ON THE DIOPHANTINE EQUATION $x^{y}-y^{x}=c^{z}$

BY
ZHONGFENG ZHANG (Zhaoqing), JIAGUI LUO (Zhaoqing) and PINGZHI YUAN (Guangzhou)

Abstract

Applying results on linear forms in p-adic logarithms, we prove that if (x, y, z) is a positive integer solution to the equation $x^{y}-y^{x}=c^{z}$ with $\operatorname{gcd}(x, y)=1$ then $(x, y, z)=(2,1, k),(3,2, k), k \geq 1$ if $c=1$, and either $(x, y, z)=\left(c^{k}+1,1, k\right), k \geq 1$ or $2 \leq x<y \leq \max \left\{1.5 \times 10^{10}, c\right\}$ if $c \geq 2$.

1. Introduction. Kenichiro Kashihara Ka asked to solve the equation $x^{y}+y^{z}+z^{x}=0$, i.e., to find its integer solutions. Recently, Yanni Liu and Xiaoyan Guo [G] answered this question by showing that $(x, y, z)=$ $(-2,1,1),(1,-2,1),(1,1,-2),(1,-1,-2),(-1,-2,1),(-2,1,-1)$ are the only integer solutions.

Let a, b, c be odd positive integers and $H=\max \{a, b, c\}$. The first and the third authors ZY proved that all integer solutions to the equation $a x^{y}+b y^{z}+c z^{x}=0$ with $x y z \neq 0$ satisfy $\max \{|x|,|y|,|z|\} \leq 2 H$. In that paper, they also considered the equation $x^{y}+y^{z}=z^{x}$ and using a result of Stewart and Kunrui Yu [SY] on the $A B C$ conjecture, showed that all positive integer solutions satisfy $\max \{x, y, z\}<\exp (\exp (\exp (5)))$.

The aim of this paper is to consider the equation $x^{y}-y^{x}=c^{z}$, where the positive integer c is given, and to prove the following result.

Theorem 1.1. Let c be a positive integer, and (x, y, z) a positive integer solution to the equation

$$
\begin{equation*}
x^{y}-y^{x}=c^{z}, \quad \operatorname{gcd}(x, y)=1 \tag{1.1}
\end{equation*}
$$

Then either
(i) $c=1,(x, y, z)=(2,1, k),(3,2, k), k \geq 1$; or
(ii) $c \geq 2,(x, y, z)=\left(c^{k}+1,1, k\right), k \geq 1$, or $2 \leq x<y \leq \max \{1.5 \times$ $\left.10^{10}, c\right\}$.

In the case where $c \geq 2$ and $y>x \geq 2$, from $c^{z}<x^{y}$ we get $z<$ $y \log x / \log c<y \log y / \log c$, which is a bound for z depending on c. We deduce the following corollary.

[^0]Corollary 1.2. Let (x, y, z) be a positive integer solution to the equation

$$
\begin{equation*}
x^{y}-y^{x}=z^{z} . \tag{1.2}
\end{equation*}
$$

Then $\operatorname{gcd}(x, y, z)=1$ and $(x, y, z)=(3,2,1)$ or $(x, y, z)=\left(k^{k}+1,1, k\right)$ for some $k \geq 1$ or $2 \leq x<z<y<1.5 \times 10^{10}$.

This paper is organized as follows. In Section 2, we recall or prove some lemmas needed for the proofs of Theorem 1.1 and Corollary 1.2. In Section 3, we prove Theorem 1.1 and Corollary 1.2.
2. Some preliminary results. In this section, we recall two lemmas and prove one. They will help us to prove Theorem 1.1 and Corollary 1.2 in the next section.

Let x_{1} / y_{1} and x_{2} / y_{2} be two nonzero rational numbers and p a prime satisfying $v_{p}\left(x_{1} / y_{1}\right)=v_{p}\left(x_{2} / y_{2}\right)=0$. We denote by g the smallest positive integer such that $v_{p}\left(\left(x_{1} / y_{1}\right)^{g}-1\right)>0$ and $v_{p}\left(\left(x_{2} / y_{2}\right)^{g}-1\right)>0$.

Let E be a real number such that

$$
v_{p}\left(\left(\frac{x_{1}}{y_{1}}\right)^{g}-1\right) \geq E>\frac{1}{p-1} .
$$

We need an explicit upper bound for the p-adic valuation of

$$
\Lambda=\left(\frac{x_{1}}{y_{1}}\right)^{b_{1}}-\left(\frac{x_{2}}{y_{2}}\right)^{b_{2}}
$$

where b_{1}, b_{2} are positive integers. Let $A_{1}, A_{2}>1$ be real numbers such that

$$
\log A_{i} \geq \max \left\{\log \left|x_{i}\right|, \log \left|y_{i}\right|, E \log p\right\}, \quad i=1,2,
$$

and put

$$
\begin{aligned}
b^{\prime} & =\frac{b_{1}}{\log A_{2}}+\frac{b_{2}}{\log A_{1}}, \\
f & =\log b^{\prime}+\log (E \log p)+0.4 .
\end{aligned}
$$

Then we have the following lemma (see [B, Theorem 2]).
Lemma 2.1. With the above notation, if x_{1} / y_{1} and x_{2} / y_{2} are multiplicatively independent, then

$$
\begin{equation*}
v_{p}(\Lambda) \leq \frac{36.1 g}{E^{3}(\log p)^{4}}(\max \{f, 6 E \log p, 5\})^{2} \log A_{1} \log A_{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{p}(\Lambda) \leq \frac{53.8 g}{E^{3}(\log p)^{4}}(\max \{f, 4 E \log p, 5\})^{2} \log A_{1} \log A_{2}, \tag{2.2}
\end{equation*}
$$

whenever p is odd or when $p=2$ and $v_{2}\left(x_{2} / y_{2}-1\right) \geq 2$. Else, we have

$$
v_{2}(\Lambda) \leq 208\left(\max \left\{\log b^{\prime}+0.04,10\right\}\right)^{2} \log A_{1} \log A_{2}
$$

The following result can be found in many calculus textbooks. Nevertheless, we give its proof.

Lemma 2.2. Let $b \geq 3$ be an integer $n d f(x)=b^{x}-x^{b}$. Then $f(x)$ is an increasing function when $x>b$. In particular, $f(x)>0$ when $x \in(b, \infty)$.

Proof. We have $f^{(b)}(x)=b^{x}(\log b)^{b}-b!>0$ for $x>b$. In the same way, $f^{(b-1)}(b)=b^{b}(\log b)^{b-1}-b \cdot b!>0$. So we deduce that $f^{(b-1)}(x)>0$ when $x>b$. Continuing this process we get $f^{\prime}(x)>0$ for $x>b$. This means that $f(x)$ is an increasing function when $x>b$. As $f(b)=0$ one can see that $f(x)>0$ when $x>b \geq 3$.

3. Proofs of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. Let (x, y, z) be a positive integer solution to equation (1.1).

If $c=1$, then $2 \mid x y$ and by the results of V. Lebesgue $\lfloor\mathbb{~}$ and Chao Ko [Ko] on the Catalan equation, one has $(x, y, z)=(3,2, k)$ with $k \geq 1$ when $y \geq 2$ or $(x, y, z)=(2,1, k), k \geq 1$ when $y=1$.

So we consider $c \geq 2$. Moreover, if $y=1$, one gets $(x, y, z)=\left(c^{k}+1,1, k\right)$, $k \geq 1$. It is obvious that $x \geq 2$. Therefore, we assume $x, y, c \geq 2$.

Claim 1. $x<y$.
Assume the contrary, i.e. $x \geq y$. Since $\operatorname{gcd}(x, y)=1$, one has $x>y \geq 2$. Then $y \geq 3$ is impossible by Lemma 2.2. Hence $y=2$ and (1.1) becomes $x^{2}=2^{x}+c^{z} \geq 2^{x}+2$. Let $g(x)=2^{x}+2-x^{2}$. Then $g(3)=1>0$, $g(4)=2>0$, and $g^{\prime}(x)=2^{x} \log 2-2 x>0$ when $x \geq 4$. Therefore, $g(x)>0$ when $x \geq 4$, which is a contradiction.

Claim 2. $y \leq \max \left\{1.5 \times 10^{10}, c\right\}$.
Suppose that $y>\max \left\{1.5 \times 10^{10}, c\right\}$. We will deduce a contradiction from Lemma 2.1. Equation (1.1) implies $c^{z}<x^{y}$. Then $z<y \log x / \log c<$ $y \log y / \log c$. There are three cases covering all possibilities.

CASE 2.1: $2 \mid x, 2 \nmid c y$. In this case, we have $c \geq 3$. If $2 \mid z$, then $y^{x}+c^{z} \equiv$ $1+1 \equiv 2(\bmod 8)$, which is impossible since $v_{2}\left(x^{y}\right) \geq y \geq x+1 \geq 3$. Therefore, $2 \nmid z$.

Let

$$
\Lambda=y^{\prime x}-(-c)^{z},
$$

where $y^{\prime}= \pm y$ with $y^{\prime} \equiv 1(\bmod 4)$. We will apply Lemma 2.1 to get an upper bound for the 2 -adic valuation of Λ. We take

$$
b_{1}=x, b_{2}=z, g=1, x_{1}=y^{\prime}, y_{1}=1, x_{2}=-c, y_{2}=1
$$

and $E=2$ as $v_{2}\left(y^{\prime}-1\right) \geq 2>1 /(2-1)=1$. Also we choose $A_{1}=A_{2}=y$ since $y>\max \left\{1.5 \times 10^{10}, c\right\}$. So

$$
b^{\prime}=\frac{x}{\log y}+\frac{z}{\log y} .
$$

As $-c \equiv 1(\bmod 8)$ we have $v_{2}(-c-1) \geq 3$. We can use 2.1) to obtain a bound. The assumption $y \geq 1.5 \times 10^{10}$ implies $6 E \log p=6 \times 2 \log 2<\log y$, $5<\log y$ and

$$
\begin{gathered}
\log b^{\prime}+\log (E \log p)+0.4<\log \left(\frac{x}{\log y}+\frac{y \log y}{\log y \log c}\right)+\log (2 \log 2)+0.4 \\
<\log 2 y-\log (\log 3)+\log (2 \log 2)+0.4<1.057 \log y
\end{gathered}
$$

By inequality (2.1) and $x^{y}=\Lambda$, we get

$$
y \leq v_{2}(\Lambda) \leq \frac{36.1 \times 1}{2^{3} \times(\log 2)^{4}}(1.057 \log y)^{2} \log y \log y<21.841 \log ^{4} y
$$

which is impossible for $y \geq 1.5 \times 10^{10}$. In fact, the monotonicity of the function $h(y)=21.841 \log ^{4} y-y$ yields $h(y)<0$ when $y \geq 1.5 \times 10^{10}$.

Case 2.2: $2 \mid y, 2 \nmid c x$. Again here we have $c, x \geq 3$. If $2 \nmid z$, then $0 \equiv y^{x}=x^{y}-c^{z} \equiv 1-c(\bmod 8)$, i.e. $c \equiv 1(\bmod 8)$.

Let

$$
\Lambda=x^{\prime y}-c^{\prime z},
$$

where $x^{\prime}= \pm x$ with $x^{\prime} \equiv 1(\bmod 4)$ and

$$
c^{\prime}= \begin{cases}c, & 2 \nmid z, \\ \pm c, & 2 \mid z,\end{cases}
$$

with $c^{\prime} \equiv 1(\bmod 4)$. Using an argument similar to that of Case 2.1 we get $x<21.841 \log ^{4} y$.

Let p be a prime factor of x. One has $3 \leq p \leq x, p \nmid c y$. Let

$$
\Lambda=c^{z}-(-y)^{x} .
$$

Then $g \leq p-1 \leq x-1<x$. We take

$$
b_{1}=z, b_{2}=x, E=1, x_{1}=c, y_{1}=1, x_{2}=-y, y_{2}=1 .
$$

As $y>\max \left\{1.5 \times 10^{10}, c\right\}$, we put $A_{1}=A_{2}=y$. Thus

$$
b^{\prime}=\frac{z}{\log y}+\frac{x}{\log y} .
$$

Since $p \geq 3$, we will use (2.2) to get a bound. In fact, as $y>x \geq p$ and $y>\max \left\{1.5 \times 10^{10}, c\right\}$, we have

$$
\begin{aligned}
\log b^{\prime}+\log (\log p) & +0.4<\log \left(\frac{y \log y}{\log y \log c}+\frac{y}{\log y}\right)+\log (\log y)+0.4 \\
& <\log 2 y+\log (\log y)-\log (\log 3)+0.4<1.038 \log (y \log y) .
\end{aligned}
$$

We consider two subcases.

SUBCASE 2.2.1: $1.038 \log (y \log y) \geq 4 \log p$. By inequality (2.2) and $\Lambda=x^{y}$, one has

$$
\begin{aligned}
y \leq v_{p}(\Lambda) \leq & \frac{53.8 \times g}{1^{3} \times \log ^{4} p} 1.038^{2} \log ^{2}(y \log y) \log y \log y \\
& <\frac{57.97 p}{\log ^{4} p} \log ^{2}(y \log y) \log ^{2} y
\end{aligned}
$$

We claim

$$
\frac{57.97 p}{\log ^{4} p}<0.03 \log ^{4} y
$$

If $p>1.7 \times 10^{6}$, then as

$$
\frac{57.97 \times 21.841}{\log ^{4}\left(1.7 \times 10^{6}\right)}<0.0299<0.03
$$

one has

$$
\frac{57.97 p}{\log ^{4} p}<\frac{57.97 x}{\log ^{4}\left(1.7 \times 10^{6}\right)}<\frac{57.97 \times 21.841}{\log ^{4}\left(1.7 \times 10^{6}\right)} \log ^{4} y<0.03 \log ^{4} y
$$

Now we suppose that $3 \leq p<1.7 \times 10^{6}$. As

$$
0.03 \log ^{4} y \geq 0.03 \log ^{4}\left(1.5 \times 10^{10}\right)>9042
$$

and the function $k(p)=p / \log ^{4} p$ is increasing for $p \geq 59$ and decreasing for $3 \leq p \leq 53$, it follows that

$$
\frac{57.97 \times 3}{\log ^{4} 3}<120, \quad \frac{57.97 \times 1.7 \times 10^{6}}{\log ^{4}\left(1.7 \times 10^{6}\right)}<2327
$$

Therefore, one also has

$$
\frac{57.97 p}{\log ^{4} p}<0.03 \log ^{4} y
$$

From the above, we have

$$
y<0.03 \log ^{4} y \log ^{2}(y \log y) \log ^{2} y=0.03 \log ^{2}(y \log y) \log ^{6} y
$$

This is impossible when $y \geq 1.5 \times 10^{10}$.
Subcase 2.2.2: $1.038 \log (y \log y)<4 \log p$. Inequality (2.2) and $\Lambda=x^{y}$ imply

$$
y \leq v_{p}(\Lambda) \leq \frac{53.8 \times g}{1^{3} \times \log ^{4} p} 4^{2} \log ^{2} p \log y \log y<\frac{860.8 p}{\log ^{2} p} \log ^{2} y
$$

We claim that

$$
\frac{860.8 p}{\log ^{2} p}<76.28 \log ^{4} y
$$

If $p>6.58 \times 10^{6}$, then

$$
\frac{860.8 \times 21.841}{\log ^{2}\left(6.58 \times 10^{6}\right)}<76.28
$$

Hence

$$
\frac{860.8 p}{\log ^{2} p}<\frac{860.8 x}{\log ^{2}\left(6.58 \times 10^{6}\right)}<\frac{860.8 \times 21.841}{\log ^{2}\left(6.58 \times 10^{6}\right)} \log ^{4} y<76.28 \log ^{4} y .
$$

In the same way, if $3 \leq p<6.58 \times 10^{7}$, one gets

$$
76.28 \log ^{4} y>76.28 \log ^{4}\left(1.5 \times 10^{10}\right)>22993093
$$

As the function $j(p)=p / \log ^{2} p$ is increasing for $p \geq 11$ and decreasing for $3 \leq p \leq 7$, we obtain

$$
\frac{860.8 \times 3}{\log ^{2} 3}<2140, \quad \frac{860.8 \times 6.58 \times 10^{6}}{\log ^{2}\left(6.58 \times 10^{6}\right)}<22980211
$$

So again we get

$$
\frac{860.8 p}{\log ^{2} p}<76.28 \log ^{4} y
$$

Therefore, we have $y<76.28 \log ^{4} y \log ^{2} y<76.28 \log ^{6} y$, which contradicts the monotonicity of the function $m(y)=76.28 \log ^{6} y-y$ when $y \geq 1.5 \times 10^{10}$.

Case 2.3: $2 \mid c, 2 \nmid x y$. We begin by proving the following assertion:
Assertion. $z<19.6 \log ^{4} y$.
Without loss of generality, we assume $z \geq 2$. Then we have $x^{y}-y^{x} \equiv$ $x-y \equiv 0(\bmod 4)$.

First, suppose that $x \equiv y \equiv 1(\bmod 4)$. Let

$$
\Lambda=x^{y}-y^{x} .
$$

We take

$$
b_{1}=y, b_{2}=x, g=1, x_{1}=x, y_{1}=1, x_{2}=y, y_{2}=1, E=2 .
$$

Then we can choose $A_{1}=A_{2}=y$, since $x<y, y>1.5 \times 10^{10}$. So we have

$$
b^{\prime}=\frac{y}{\log y}+\frac{x}{\log y} .
$$

As $v_{2}(y-1) \geq 2$, we will use (2.1) of Lemma 2.1 to obtain a bound. The assumption $y \geq 1.5 \times 10^{10}$ implies $6 E \log p=6 \times 2 \log 2<\log y, 5<\log y$ and

$$
\log b^{\prime}+\log (E \log p)+0.4<\log y .
$$

From inequality (2.1) and the equation $c^{z}=\Lambda$, we have

$$
z \leq v_{2}(\Lambda) \leq \frac{36.1 \times 1}{2^{3} \times(\log 2)^{4}}(\log y)^{2} \log y \log y<19.6 \log ^{4} y
$$

Second, we suppose that $x \equiv y \equiv 3(\bmod 4)$. In this case, we take

$$
\Lambda=(-y)^{x}-(-x)^{y}
$$

and we use an argument similar to that of the case $x \equiv y \equiv 1(\bmod 4)$ to obtain $z<19.6 \log ^{4} y$.

The remaining proof is divided into two subcases: $z<x$ or $z \geq x$.
Subcase 2.3.1: $z<x$. If $z<x \leq c$, then we obtain $z<x<c$ and $x \geq 3, c \geq 4$ since $2 \nmid x, 2 \mid c$.

Let $n(y)=x^{y}-y^{x}-c^{x-1}$. Then $n(y) \leq x^{y}-y^{x}-c^{z}=0$. On the other hand, by Lemma 2.2, one has $n^{\prime}(y)=x^{y} \log x-x y^{x-1}>x^{y}-y^{x}>0$ when $y \geq c+1>x \geq 3$ and

$$
\begin{aligned}
n(c+1) & =x^{c+1}-(c+1)^{x}-c^{x-1}=x^{c+1}-c^{x}\left(\left(1+\frac{1}{c}\right)^{x}+\frac{1}{c}\right) \\
& >x^{c+1}-c^{x}\left(\left(1+\frac{1}{c}\right)^{c}+\frac{1}{c}\right)>x^{c+1}-c^{x}(2.72+0.25) \\
& >x^{c+1}-3 c^{x} \geq x\left(x^{c}-c^{x}\right)>0
\end{aligned}
$$

when $c>x \geq 3$. This means that $n(y)>0$ when $y \geq c+1$. Therefore, we get $y \leq c$, which contradicts the assumption $y>\max \left\{1.5 \times 10^{10}, c\right\}$.

Now we assume that $x>c, x>z$. Then

$$
\begin{aligned}
n(x+1) & =x^{x+1}-(x+1)^{x}-c^{x-1}=x^{x}\left(x-\left(1+\frac{1}{x}\right)^{x}\right)-c^{x-1} \\
& >x^{x}(x-2.72)-c^{x-1}>0 .
\end{aligned}
$$

This inequality is obvious if $x \geq 4$. If $x=3, c=2$, then the inequality can be easily verified by direct calculation. From Lemma 2.2, we know that $n(y) \geq$ $n(x+1)>0$ as $3 \leq x<y$, which also contradicts $n(y) \leq x^{y}-y^{x}-c^{z}=0$. Therefore, $x \leq z$ when $x>c$.

SUbCASE 2.3.2: $z \geq x$. In this case, we have $x \leq z<19.6 \log ^{4} y<$ $21.841 \log ^{4} y$. From the proof of Case 2.2, we know that this is impossible when $y>\max \left\{1.5 \times 10^{10}, c\right\}$. This completes the proof of Theorem 1.1.

Proof of Corollary 1.2. From the proof of Theorem 1.1, we know that $x<y$ when $x, y, z \geq 2$. Then the inequality $z<y$ is obvious. Let $n_{1}(y)=$ $x^{y}-y^{x}-(x-1)^{x-1}$. One has

$$
\begin{aligned}
n_{1}(x+1) & =x^{x+1}-(x+1)^{x}-(x-1)^{x-1} \\
& =x^{x}\left(x-\left(1+\frac{1}{x}\right)^{x}\right)-(x-1)^{x-1} \\
& >x^{x}(x-2.72)-(x-1)^{x-1}>0
\end{aligned}
$$

when $x \geq 3$. By Lemma 2.2 , we have $n_{1}(y) \geq n_{1}(x+1)>0$ since $3 \leq x<y$. This means that $x \leq z$. We will prove that $\operatorname{gcd}(x, y, z)=1$. This implies $x<z<y$, and Corollary 1.2 will follow from Theorem 1.1.

Suppose $p \mid \operatorname{gcd}(x, y, z)$ where p is a prime. Then $p=2$ by the result of Wiles [W] on Fermat's Last Theorem. Therefore, we put

$$
x=2^{\alpha} u, y=2^{\beta} v, z=2^{\gamma} w, \alpha, \beta, \gamma \geq 1,2 \nmid u v w, \operatorname{gcd}(u, v, w)=1 .
$$

Substitution in equation (1.2) gives

$$
\begin{equation*}
2^{\alpha y} u^{y}-2^{\beta x} v^{x}=2^{\gamma z} w^{z} . \tag{3.1}
\end{equation*}
$$

By the well known results of Fermat on the equations $x^{4} \pm y^{4}=z^{2}$, we know that at least one of α, β and at least one of α, γ must equal to one.

CASE 1: $\alpha \geq 2$. Then $\beta=\gamma=1$ and (3.1) becomes $2^{\alpha y} u^{y}-2^{x} v^{x}=2^{z} w^{z}$. Since $x<y, z<y$, we compare the exponents of 2 in the equation to get $x=z$. Thus $2^{\alpha} u=2^{\gamma} w=2 w$. This implies $\alpha=1$, a contradiction.

Case 2: $\alpha=1$. Then (3.1) becomes

$$
\begin{equation*}
2^{y} u^{y}-2^{\beta x} v^{x}=2^{\gamma z} w^{z} . \tag{3.2}
\end{equation*}
$$

So two of $y, \beta x, \gamma z$ should be equal. Therefore, we consider three subcases.
Subcase 2.1: $y=\beta x$. In this case, $\beta>1$ and $\gamma z>y$. The condition $y=\beta x$ can be rewritten as $2^{\beta} v=\beta 2^{\alpha} u=2 \beta u$. Then we get $2^{\beta} \mid 2 \beta$. Hence $\beta>1$ leads to $\beta=2$. Thus we have $y=2 x, u=v$. Since $\operatorname{gcd}(u, v)=1$, one has $u=v=1$. Equation (3.2) becomes $2^{\gamma z-2 x} w^{z}=u^{2 x}-u^{x}=0$, which is impossible.

Subcase 2.2: $y=\gamma z$. Then $\beta x>y$ and $z \mid y$. So $w \mid v$. Thus we get $w=1$. Equation (3.2) becomes $u^{y}-2^{\beta x} v^{x}=1$. From the condition $2 \mid x$, $2 \mid y$ we know that this is impossible since $v \neq 0$.

Subcase 2.3: $\beta x=\gamma z$. In this case, we have $y>\beta x$ and equation (3.2) becomes $2^{y-\beta x} u^{y}=v^{x}+w^{z}$. Hence $2^{y-\beta x} u^{y}=v^{x}+w^{z} \equiv 2(\bmod 8)$. Therefore, $y-\beta x=1$, which contradicts the assumption $2 \mid x$ and $2 \mid y$. From the above discussion, we get $\operatorname{gcd}(x, y, z)=1$. This completes the proof of Corollary 1.2.

Acknowledgements. The authors are grateful to Professor Alain Togbé for rewriting this paper in good English, and to the referee for his/her valuable suggestions. This research was supported by the Guangdong Provincial Natural Science Foundation (No. S2012040007653) and NSF of China (No. 11271142).

REFERENCES

[B] Y. Bugeaud, Linear forms in p-adic logarithms and the Diophantine equation $\frac{x^{n}-1}{x-1}=y^{q}$, Math. Proc. Cambridge Philos. Soc. 127 (1999), 373-381.
[Ka] K. Kashihara, Comments and topics on Smarandache notions and problems, Erhus Univ. Press, Chicago, 1996.
[Ko] C. Ko, On the diophantine equation $x^{2}=y^{n}+1, x y \neq 0$, Sci. Sinica (Notes) 14 (1965), 457-460.
[L] V. Lebesgue, Sur l'impossibilité en nombres entiers de l'équation $x^{m}=y^{2}+1$, Nouvelles Ann. des Math. 9 (1850), 178-181.
[LG] Y. Liu, X. Y. Guo, A Diophantine equation and its integer solutions, Acta Math. Sinica (Chinese) 53 (2010), 853-856.
[SY] C. Stewart and K. R. Yu, On the abc conjecture II, Duke Math. J. 108 (2001), 169-181.
[W] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math 141 (1995), 443-551.
[ZY] Z. F. Zhang and P. Z. Yuan, On the diophantine equation $a x^{y}+b y^{z}+c z^{x}=0$, Int. J. Number Theory 8 (2012), 813-821.

Zhongfeng Zhang, Jiagui Luo
School of Mathematics and Information Science Zhaoqing University
526061 Zhaoqing, P.R. China
E-mail: zh12zh31f@yahoo.com.cn
luojg62@yahoo.com.cn

Pingzhi Yuan
Department of Mathematics South China Normal University 510631 Guangzhou, P.R. China

E-mail: yuanpz@scnu.edu.cn

Received 21 May 2012;
revised 11 October 2012

[^0]: 2010 Mathematics Subject Classification: Primary 11D61; Secondary 11D41.
 Key words and phrases: exponential diophantine equation, linear forms in logarithms.

