imt)
dt

= lim
y→∞

1

2πm

(
π +

�

|t|<δy

sin t

dt

)
· l(h) = l(h)

m
,

where the last but one equality was proved in [9, p. 47].
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