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ON THE DIOPHANTINE EQUATION xy − yx = cz

BY

ZHONGFENG ZHANG (Zhaoqing), JIAGUI LUO (Zhaoqing)
and PINGZHI YUAN (Guangzhou)

Abstract. Applying results on linear forms in p-adic logarithms, we prove that if
(x, y, z) is a positive integer solution to the equation xy − yx = cz with gcd(x, y) = 1 then
(x, y, z) = (2, 1, k), (3, 2, k), k ≥ 1 if c = 1, and either (x, y, z) = (ck + 1, 1, k), k ≥ 1 or
2 ≤ x < y ≤ max{1.5× 1010, c} if c ≥ 2.

1. Introduction. Kenichiro Kashihara [Ka] asked to solve the equation
xy + yz + zx = 0, i.e., to find its integer solutions. Recently, Yanni Liu
and Xiaoyan Guo [LG] answered this question by showing that (x, y, z) =
(−2, 1, 1), (1,−2, 1), (1, 1,−2), (1,−1,−2), (−1,−2, 1), (−2, 1,−1) are the
only integer solutions.

Let a, b, c be odd positive integers and H = max{a, b, c}. The first and
the third authors [ZY] proved that all integer solutions to the equation
axy + byz + czx = 0 with xyz 6= 0 satisfy max{|x|, |y|, |z|} ≤ 2H. In that
paper, they also considered the equation xy + yz = zx and using a result
of Stewart and Kunrui Yu [SY] on the ABC conjecture, showed that all
positive integer solutions satisfy max{x, y, z} < exp(exp(exp(5))).

The aim of this paper is to consider the equation xy − yx = cz, where
the positive integer c is given, and to prove the following result.

Theorem 1.1. Let c be a positive integer, and (x, y, z) a positive integer
solution to the equation

(1.1) xy − yx = cz, gcd(x, y) = 1.

Then either

(i) c = 1, (x, y, z) = (2, 1, k), (3, 2, k), k ≥ 1; or
(ii) c ≥ 2, (x, y, z) = (ck + 1, 1, k), k ≥ 1, or 2 ≤ x < y ≤ max{1.5 ×

1010, c}.
In the case where c ≥ 2 and y > x ≥ 2, from cz < xy we get z <

y log x/log c < y log y/log c, which is a bound for z depending on c. We
deduce the following corollary.
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Corollary 1.2. Let (x, y, z) be a positive integer solution to the equa-
tion

(1.2) xy − yx = zz.

Then gcd(x, y, z) = 1 and (x, y, z) = (3, 2, 1) or (x, y, z) = (kk + 1, 1, k) for
some k ≥ 1 or 2 ≤ x < z < y < 1.5× 1010.

This paper is organized as follows. In Section 2, we recall or prove some
lemmas needed for the proofs of Theorem 1.1 and Corollary 1.2. In Section 3,
we prove Theorem 1.1 and Corollary 1.2.

2. Some preliminary results. In this section, we recall two lemmas
and prove one. They will help us to prove Theorem 1.1 and Corollary 1.2 in
the next section.

Let x1/y1 and x2/y2 be two nonzero rational numbers and p a prime
satisfying vp(x1/y1) = vp(x2/y2) = 0. We denote by g the smallest positive
integer such that vp((x1/y1)

g − 1) > 0 and vp((x2/y2)
g − 1) > 0.

Let E be a real number such that

vp

((
x1
y1

)g
− 1

)
≥ E >

1

p− 1
.

We need an explicit upper bound for the p-adic valuation of

Λ =

(
x1
y1

)b1
−
(
x2
y2

)b2
,

where b1, b2 are positive integers. Let A1, A2 > 1 be real numbers such that

logAi ≥ max{log |xi|, log |yi|, E log p}, i = 1, 2,

and put

b′ =
b1

logA2
+

b2
logA1

,

f = log b′ + log(E log p) + 0.4.

Then we have the following lemma (see [B, Theorem 2]).

Lemma 2.1. With the above notation, if x1/y1 and x2/y2 are multiplica-
tively independent, then

(2.1) vp(Λ) ≤ 36.1g

E3(log p)4
(max{f, 6E log p, 5})2 logA1 logA2

and

(2.2) vp(Λ) ≤ 53.8g

E3(log p)4
(max{f, 4E log p, 5})2 logA1 logA2,

whenever p is odd or when p = 2 and v2(x2/y2 − 1) ≥ 2. Else, we have

v2(Λ) ≤ 208(max{log b′ + 0.04, 10})2 logA1 logA2.
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The following result can be found in many calculus textbooks. Neverthe-
less, we give its proof.

Lemma 2.2. Let b ≥ 3 be an integer nd f(x) = bx−xb. Then f(x) is an
increasing function when x > b. In particular, f(x) > 0 when x ∈ (b,∞).

Proof. We have f (b)(x) = bx(log b)b − b! > 0 for x > b. In the same way,
f (b−1)(b) = bb(log b)b−1 − b · b! > 0. So we deduce that f (b−1)(x) > 0 when
x > b. Continuing this process we get f ′(x) > 0 for x > b. This means that
f(x) is an increasing function when x > b. As f(b) = 0 one can see that
f(x) > 0 when x > b ≥ 3.

3. Proofs of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. Let (x, y, z) be a positive integer solution to equa-
tion (1.1).

If c = 1, then 2 |xy and by the results of V. Lebesgue [L] and Chao Ko
[Ko] on the Catalan equation, one has (x, y, z) = (3, 2, k) with k ≥ 1 when
y ≥ 2 or (x, y, z) = (2, 1, k), k ≥ 1 when y = 1.

So we consider c ≥ 2. Moreover, if y = 1, one gets (x, y, z) = (ck+1, 1, k),
k ≥ 1. It is obvious that x ≥ 2. Therefore, we assume x, y, c ≥ 2.

Claim 1. x < y.

Assume the contrary, i.e. x ≥ y. Since gcd(x, y) = 1, one has x > y ≥ 2.
Then y ≥ 3 is impossible by Lemma 2.2. Hence y = 2 and (1.1) becomes
x2 = 2x + cz ≥ 2x + 2. Let g(x) = 2x + 2 − x2. Then g(3) = 1 > 0,
g(4) = 2 > 0, and g′(x) = 2x log 2− 2x > 0 when x ≥ 4. Therefore, g(x) > 0
when x ≥ 4, which is a contradiction.

Claim 2. y ≤ max{1.5× 1010, c}.
Suppose that y > max{1.5 × 1010, c}. We will deduce a contradiction

from Lemma 2.1. Equation (1.1) implies cz < xy. Then z < y log x/log c <
y log y/log c. There are three cases covering all possibilities.

Case 2.1: 2 |x, 2 - cy. In this case, we have c ≥ 3. If 2 | z, then yx+ cz ≡
1 + 1 ≡ 2 (mod 8), which is impossible since v2(x

y) ≥ y ≥ x + 1 ≥ 3.
Therefore, 2 - z.

Let

Λ = y′x − (−c)z,
where y′ = ±y with y′ ≡ 1 (mod 4). We will apply Lemma 2.1 to get an
upper bound for the 2-adic valuation of Λ. We take

b1 = x, b2 = z, g = 1, x1 = y′, y1 = 1, x2 = −c, y2 = 1

and E = 2 as v2(y
′ − 1) ≥ 2 > 1/(2− 1) = 1. Also we choose A1 = A2 = y

since y > max{1.5× 1010, c}. So
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b′ =
x

log y
+

z

log y
.

As −c ≡ 1 (mod 8) we have v2(−c − 1) ≥ 3. We can use (2.1) to obtain a
bound. The assumption y ≥ 1.5×1010 implies 6E log p = 6×2 log 2 < log y,
5 < log y and

log b′ + log(E log p) + 0.4 < log

(
x

log y
+

y log y

log y log c

)
+ log(2 log 2) + 0.4

< log 2y − log(log 3) + log(2 log 2) + 0.4 < 1.057 log y.

By inequality (2.1) and xy = Λ, we get

y ≤ v2(Λ) ≤ 36.1× 1

23 × (log 2)4
(1.057 log y)2 log y log y < 21.841 log4 y,

which is impossible for y ≥ 1.5 × 1010. In fact, the monotonicity of the
function h(y) = 21.841 log4 y − y yields h(y) < 0 when y ≥ 1.5× 1010.

Case 2.2: 2 | y, 2 - cx. Again here we have c, x ≥ 3. If 2 - z, then
0 ≡ yx = xy − cz ≡ 1− c (mod 8), i.e. c ≡ 1 (mod 8).

Let
Λ = x′y − c′z,

where x′ = ±x with x′ ≡ 1 (mod 4) and

c′ =

{
c, 2 - z,
±c, 2 | z,

with c′ ≡ 1 (mod 4). Using an argument similar to that of Case 2.1 we get
x < 21.841 log4 y.

Let p be a prime factor of x. One has 3 ≤ p ≤ x, p - cy. Let

Λ = cz − (−y)x.

Then g ≤ p− 1 ≤ x− 1 < x. We take

b1 = z, b2 = x, E = 1, x1 = c, y1 = 1, x2 = −y, y2 = 1.

As y > max{1.5× 1010, c}, we put A1 = A2 = y. Thus

b′ =
z

log y
+

x

log y
.

Since p ≥ 3, we will use (2.2) to get a bound. In fact, as y > x ≥ p and
y > max{1.5× 1010, c}, we have

log b′ + log(log p) + 0.4 < log

(
y log y

log y log c
+

y

log y

)
+ log(log y) + 0.4

< log 2y + log(log y)− log(log 3) + 0.4 < 1.038 log(y log y).

We consider two subcases.
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Subcase 2.2.1: 1.038 log(y log y) ≥ 4 log p. By inequality (2.2) and
Λ = xy, one has

y ≤ vp(Λ) ≤ 53.8× g
13 × log4 p

1.0382 log2(y log y) log y log y

<
57.97p

log4 p
log2(y log y) log2 y.

We claim
57.97p

log4 p
< 0.03 log4 y.

If p > 1.7× 106, then as

57.97× 21.841

log4(1.7× 106)
< 0.0299 < 0.03,

one has
57.97p

log4 p
<

57.97x

log4(1.7× 106)
<

57.97× 21.841

log4(1.7× 106)
log4 y < 0.03 log4 y.

Now we suppose that 3 ≤ p < 1.7× 106. As

0.03 log4 y ≥ 0.03 log4(1.5× 1010) > 9042

and the function k(p) = p/log4 p is increasing for p ≥ 59 and decreasing for
3 ≤ p ≤ 53, it follows that

57.97× 3

log4 3
< 120,

57.97× 1.7× 106

log4(1.7× 106)
< 2327.

Therefore, one also has

57.97p

log4 p
< 0.03 log4 y.

From the above, we have

y < 0.03 log4 y log2(y log y) log2 y = 0.03 log2(y log y) log6 y.

This is impossible when y ≥ 1.5× 1010.

Subcase 2.2.2: 1.038 log(y log y) < 4 log p. Inequality (2.2) and Λ = xy

imply

y ≤ vp(Λ) ≤ 53.8× g
13 × log4 p

42 log2 p log y log y <
860.8p

log2 p
log2 y.

We claim that
860.8p

log2 p
< 76.28 log4 y.

If p > 6.58× 106, then

860.8× 21.841

log2(6.58× 106)
< 76.28.
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Hence
860.8p

log2 p
<

860.8x

log2(6.58× 106)
<

860.8× 21.841

log2(6.58× 106)
log4 y < 76.28 log4 y.

In the same way, if 3 ≤ p < 6.58× 107, one gets

76.28 log4 y > 76.28 log4(1.5× 1010) > 22993093.

As the function j(p) = p/log2 p is increasing for p ≥ 11 and decreasing for
3 ≤ p ≤ 7, we obtain

860.8× 3

log2 3
< 2140,

860.8× 6.58× 106

log2(6.58× 106)
< 22980211.

So again we get
860.8p

log2 p
< 76.28 log4 y.

Therefore, we have y < 76.28 log4 y log2 y < 76.28 log6 y, which con-
tradicts the monotonicity of the function m(y) = 76.28 log6 y − y when
y ≥ 1.5× 1010.

Case 2.3: 2 | c, 2 - xy. We begin by proving the following assertion:

Assertion. z < 19.6 log4 y.

Without loss of generality, we assume z ≥ 2. Then we have xy − yx ≡
x− y ≡ 0 (mod 4).

First, suppose that x ≡ y ≡ 1 (mod 4). Let

Λ = xy − yx.
We take

b1 = y, b2 = x, g = 1, x1 = x, y1 = 1, x2 = y, y2 = 1, E = 2.

Then we can choose A1 = A2 = y, since x < y, y > 1.5× 1010. So we have

b′ =
y

log y
+

x

log y
.

As v2(y − 1) ≥ 2, we will use (2.1) of Lemma 2.1 to obtain a bound. The
assumption y ≥ 1.5 × 1010 implies 6E log p = 6 × 2 log 2 < log y, 5 < log y
and

log b′ + log(E log p) + 0.4 < log y.

From inequality (2.1) and the equation cz = Λ, we have

z ≤ v2(Λ) ≤ 36.1× 1

23 × (log 2)4
(log y)2 log y log y < 19.6 log4 y.

Second, we suppose that x ≡ y ≡ 3 (mod 4). In this case, we take

Λ = (−y)x − (−x)y
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and we use an argument similar to that of the case x ≡ y ≡ 1 (mod 4) to
obtain z < 19.6 log4 y.

The remaining proof is divided into two subcases: z < x or z ≥ x.

Subcase 2.3.1: z < x. If z < x ≤ c, then we obtain z < x < c and
x ≥ 3, c ≥ 4 since 2 - x, 2 | c.

Let n(y) = xy − yx − cx−1. Then n(y) ≤ xy − yx − cz = 0. On the other
hand, by Lemma 2.2, one has n′(y) = xy log x− xyx−1 > xy − yx > 0 when
y ≥ c+ 1 > x ≥ 3 and

n(c+ 1) = xc+1 − (c+ 1)x − cx−1 = xc+1 − cx
((

1 +
1

c

)x
+

1

c

)
> xc+1 − cx

((
1 +

1

c

)c
+

1

c

)
> xc+1 − cx(2.72 + 0.25)

> xc+1 − 3cx ≥ x(xc − cx) > 0

when c > x ≥ 3. This means that n(y) > 0 when y ≥ c + 1. Therefore, we
get y ≤ c, which contradicts the assumption y > max{1.5× 1010, c}.

Now we assume that x > c, x > z. Then

n(x+ 1) = xx+1 − (x+ 1)x − cx−1 = xx
(
x−

(
1 +

1

x

)x)
− cx−1

> xx(x− 2.72)− cx−1 > 0.

This inequality is obvious if x ≥ 4. If x = 3, c = 2, then the inequality can be
easily verified by direct calculation. From Lemma 2.2, we know that n(y) ≥
n(x+ 1) > 0 as 3 ≤ x < y, which also contradicts n(y) ≤ xy − yx − cz = 0.
Therefore, x ≤ z when x > c.

Subcase 2.3.2: z ≥ x. In this case, we have x ≤ z < 19.6 log4 y <
21.841 log4 y. From the proof of Case 2.2, we know that this is impossible
when y > max{1.5× 1010, c}. This completes the proof of Theorem 1.1.

Proof of Corollary 1.2. From the proof of Theorem 1.1, we know that
x < y when x, y, z ≥ 2. Then the inequality z < y is obvious. Let n1(y) =
xy − yx − (x− 1)x−1. One has

n1(x+ 1) = xx+1 − (x+ 1)x − (x− 1)x−1

= xx
(
x−

(
1 +

1

x

)x)
− (x− 1)x−1

> xx(x− 2.72)− (x− 1)x−1 > 0,

when x ≥ 3. By Lemma 2.2, we have n1(y) ≥ n1(x+ 1) > 0 since 3 ≤ x < y.
This means that x ≤ z. We will prove that gcd(x, y, z) = 1. This implies
x < z < y, and Corollary 1.2 will follow from Theorem 1.1.
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Suppose p | gcd(x, y, z) where p is a prime. Then p = 2 by the result of
Wiles [W] on Fermat’s Last Theorem. Therefore, we put

x = 2αu, y = 2βv, z = 2γw, α, β, γ ≥ 1, 2 - uvw, gcd(u, v, w) = 1.

Substitution in equation (1.2) gives

(3.1) 2αyuy − 2βxvx = 2γzwz.

By the well known results of Fermat on the equations x4±y4 = z2, we know
that at least one of α, β and at least one of α, γ must equal to one.

Case 1: α ≥ 2. Then β = γ = 1 and (3.1) becomes 2αyuy−2xvx = 2zwz.
Since x < y, z < y, we compare the exponents of 2 in the equation to get
x = z. Thus 2αu = 2γw = 2w. This implies α = 1, a contradiction.

Case 2: α = 1. Then (3.1) becomes

(3.2) 2yuy − 2βxvx = 2γzwz.

So two of y, βx, γz should be equal. Therefore, we consider three subcases.

Subcase 2.1: y = βx. In this case, β > 1 and γz > y. The condition
y = βx can be rewritten as 2βv = β2αu = 2βu. Then we get 2β | 2β. Hence
β > 1 leads to β = 2. Thus we have y = 2x, u = v. Since gcd(u, v) = 1, one
has u = v = 1. Equation (3.2) becomes 2γz−2xwz = u2x − ux = 0, which is
impossible.

Subcase 2.2: y = γz. Then βx > y and z | y. So w | v. Thus we get
w = 1. Equation (3.2) becomes uy − 2βxvx = 1. From the condition 2 |x,
2 | y we know that this is impossible since v 6= 0.

Subcase 2.3: βx = γz. In this case, we have y > βx and equation
(3.2) becomes 2y−βxuy = vx + wz. Hence 2y−βxuy = vx + wz ≡ 2 (mod 8).
Therefore, y−βx = 1, which contradicts the assumption 2 |x and 2 | y. From
the above discussion, we get gcd(x, y, z) = 1. This completes the proof of
Corollary 1.2.
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