SPHERICAL MEANS AND MEASURES WITH FINITE ENERGY

BY
THEMIS MITSIS (Heraklion)

Abstract

We prove a restricted weak type inequality for the spherical means operator with respect to measures with finite α-energy, $\alpha \leq 1$. This complements recent results due to D. Oberlin.

Fix a small positive number δ, and for $r>\delta$ denote by $S^{\delta}(\bar{x}, r)$ the δ-neighborhood of the $(n-1)$-dimensional sphere with center $\bar{x} \in \mathbb{R}^{n}$ and radius r :

$$
S^{\delta}(\bar{x}, r)=\left\{\bar{y} \in \mathbb{R}^{n}: r-\delta<|\bar{x}-\bar{y}|<r+\delta\right\}
$$

(Here and for the rest of the paper we assume that $n \geq 3$.) Now, for suitable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, consider the spherical means operator

$$
T_{\delta} f: \mathbb{R}^{n} \times(\delta, \infty) \rightarrow \mathbb{R}
$$

defined by

$$
T_{\delta} f(\bar{x}, r)=\frac{1}{\left|S^{\delta}(\bar{x}, r)\right|} \int_{S^{\delta}(\bar{x}, r)} f
$$

where $|\cdot|$ denotes Lebesgue measure. The mapping properties of this operator, its variants, and the corresponding maximal operators have been studied extensively by several authors using Fourier analysis. Recently D. Oberlin [2] proved the following restricted weak type inequality for T_{δ} with respect to measures more general than the Lebesgue measure.

TheOrem 1. Let $1<\alpha<n+1$ and suppose μ is a compactly supported non-negative Borel measure in $\mathbb{R}^{n} \times(0, \infty)$ such that the α-energy $I_{\alpha}(\mu)$ defined by

$$
I_{\alpha}(\mu)=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{\alpha}}
$$

is finite. Let

$$
r_{0}=\inf \left\{r: \text { there exists } \bar{x} \in \mathbb{R}^{n} \text { such that }(\bar{x}, r) \text { is in the support of } \mu\right\} .
$$

Then for $\lambda>0$ and $0<\delta<r_{0}$ one has the estimate

$$
\begin{equation*}
\lambda^{2} \mu\left(\left\{T_{\delta} \chi_{E}>\lambda\right\}\right)^{2 / \alpha} \leq C|E| \tag{1}
\end{equation*}
$$

for all Borel sets $E \subset \mathbb{R}^{n}\left(\chi_{E}\right.$ is the characteristic function). Here C is a positive constant independent of δ and λ (it depends on μ and n).

The case $0<\alpha \leq 1$ was left open in [2]. The example mentioned in [2] suggests that if $0<\alpha \leq 1$ then the right-hand side of (1) should be either corrected by a factor which tends to infinity as δ tends to zero, or replaced with a larger norm. In that direction, one has the following result due to D. Oberlin, which is a special case of Theorem 4_{S} in [3].

TheOrem 2. Suppose $0<\alpha \leq 1$, and let $B(x, \varrho)$ be the closed ball in $\mathbb{R}^{n} \times(0, \infty)$ with center x and radius ϱ. If

$$
\begin{equation*}
\mu(B(x, \varrho)) \leq \varrho^{\alpha} \tag{2}
\end{equation*}
$$

for all x and ϱ, then for every $\varepsilon>0$ there exists a positive constant C_{ε} independent of λ and δ such that

$$
\begin{equation*}
\lambda^{2} \mu\left(\left\{T_{\delta} \chi_{E}>\lambda\right\}\right) \leq C_{\varepsilon}\left\|\chi_{E}\right\|_{W^{2,(1-\alpha) / 2+\varepsilon}}^{2} \tag{3}
\end{equation*}
$$

where the norm on the right-hand side is the Sobolev space norm.
The proof of Theorem 2 is Fourier-analytic. In this paper we give an elementary proof of the following estimate which may be thought of as the "non- δ-free counterpart" of (3) under a weaker energy-finiteness hypothesis ((2) implies that $I_{\beta}(\mu)<\infty$ for all $\left.\beta<\alpha\right)$.

Theorem 3. If $0<\alpha \leq 1$ and $I_{\alpha}(\mu)<\infty$ then

$$
\begin{equation*}
\lambda^{2} \mu\left(\left\{T_{\delta} \chi_{E}>\lambda\right\}\right)^{2} \leq C_{\varepsilon}|E| \delta^{\alpha-1-\varepsilon} \tag{4}
\end{equation*}
$$

Note that (4) is not entirely satisfactory. A natural conjecture (corresponding to an L^{2} bound) would be

$$
\lambda^{2} \mu\left(\left\{T_{\delta} \chi_{E}>\lambda\right\}\right) \leq C_{\varepsilon}|E| \delta^{\alpha-1-\varepsilon}
$$

We do not, however, know how to prove (or disprove) this.
Proof of Theorem 3. To simplify the presentation we will be using the standard notation $x \lesssim y$ to denote $x \leq C y$ for some positive constant C. Similarly, $x \simeq y$ means that x and y are comparable.

Let

$$
F=\left\{T_{\delta} \chi_{E}>\lambda\right\} \subset \mathbb{R}^{n} \times(0, \infty)
$$

We will discretize the problem at scale δ. First we show that F can be decomposed into roughly $|\log \delta|$ sets on which μ behaves as if it were α dimensional. So, put

$$
\begin{aligned}
F_{0} & =\left\{x \in F: \sup _{\varrho \geq \delta} \frac{\mu(B(x, \varrho))}{\varrho^{\alpha}} \leq 1\right\}, \\
F_{i} & =\left\{x \in F: 2^{i-1}<\sup _{\varrho \geq \delta} \frac{\mu(B(x, \varrho))}{\varrho^{\alpha}} \leq 2^{i}\right\}, \quad i=1,2, \ldots, \\
I & =\left\{i \in \mathbb{N} \cup\{0\}: \mu\left(F_{i}\right) \neq 0\right\} .
\end{aligned}
$$

Then $\mu(F)=\sum_{i \in I} \mu\left(F_{i}\right)$, and since μ is a finite measure, we have $|I| \lesssim$ $|\log \delta|$ for δ small enough. Moreover,

$$
\begin{equation*}
\mu(B(x, \varrho)) \leq 2^{i} \varrho^{\alpha} \quad \text { for } x \in F_{i}, \varrho \geq \delta . \tag{5}
\end{equation*}
$$

This means that, modulo the factor 2^{i}, the measure μ is α-dimensional on F_{i}. To estimate this factor, fix $i \in I$ with $i \geq 1$. Then, by the Besicovitch covering lemma, there exists a countable family of closed balls B_{j} with radius $\varrho_{j} \geq \delta$ such that

- $\left\{B_{j}\right\}_{j}$ has bounded overlap.
- $\left\{B_{j}\right\}_{j}$ covers F_{i}.
- For all j we have

$$
\begin{equation*}
\mu\left(B_{j}\right)>2^{i-1} \varrho_{j}^{\alpha} . \tag{6}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\frac{\mu\left(B_{j}\right)^{2}}{\varrho_{j}^{\alpha}} \lesssim \iint_{B_{j} \times B_{j}} \frac{d \mu(x) d \mu(y)}{|x-y|^{\alpha}} . \tag{7}
\end{equation*}
$$

So, using (6) and (7), we get

$$
\begin{align*}
2^{i} \mu\left(F_{i}\right) & \leq \sum_{j} 2^{i} \mu\left(B_{j}\right) \lesssim \sum_{j} \varrho_{j}^{-\alpha} \mu\left(B_{j}\right)^{2} \tag{8}\\
& \lesssim \sum_{j} \iint_{B_{j} \times B_{j}} \frac{d \mu(x) d \mu(y)}{|x-y|^{\alpha}} \lesssim I_{\alpha}(\mu),
\end{align*}
$$

where the last inequality follows from the fact that $\left\{B_{j}\right\}_{j}$ has bounded overlap. Therefore, (5) and (8) imply that

$$
\begin{equation*}
\mu(B(x, \varrho)) \lesssim \mu\left(F_{i}\right)^{-1} \varrho^{\alpha} \quad \text { for } x \in F_{i}, \varrho \geq \delta, i \in I, i \neq 0 \tag{9}
\end{equation*}
$$

If $i \in I$ and $i=0$ then (9) follows trivially from (5) because μ is finite.

Now, we use Córdoba's orthogonality argument [1] to estimate the measure of each $F_{i}, i \in I$. (9) will be important here. We decompose \mathbb{R}^{n+1} into a family \mathscr{Q} of disjoint cubes of side length δ :

$$
\mathscr{Q}=\left\{\prod_{l=1}^{n+1}\left[m_{l} \delta,\left(m_{l}+1\right) \delta\right): m_{1}, \ldots, m_{n+1} \in \mathbb{Z}\right\}
$$

Let $\left\{Q_{j}\right\}_{j}=\left\{Q \in \mathscr{Q}: Q \cap F_{i} \neq \emptyset\right\}$ and pick $\left(\bar{x}_{j}, r_{j}\right) \in Q_{j}\left(\bar{x}_{j} \in \mathbb{R}^{n}, r_{j}>0\right)$ such that

$$
\frac{1}{\left|S^{\delta}\left(\bar{x}_{j}, r_{j}\right)\right|} \int_{S^{\delta}\left(\bar{x}_{j}, r_{j}\right)} \chi_{E}>\lambda
$$

Since μ is compactly supported, the r_{j} 's are bounded, therefore $\left|S^{\delta}\left(\bar{x}_{j}, r_{j}\right)\right|$ $\simeq \delta$. Thus

$$
\begin{align*}
\mu\left(F_{i}\right) & =\sum_{j} \mu\left(Q_{j} \cap F_{i}\right)=\frac{1}{\lambda \delta} \sum_{j} \lambda \delta \mu\left(Q_{j} \cap F_{i}\right) \tag{10}\\
& \lesssim \frac{1}{\lambda \delta} \sum_{j} \mu\left(Q_{j} \cap F_{i}\right) \int_{E} \chi_{S^{\delta}\left(\bar{x}_{j}, r_{j}\right)} \\
& \leq \frac{|E|^{1 / 2}}{\lambda \delta}\left[\int_{E}\left(\sum_{j} \mu\left(Q_{j} \cap F_{i}\right) \chi_{S^{\delta}\left(\bar{x}_{j}, r_{j}\right)}\right)^{2}\right]^{1 / 2} \\
& \leq \frac{|E|^{1 / 2}}{\lambda \delta}\left[\int \sum_{j, k} \mu\left(Q_{j} \cap F_{i}\right) \mu\left(Q_{k} \cap F_{i}\right) \chi_{S^{\delta}\left(\bar{x}_{j}, r_{j}\right) \cap S^{\delta}\left(\bar{x}_{k}, r_{k}\right)}\right]^{1 / 2} \\
& =\frac{|E|^{1 / 2}}{\lambda \delta}\left[\sum_{j, k} \mu\left(Q_{j} \cap F_{i}\right) \mu\left(Q_{k} \cap F_{i}\right)\left|S^{\delta}\left(\bar{x}_{j}, r_{j}\right) \cap S^{\delta}\left(\bar{x}_{k}, r_{k}\right)\right|\right]^{1 / 2}
\end{align*}
$$

By Lemma 1 in [2],

$$
\left|S^{\delta}\left(\bar{x}_{j}, r_{j}\right) \cap S^{\delta}\left(\bar{x}_{k}, r_{k}\right)\right| \lesssim \frac{\delta^{2}}{\delta+\left|\left(\bar{x}_{j}, r_{j}\right)-\left(\bar{x}_{k}, r_{k}\right)\right|}
$$

Moreover, for all $x \in Q_{j}$ and $y \in Q_{k}$ we have

$$
\delta+|x-y| \lesssim \delta+\left|\left(\bar{x}_{j}, r_{j}\right)-\left(\bar{x}_{k}, r_{k}\right)\right|
$$

Therefore

$$
\begin{align*}
(10) & \lesssim \frac{|E|^{1 / 2}}{\lambda}\left[\sum_{j, k} \iint_{\left(Q_{j} \times Q_{k}\right) \cap\left(F_{i} \times F_{i}\right)} \frac{d \mu(x) d \mu(y)}{\delta+|x-y|}\right]^{1 / 2} \tag{11}\\
& =\frac{|E|^{1 / 2}}{\lambda}\left[\iint_{F_{i} \times F_{i}} \frac{d \mu(x) d \mu(y)}{\delta+|x-y|}\right]^{1 / 2} .
\end{align*}
$$

To estimate the integral in the square brackets, we use the distribution function. For each $x \in F_{i}$ we have

$$
\begin{align*}
\int_{F_{i}} \frac{d \mu(y)}{\delta+|x-y|} & =\int_{0}^{1 / \delta} \mu\left(\left\{y \in F_{i}: \delta+|x-y|<\varrho^{-1}\right\}\right) d \varrho \tag{12}\\
& \leq \int_{0}^{1 / \delta} \mu\left(B\left(x, \varrho^{-1}\right)\right) d \varrho
\end{align*}
$$

Since $\varrho^{-1} \geq \delta,(9)$ implies that

$$
(12) \lesssim \frac{1}{\mu\left(F_{i}\right)} \int_{0}^{1 / \delta} \frac{d \varrho}{\varrho^{\alpha}} \lesssim \frac{\delta^{\alpha-1}}{\mu\left(F_{i}\right)}
$$

Consequently, (11) yields

$$
\mu\left(F_{i}\right) \lesssim \frac{1}{\lambda}|E|^{1 / 2} \delta^{(\alpha-1) / 2}
$$

Summing up these inequalities over $i \in I$ we obtain

$$
\mu(F) \lesssim \frac{1}{\lambda}|E|^{1 / 2}|\log \delta| \delta^{(\alpha-1) / 2} \leq C_{\varepsilon} \frac{1}{\lambda}|E|^{1 / 2} \delta^{(\alpha-1) / 2-\varepsilon}
$$

as claimed.
The same argument shows that if $\alpha=1$ then

$$
\mu(F) \leq C_{\varepsilon} \frac{1}{\lambda}|E|^{1 / 2} \delta^{-\varepsilon}
$$

REFERENCES

[1] A. Córdoba, The Kakeya maximal function and spherical summation multipliers, Amer. J. Math. 99 (1977), 1-22.
[2] D. Oberlin, Packing spheres and fractal Strichartz estimates in $\mathbb{R}^{d}, d \geq 3$, Proc. Amer. Math. Soc. 134 (2006), 3201-3209.
[3] -, Unions of hyperplanes, unions of spheres, and some related estimates, preprint, http://www.math.fsu.edu/~ aluffi/eprint.archive.html.

Department of Mathematics
University of Crete
Knossos Ave., 71409 Heraklion, Greece
E-mail: themis.mitsis@gmail.com

