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Abstract. We present a description of irreducible tensor representations of general
linear Lie superalgebras in terms of generalized determinants in the symmetric and exterior
superalgebras of a superspace over a field of characteristic zero.

1. Introduction. Tensor representations of the general linear Lie super-
algebras play a special role in the theory of representations of these super-
algebras because of their relationship with the representation theory of the
symmetric groups and use of combinatorial methods. The first construction
of irreducible tensor representations was provided independently by Sergeev
[10] and by Berele and Regev [3] using the Schur–Weyl duality in a space
of tensors of a superspace over a field of characteristic 0. Implicitly, a differ-
ent construction was contained earlier in a paper by Akin, Buchsbaum and
Weyman [1] without mentioning Lie superalgebras. See also a more recent
paper by Sergeev [11] for still another approach.

In the present paper we provide an approach to these representations us-
ing generalized determinants in the symmetric superalgebra of a superspace
generalizing in this way the classical constructions in terms of products of
minors for general linear groups, abundant in the literature (see, e.g., a paper
by de Concini, Eisenbud and Procesi [4] and the bibliography cited there).
The generalized determinants we use were first considered by Doubilet and
Rota in [5] and by Grosshans, Rota and Stein in [7] for applications to in-
variant theory.

The dual version that places representations in the exterior superalge-
bra instead of the symmetric one is only stated for record without proofs.
This generalizes earlier expositions for general linear groups by Barnabei [2]
and Józefiak [9]. In an effort to make this paper relatively self-contained we
provide some background material in Section 2; in Section 4C we rely on
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classical results in the representation theory of symmetric groups that can
be found in the books by James [8] and Fulton [6].

The results of this paper were obtained when the author was on leave from
the Mathematical Reviews during academic years 1999/2000 and 2006/2007.

2. Preliminaries. Let E = {E0, E1} be a vector superspace over a field
K of characteristic 0. For a homogeneous element u of E we write u for its
degree or parity (0 or 1). The symmetric superalgebra S(E) of E is defined as
a factor superalgebra of the tensor superalgebra

⊗
E by the ideal generated

by the elements of the form

u⊗ v − (−1)uvv ⊗ u
for homogeneous u, v ∈ E. Similarly, the exterior superalgebra

∧
(E) is the

factor superalgebra of
⊗
E by the ideal generated by the elements of the

form
u⊗ v + (−1)uvv ⊗ u

for homogeneous u, v ∈ E. Both S(E) and
∧

(E) are superalgebras graded
by nonnegative integers, i.e.,

S(E) =
⊕

SkE,
∧

(E) =
⊕∧kE

as superspaces over K, and multiplications preserve these gradings.
The space EndK(E) has a natural structure of a vector superspace overK.

This superspace with a superbracket [F,G] = FG − (−1)F GGF for homo-
geneous F,G ∈ EndK(E) is known as the general linear Lie superalgebra of
E and is denoted gl(E). It acts on E in a natural way; the induced actions
on S(E) and

∧
(E) are given by the formula

(1) F.(u1 · · ·uk) =
k∑
i=1

(−1)F (
P
j<i uj)u1 · · ·F (ui) · · ·uk.

Let Ei be a copy of E indexed by i ∈ N = {1, 2, . . .} and let ui be the
element of Ei corresponding to u. Let us consider the superalgebra R(E) =
S(
⊕
Ei). For a sequence U = (u1, . . . , uk) of homogeneous elements of E we

define

D(U) = D(u1, . . . , uk) :=
∑
σ∈Σk

(sgnσ)uσ(1)
1 · · ·uσ(k)

k ∈ R(E),

where Σk is the symmetric group on {1, . . . , k}. Note that

D(u1, . . . , uj , uj+1, . . . , uk) + (−1)ujuj+1D(u1, . . . , uj+1, uj , . . . , uk) = 0,

which means that the map∧kE → R(E), u1 ∧ · · · ∧ uk 7→ D(U),
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is well defined; it is also a map of gl(E)-modules and is functorial in E, as
is easy to check.

Let λ be a partition of k and let µ = λ′ = (µ1, . . . , µl) be the conjugate
partition of λ. We very often think of λ as a diagram of k boxes in the plane
consisting of columns of lengths µ1, . . . , µl (in the English notation).

A sequence of homogeneous elements u1, . . . , uk of E defines an element
of
∧µ1E⊗· · ·⊗

∧µlE as follows. We can put elements u1, . . . , uk in the boxes
of λ in such a way that ui is in the jth column and pth row of λ if

i = µ1 + · · ·+ µj−1 + p for 1 ≤ j ≤ l, 1 ≤ p ≤ µj .
We call this a filling U of λ with elements u1, . . . , uk (by abuse of notation).

Let U1, . . . , Ul be the columns of U . Then we write e(Uj) for the product
(down the column) of elements from Uj in

∧µjE, and

e(U) = e(U1)⊗ · · · ⊗ e(Ul) ∈
∧µ1E ⊗ · · · ⊗

∧µlE.

Example 2.1. If λ = (3, 2) and

U = u2 u3 u4

u1 u5

is the filling associated with the sequence u2, u1, u3, u5, u4 then e(U1) =
u2 ∧ u1, e(U2) = u3 ∧ u5, e(U3) = u4 and e(U) ∈

∧2E ⊗
∧2E ⊗ E.

Using this notation we can define a map

Φλ(E) :
∧µ1E ⊗ · · · ⊗

∧µlE → R(E)

by
Φλ(E)(e(E)) = D(U1) · · ·D(Ul) =: D(U).

Φλ(E) is a gl(E)-homomorphism and so E(λ) := imΦλ(E) is a gl(E)-
module. We will prove that E(λ) is an irreducible gl(E)-module and provide
a basis and a presentation for E(λ). We also write Φλ instead of Φλ(E) for
short.

Let U = (ui) be a filling of λ with entries u1, . . . , uk. If σ ∈ Σk then Uσ =
(uσ(i)), i.e., the box where there is entry ui in U is occupied by uσ(i) in Uσ.
Let now U = (u1, . . . , uk) be a sequence of homogeneous elements of E such
that u1 · · ·uk 6= 0 in Sk(E) and let σ ∈ Σk. Then uσ(1) · · ·uσ(k) = ∓u1 · · ·uk
where the sign depends on σ and the parity of the elements u1, . . . , uk. Call
this sign ∆(U ;σ) where U = (u1, . . . , uk). In this way, ∆ is a well-defined
function ∆ : Zk2 ×Σk → {1,−1}; in particular, ∆(U ; (i, i+1)) = (−1)ujuj+1 .

Analoguosly, one can define a function δ : Zk2 ×Σk → {1,−1} such that
uσ(1)∧· · ·∧uσ(k) = δ(U ;σ)u1∧· · ·∧uk in

∧kE; in particular, δ(U ; (i, i+1)) =
(−1)ujuj+1+1.

Proposition 2.2. For any σ ∈ Σk and z ∈ Zk2 we have

δ(z;σ) = (sgnσ)∆(z;σ).
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For the proof we need another fact which follows directly from the defi-
nitions.

Lemma 2.3. For σ, τ ∈ Σk we have

∆(U ;στ) = ∆(U ;σ)∆(Uσ; τ), δ(U ;στ) = δ(U ;σ)δ(Uσ; τ).

In order to prove Proposition 2.2 we notice that the formula is true for
a simple transposition. Assume that it is true for σ and τ . Then δ(U ;στ) =
δ(U ;σ)δ(Uσ; τ) = (sgnσ)∆(U ;σ)(sgn τ)∆(Uσ; τ) = (sgnστ)∆(U ;στ) by
the lemma. Hence, by induction on the length of permutations we are done.

3. Determinants in R(E). In order to get a better insight into some
properties of the functions D introduced in Section 2 we need to introduce
bases.

Let {X1, . . . , Xm} be a K-basis of E0 and let {X1′ , . . . , Xn′} be a K-basis
of E1. We set A = {1, . . . ,m}, A′ = {1′, . . . , n′} and A = A ∪ A′. If U is a
filling of λ with elements u1, . . . , uk (see Section 2) and ui = Xai , ai ∈ A, then
we write e(T ) instead of e(U), where T is the filling of λ with entries in A such
that T has entry ai where U has ui. Similarly, we writeD(T ) instead ofD(U).
If we set, in Example 2.1, u1 = X2′ , u2 = X2, u3 = X3′ , u4 = X4 and u5 = X1

then

T = 2 3′ 4

2′ 1
and D(T ) = D(2, 2′)D(3′, 1)D(4).

We write T = (ai) for the filling of parities of T = (ai). The symmetric
group Σk acts on the set of fillings T of λ with entries in A; we have Tσ =
(aσ(i)) if T = (ai).

The basis {Xa | a ∈ A} of E leads to a basis {Xi
a | a ∈ A, i ∈ N} for⊕

Ei. For a sequence (a1, . . . , ak) ∈ Ak we have, according to a previous
definition and the above notation,

D(a1, . . . , ak) :=
∑
σ∈Σk

(sgnσ)Xσ(1)
a1
· · ·Xσ(k)

ak
∈ R(E).

Note that Xi
aX

j
b = (−1)abXj

bX
i
a.

Using the basis {Xa | a ∈ A}, the Lie superalgebra gl(E) can be identified
with the Lie superalgebra gl(m,n) of (m+ n)-matrices with entries in K.

We record here the explicit formula for the action of gl(m,n) on
∧k E

which follows from the formula (1) of Section 2:

(2) G.e(a1, . . . , ak)

=
k∑
j=1

(−1)G(
P
i<j ai)

∑
c∈A

gcaje(a1, . . . , aj−1, c, aj+1, . . . , ak)

for a matrix G = (gca) ∈ gl(m,n).
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We will need more general determinants in R(E). For k-tuples R =
(r1, . . . , rk) ∈ Nk, P = (a1, . . . , ak) ∈ Ak and σ ∈ Σk we write Rσ =
(rσ(1), . . . , rσ(k)) and Pσ = (aσ(1), . . . , aσ(k)). We define

X(R;P ) := Xr1
a1
Xr2
a2
· · ·Xrk

ak
, D(R||P ) :=

∑
τ∈Σk

(sgn τ)X(Rτ ;P ).

Note that D((1, . . . , k)||P ) = D(P ) as defined previously.

Lemma 3.1. For σ, τ ∈ Σk, R ∈ Nk and P ∈ Ak we have:

(i) X(Rσ;Pσ) = ∆(P ;σ)X(R;P ).
(ii) If T = Rσ then R = Tσ−1 .
(iii) Rστ = (Rσ)τ .
(iv) D(R||Pσ) = δ(P ;σ)D(R||P ).
(v) D(Rτ ||P ) = (sgn τ)D(R||P ).

Proof. Properties (i)–(iii) follow directly from the definitions. Based on
these we have

D(R||Pσ) =
∑
τ∈Σk

(sgn τσ)X((Rτ )σ;Pσ)

= (sgnσ)
∑
τ∈Σk

(sgn τ)∆(P ;σ)X(Rτ ;P )

= δ(P ;σ)
∑
τ∈Σk

(sgn τ)X(Rτ ;P ) = δ(P ;σ)D(R||P ),

where the next to the last equality follows from Proposition 2.2. This proves
(iv); the proof of (v) is similar.

If a partition k = p+ q is fixed and P = (a1, . . . , ak) ∈ Ak then we write
P ′ = (a1, . . . , ap), P ′′ = (ap+1, . . . , ap+q) and similarly for R ∈ Nk. This
means, in particular, that P ′σ=(aσ(1), . . . , aσ(p)) and P ′′σ =(aσ(p+1), . . . , aσ(k))
for σ ∈ Σk.

Let Σk = Σ({1, . . . , k}), Σp = Σ({1, . . . , p}) and Σp,q = Σ({p + 1, . . . ,
p+ q}) be the symmetric groups on the indicated sets.

Lemma 3.2.

(i) For any σ ∈ Σk,

X(R′;P ′σ)X(R′′;P ′′σ ) = ∆(P ;σ)X(R′σ−1 ;P ′)X(R′′σ−1 ;P ′′).

(ii) If R1 ∈ Np, R2 ∈ Nq and σ ∈ Σk, τ ∈ Σp ×Σp,q then

δ(P ;στ)D(R1||P ′στ )D(R2||P ′′στ ) = δ(P ;σ)D(R1||P ′σ)D(R2||P ′′σ ).

Proof. (i) is a generalization of Lemma 3.1(i) with a similar proof. For
(ii) notice that τ = τ ′ × τ ′′ = τ ′τ ′′ = τ ′′τ ′ for some τ ′ ∈ Σp and τ ′′ ∈ Σp,q.
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Hence by Lemma 3.1(iv) we obtain

δ(P ′σ; τ
′)D(R1||P ′σ) = D(R1||P ′στ ′),

and similarly
δ(P ′′σ ; τ ′′)D(R2||P ′′σ ) = D(R2||P ′′στ ′′).

Multiplying both identities and taking into account that

δ(P ′σ; τ
′)δ(P ′′σ ; τ ′′) = δ(P σ; τ)

(because τ ∈ Σp ×Σp,q) we obtain

δ(P σ; τ)D(R1||P ′σ)D(R2||P ′′σ ) = D(R1||P ′στ )D(R2||P ′′στ ).

Now Lemma 2.3 for the function δ implies the required formula.

Proposition 3.3. Let λ be a partition of k and let T be a filling of λ
with entries in the set A with columns T1, . . . , Tl; moreover , let µ = λ′ =
(µ1, . . . , µl) and 1 ≤ j < l. Let V be a subset of the index set of the entries
in Tj and let W be a subset of the index set of the entries in Tj+1 such that
#(V ) + #(W ) > µj . Then

Gj(T ;V,W ) :=
∑
σ

δ(T ;σ)D(Tσ) = 0,

where the summation runs over a transversal {σ} of Σ(V ∪W ) for Σ(V )×
Σ(W ); here Σ(X) is the symmetric group on the set X, and a transversal
means a complete set of left coset representatives.

Remark 3.4. Gj(T ;V,W ) is well defined, i.e., does not depend on the
choice of the transversal, as is clear from arguments given in the proof below.

Proof of Proposition 3.3. For ease of notation we can assume that Tj =
(a1, . . . , ap), Tj+1 = (ap+1, . . . , ap+q) for p = µj ≥ q = µj+1, ai ∈ A; then
V ⊂ {1, . . . , p} and W ⊂ {p+ 1, . . . , p+ q}. Let G = Σ(V )×Σ(W ) ⊂ H =
Σ(V ∪W ) ⊂ Σp+q; moreover, let P ′ = Tj , P

′′ = Tj+1 and P = P ′ ∪ P ′′ for
short. Since D(T ) = D(T1) · · ·D(Tl), in order to show that Gj(T ;V,W ) = 0
it is enough to prove that

(3)
∑

σ∈H/G

δ(P ;σ)D(P ′σ)D(P ′′σ ) = 0.

Note that for τ ∈ G, σ ∈ H we have

δ(P ;σ)D(P ′σ)D(P ′′σ ) = δ(P ;στ)D(P ′στ )D(P ′′στ )

by Lemma 3.2(ii). Therefore (since charK = 0) it is sufficient to prove that

(4)
∑
σ∈H

δ(P ;σ)D(P ′σ)D(P ′′σ ) = 0.
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Now the left side of (4) can be written as∑
σ∈H

∑
τ

δ(P ;σ) δ(P ; τ)X(R′τ ;P
′
σ)X(R′′τ ;P

′′
σ )

where R′ = (r1, . . . , rp), R′′ = (rp+1, . . . , rp+q) for

ri =
{
i if 1 ≤ i ≤ p,
i− p if p+ 1 ≤ i ≤ p+ q,

and τ ranges over Σp ×Σp,q. Therefore it is enough to prove the identity

(5)
∑
σ∈H

δ(P ;σ)X(R′τ ;P
′
σ)X(R′′τ ;P

′′
σ ) = 0

for each τ as above.
Let τ be fixed and consider the set {τ(i) | i ∈ V ∪W}. Since #(V ) +

#(W ) > p there exist s, i ∈ V ∪W such that rτ(s) = rτ(i). We define γ =
(s, i) ∈ H and note that Rτγ = Rτ by the choice of γ. In fact, τγ(i) = τ(s)
and τγ(s) = τ(i); hence rτγ(i) = rτ(s) = rτ(i) and rτγ(s) = rτ(i) = rτ(s).
Obviously, rτγ(x) = rτ(x) for x 6= s, i. We claim that

δ(P ;σ)X(R′τ ;P
′
σ)X(R′′τ ;P

′′
σ ) + δ(P ;σγ)X(R′τ ;P

′
σγ)X(R′′τ ;P

′′
σγ) = 0

for each σ ∈ H, which obviously implies (5).
Indeed, by Lemma 3.2(i) and Proposition 2.2 we have

δ(P ;σγ)X(R′τ ;P
′
σγ)X(R′′τ ;P

′′
σγ)

= (sgnσγ)X(R′τ(σγ)−1 ;P ′)X(R′′τ(σγ)−1 ;P ′′)

= −(sgnσ)X(R′τσ−1 ;P ′)X(R′′τσ−1 ;P ′′)

= −δ(P ;σ)X(R′τ ;P
′
σ)X(R′′τ ;P

′′
σ ),

which proves our claim.

We provide an example in order to clarify the choice of γ.

Example 3.5. Let p = 4, q = 3, V = {1, 3, 4} and W = {6, 7} so that
R can be expressed as

r1 = 1 r5 = 1

r2 = 2 r6 = 2

r3 = 3 r7 = 3

r4 = 4

where the boxed entries correspond to the sets V and W. If τ = (132)(56)
then Rτ can be expressed by the filling

3 2

1 1

2 3

4
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We have here rτ(1) = r3 = 3 = r7 = rτ(7) and 1, 7 ∈ V ∪ W ; therefore
γ = (1, 7) ∈ Σ(V ∪W ) and Rτγ = Rτ , as is easy to see. Notice that also
rτ(2) = r1 = 1 = r5 = rτ(6); however, 2 /∈ V ∪W so that the choice of (2, 6)
instead of (1, 7) for γ would not satisfy the required conditions.

As an application of Proposition 3.3 we provide another quadratic iden-
tity among our determinants which generalizes Sylvester’s classical identity
for the usual determinants.

To this end we need to introduce a specific transversal of Σk for Σp×Σp,q.
With the notation as at the beginning of the proof of Proposition 3.3, if
B ⊂ V and C ⊂ W with #(B) = #(C) then we write τB,C for the element
of order 2 in Σ(V ∪W ) which interchanges B and C, preserving the order
of elements, and leaves all the remaining elements unchanged. Let

Z(V,W ) = {τB,C | B ⊂ V, C ⊂W, #(B) = #(C)}.

Note that, in particular, τ∅,∅ = Id ∈ Z(V,W ). It is easy to see that Z(V,W )
is a transversal of Σ(V ∪W ) for Σ(V ) × Σ(W ). If #(V ) = r, #(W ) = s
and s ≤ r then

#Z(V,W ) =
s∑
i=1

(
s

i

)(
r

i

)
=
(
s+ r

s

)
= #(Σ(V ∪W )/Σ(V )×Σ(W )).

Therefore it is enough to prove that distinct τB,C ’s determine distinct cosets,
which is straightforward. We write Z(W ) = Z({1, . . . , p},W ) in what fol-
lows. If k = p + q, p ≥ q, W ⊂ {p + 1, . . . , p + q} andP ∈ Ak, then by
Proposition 3.3 we know that

G(P ;W ) :=
∑

σ∈Z(W )

δ(P ;σ)D(P ′σ)D(P ′′σ ) = 0.

Now we define another set of permutations Y (W ) = {τB,W } where B
runs through all s-element subsets of {1, . . . , p}. Note that #Y (W ) =

(
p
s

)
for p ≥ s > 0. We adopt the convention that Y (∅) = {τ∅,∅ = Id}; of course
τ∅,∅ /∈ Y (W ) if W 6= ∅.

Proposition 3.6. Let P ∈ Ak, k = p + q, p ≥ q and ∅ 6= W ⊂ {p + 1,
. . . , p+ q}. Then

H(P ;W ) := D(P ′)D(P ′′)−
∑

σ∈Y (W )

∆(P ;σ)D(P ′σ)D(P ′′σ ) = 0.

Remark 3.7. Note that our conventions imply G(P ; ∅) = D(P ′)D(P ′′)
and H(P ; ∅) = 0.

Remark 3.8. Since sgnσ = (−1)s for σ ∈ Y (W ) if #W = s, we can
rewrite the formula of Proposition 3.6 in the form
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D(P ′)D(P ′′) = (−1)s
∑

σ∈Y (W )

δ(P ;σ)D(P ′σ)D(P ′′σ ).

by Proposition 2.2.

Proof of Proposition 3.6. We first show that

(6) G(P ;W ) =
s∑
i=1

(−1)i+1
∑

C⊂W,#C=i

H(P ;C).

Note that

Z(W ) =
⋃
C⊂W

Y (C) =
s⋃
i=0

⋃
C⊂W,#C=i

Y (C).

Hence and by Remark 3.8 we have

G(P ;W ) =
s∑
i=0

∑
σ∈Y (C),#C=i

δ(P ;σ)D(P ′σ)D(P ′′σ )

=
s∑
i=0

∑
σ∈Y (C),#C=i

(−1)i[(D(P ′)D(P ′′)−H(P ;C)]

=
( s∑
i=0

(−1)i
(
s

i

))
D(P ′)D(P ′′) +

s∑
i=1

(−1)i+1
∑

C⊂W,#C=i

H(P ;C),

and (6) follows since the sum in the first summand is zero and H(P ; ∅) = 0.
Now we prove that

(7) H(P ;W ) =
s∑
i=1

(−1)i+1
∑

C⊂W,#C=i

G(P ;C).

Indeed, in view of (6) the right side of (7) is equal to∑
∅6=C⊂W

(−1)#C+1G(P ;C) =
∑

∅6=C⊂W

(−1)#C+1
( ∑
∅6=B⊂C

(−1)#B+1H(P ;B)
)

=
∑

∅6=B⊂W

(−1)#B+1
( ∑
∅6=C⊂W

(−1)#C+1H(P ;B)
)
.

The sum corresponding to B = W is H(P ;W ), whereas if B 6= W the sum
is ∑

B⊂C⊂W
(−1)#C+1 = −

s−t∑
i=0

(−1)i
(
s− t
i

)
= 0

where #B = t and s− t > 0.
Now (7) implies that H(P ;W ) = 0 since by Proposition 3.3, G(P ;C) = 0

for each ∅ 6= C ⊂W.
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We end this section with a result which will not be used later (hence we
do not provide a proof). We record it here because it can be used to give an
alternative proof of Proposition 3.3 and because it is a generalization of a
classical formula for the usual determinants.

Proposition 3.9 (Laplace-type expansions). Let k = p + q, R ∈ Nk,
P ∈ Ak.

(i) If τ ∈ Σk then

D(R||P ) = (sgn τ)
∑
σ

δ(P ;σ)D(R′τ ||P ′σ)D(R′′τ ||P ′′σ )

where the summation runs over a transversal {σ} of Σk for Σp×Σp,q.
(ii) If σ ∈ Σk then

D(R||P ) = δ(P ;σ)
∑
τ

(sgnσ)D(R′τ ||P ′σ)D(R′′τ ||P ′′σ )

where the summation runs over a transversal {τ} of Σk for Σp×Σp,q.

4. Main results

A. Statement of results. Let λ be a partition of k, and µ be the conjugate
of λ. In Section 2 we defined, for λ and a superspace E over a field K of
characteristic 0, a map of gl(E)-modules

Φλ :
∧µ1E ⊗ · · · ⊗

∧µlE → R(E)

such that Φλ(e(T )) = D(T ) for any filling T of λ with entries in the set A;
here, as before, A = A ∪ A′, A = {1, . . . ,m}, A′ = {1′, . . . , n′} where m =
dimE0 and n = dimE1.

The elements Gj(T ;V,W ) ∈ R(E) were defined in Section 3 for any filling
T as above, for a number 1 ≤ j < l = length of µ and for a choice of a subset
V of the index set of the entries in Tj and a subset W of the index set of
the entries in Tj+1. We define the corresponding elements Gj(T ;V,W ) ∈∧µ1E ⊗ · · · ⊗

∧µlE by the formula

Gj(T ;V,W ) :=
∑
σ

δ(T ;σ)e(Tσ)

where the summation runs over a transversal {σ} of Σ(V ∪W ) for Σ(V )×
Σ(W ). Note that these elements do not depend on the choice of the transver-
sal because δ(T ;στ)e(Tστ ) = δ(T ;σ) e(Tσ) for σ ∈ Σ(V ∪W ), τ ∈ Σ(V ) ×
Σ(W ); this follows from formulas for the e(T ) analogous to those of Lemma
3.1(iv) and Lemma 3.2(ii) for the D(T ). From the very definitions we now
have

Φλ(Gj(T ;V,W )) = Gj(T ;V,W ),

hence in view of Proposition 3.3 we know that Gj(T ;V,W ) ∈ kerΦλ.
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Let Cλ(E) be the gl(E)-submodule of
∧µ1E ⊗ · · · ⊗

∧µlE generated by
the Gj(T ;V,W ) for all possible choices of j, T, V and W .

We order the set A in the following way: 1 < 2 < · · · < m < 1′ < · · · < n′.
We call a filling T of λ with entries in A a tableau if the entries in each row
of T are weakly increasing from left to right and are strictly increasing with
respect to the set A′, whereas the entries down each column are also weakly
increasing but are strictly increasing with respect to the set A. An example
of a tableau of shape (3, 3, 2) is

1 1 2′

2 1′ 2′

1′ 2′

Now we are ready to formulate the main result of this paper.

Theorem 4.1. Let K be a field of characteristic 0 and let E be a super-
space over K with dimE0 = m and dimE1 = n. With the previous notation
for any partition λ with λm+1 ≤ n (called an (m,n)-hook partition) we have:

(i) E(λ) := imΦλ is an irreducible gl(E)-module.
(ii) The set {D(T )} where T runs over the set of tableaux of shape λ is

a basis of E(λ) over K.
(iii) Cλ(E) = kerΦλ.

B. Generators and independence. As was mentioned above, we have
Cλ(E) ⊂ kerΦλ. It is clear that in order to prove (ii) and (iii) of Theo-
rem 4.1 it is enough to show (I) and (II) below:

(I) The set {D(T )} where T runs over the set of tableaux of shape λ is
linearly independent over K.

(II) The set {e(T ) := e(T ) mod Cλ(E)} where T runs over the set of
tableaux of shape λ linearly spans the quotient

(
∧µ1E ⊗ · · · ⊗

∧µlE)/Cλ(E).

As a consequence, for every filling T with entries in A, e(T ) and D(T )
can be identified by means of Φλ.

Proof of (I). We order the variables {Xi
a | 1 ≤ i ≤ µ1, a ∈ A} by

declaring Xi
a < Xj

b if i < j or if i = j and a < b. We order monomials in the
Xi
a by the lexicographic ordering compatible with this ordering on the Xi

a.
Let us consider a one-column tableau T with entries (a1, . . . , ap) =

(ck11 , . . . , c
ks
s ), ci 6= cj for i 6= j; note that for ci ∈ A one has ki ≤ 1.

Because of skew-commutativity of the Xi
a for a ∈ A′ we have

D(T ) = k1! · · · ks!
∑
σ

(sgnσ)Xσ(1)
a1
· · ·Xσ(p)

ap

= k1! · · · ks!X1
a1
· · ·Xp

ap + higher order terms
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where the sum runs over a transversal {σ} of Σp for Σk1 × · · · × Σks . This
extends to any tableau T . To describe the leading term of D(T ) we define
mT (i, a) to be the number of a’s in the ith row of T . Then we have

D(T ) = s
∏
i,a

(Xi
a)
mT (i,a) + higher order terms, 0 6= s ∈ Z.

The leading term is nonzero because charK = 0 and mT (i, a) ≤ 1 for
a ∈ A′ by the definition of a tableau.

Now we order all tableaux of shape λ with entries in A by declaring T ≺
T ′ iff the first Xi

a for which mT (i, a) 6= mT ′(i, a) has mT (i, a) > mT ′(i, a)
(take the first row i where T and T ′ differ; then for the first a where they
differ in this row one should have mT (i, a) > mT ′(i, a)). From this definition
it follows immediately that if T and T ′ are tableaux of the same shape and
T ≺ T ′ then the leading term of D(T ) is smaller than any term of D(T ′).

Let now
∑
xT D(T ) = 0 be a nontrivial linear combination and take

minimal T̃ with respect to ≺ such that xeT 6= 0. By the above-mentioned fact
the coefficient of the leading term of D(T̃ ) of the left side of this identity is
a nonzero multiple of xeT , i.e., it is nonzero since charK = 0, a contradic-
tion.

Proof of (II). Let Fλ be the set of all fillings of λ with entries in A such
that in each column any element of A occurs at most once. Notice that if,
when performing operations on elements of Fλ, we obtain a filling T with
more than one occurrence of an element from A in the same column then
e(T ) = 0.

We define an equivalence relation in Fλ by T ∼ T ′ iff T ′ can be obtained
from T by a permutation of entries in columns. Any equivalence class con-
tains exactly one representative for which the columns are ordered, i.e., the
entries in each colum are weakly increasing down the column and are strictly
increasing with respect to the entries from A. Let F̃λ be the set of equiva-
lence classes of elements in Fλ with respect to ∼. We identify an element in
F̃λ with its unique representative that has ordered columns.

We define a well-ordering l on F̃λ as follows: for T, T ′ ∈ F̃λ consider the
rightmost column which is different in T and T ′; we set T l T ′ if the lowest
box in that column has a larger entry in T ′. We now prove that if T ∈ F̃λ is
not a tableau then there exists a relation of the form

(8) e(T ) =
∑
T ′mT

cT,T ′ e(T ′), T ′ ∈ F̃λ, cT,T ′ ∈ K.

Since F̃λ is finite, repeating this process (i.e. applying identities of the
form (8) to summands e(T ′) where T ′ is not a tableau) finally leads to a
required presentation of e(T ) in terms of the e(T ′) for tableaux T ′.
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If T ∈ F̃λ is not a tableau then there are two consecutive columns Tj of
length p and Tj+1 of length q in T , p ≥ q, and two entries in these columns
and in the same row, say the sth, where the tableau condition is violated.
The columns are of the form:

Tj Tj+1

a1 ap+1

a2 ap+2

...
...

as ≥ ap+s

as+1 ap+s+1

...
...

(a) Let as > ap+s and let V = {s, . . . , p}, W = {p+ 1, . . . , p+ s}. Since
by definition Gj(T ;V,W ) ∈ Cλ(E), we have the identity

(9) 0 = Gj(T ;V,W ) =
∑
σ∈F

δ(T ;σ)e(Tσ)

where F is a transversal of Σ(∪W ) for Σ(V ) × Σ(W ) (one can take, e.g.,
F = Z(V,W ) introduced in Section 3). We can assume that one of the σ
is the identity so that one of the summands in (9) is e(T ). Using (9) we
can express e(T ) as a linear combination of the e(T ′) each corresponding
to a nontrivial permutation from F . Each such permutation moves at least
one entry from {as, . . . , ap} to {ap+1, . . . , ap+s} and since ai < aj for i =
s, . . . , p, j = p+1, . . . , p+s, this means that we have T ′mT for the resulting
filling T ′ ∈ F̃λ.

(b) Let as = ap+s = c; then c ∈ A′ (indeed, if c ∈ A then as = ap+s = c
is not a violation of the tableau definition). We use again the identity (9)
to express e(T ) in the form (8). But first we cover the set F with three
subsets F0, F1 and F2: F0 is the set of all σ ∈ F that permute only en-
tries equal to c; F1 is the set of all σ ∈ F that move at least one entry
from column Tj that is different from c to column Tj+1; and finally, F2 is
the set of all σ ∈ F that move at least one entry from column Tj+1 that
is different from c to column Tj . Let x be the largest integer such that
as+x−1 = c, 0 < x ≤ p − s + 1, and let y be the largest integer such that
ap+s−y+1 = c, 0 < y < s.

If F1 = F2 = ∅ then F0 = F and consequently x = p − s + 1, y = s − 1.
Hence all summands in (9) are of the form e(T ) since, as is easy to see,
δ(T ;σ) = 1 in this case; therefore e(T ) = 0 since charK = 0.

If F1 6= ∅ and σ ∈ F1 then all entries moved by σ from Tj to Tj+1 are
greater than or equal to entries in Tj+1 indexed by W and at least one entry
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is greater; hence for the resulting summand δ(T ′;σ)e(T ′σ) in (9), T ′ ∈ F̃λ,
we have T ′ m T. We argue similarly for F2 6= ∅.

Now, from (9) and the fact that the cardinality of F0 is
(
x+y
x

)
it follows

that

(10)
(
x+ y

x

)
e(T ) =

∑
T ′mT

∓e(T ′),

where the summands on the right correspond to the set F1 ∪ F2 6= ∅; hence
(10) leads to the required expression of type (8) for e(T ) by dividing both
sides by the binomial coefficient.

C. Irreducibility. In our proof of the irreducibility of E(λ) we will use a
specific description of the Specht modules Sλ for Σk. Here we briefly recall
what we need in the following (for details, see e.g. Fulton [6] or James [8]).

LetMλ be the vector space over K of row tabloids of shape λ and let {S}
be the tabloid determined by a filling S of λ with distinct numbers 1, . . . , k.
For such an S we have an element vS ∈Mλ defined by the formula

vS =
∑

τ∈C(S)

(sgn τ){τS}

where C(S) is the subgroup ofΣk of all column-preserving permutations of S.
The Specht module Sλ is defined as the Σk-submodule of Mλ generated by
the vS . We also need the module dual to Mλ which is denoted M̃λ. It is
the Σk-module spanned by the column tabloids [S], where S, as above, is a
filling of λ with distinct numbers 1, . . . , k and [S] is defined up sign.

We have a well-defined Σk-epimorphism fλ : M̃λ → Sλ, fλ[S] = vS . For
V ⊂ Sj and W ⊂ Sj+1 we can define the so called Garnir elements

gj(S;V,W ) :=
∑

σ∈Z(V,W )

(sgnσ)[σS] ∈ M̃λ.

It is a classical result (see, e.g., James [8, p. 27]) that gj(S;V,W ) ∈ ker fλ
for any j, S, V and W.

In addition to the left gl(E)-action we consider the right Σk-action on⊗k E defined by

(u1 ⊗ · · · ⊗ uk)·σ = ∆(U ;σ)uσ(1) ⊗ · · · ⊗ uσ(k)

for a sequence (ui) of homogeneous elements of E. It follows from Lemma
2.3 that this action is well defined. The action induces the corresponding
action on

∧µ1E ⊗ · · · ⊗
∧µlE such that e(U)·σ = ∆(U ;σ)e(Uσ).

Now let S◦ be a filling of λ with distinct numbers 1, . . . , k such that i is
in the jth column and sth row of λ iff

i = µ1 + · · ·+ µj−1 + s for 1 ≤ j ≤ l, 1 ≤ s ≤ µj .
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For any Σk-module N we define E(N) :=
⊗k E⊗ΣkN , which is in a natural

way a left gl(E)-module. Finally, we can define a map

βλ :
∧µ1E ⊗ · · · ⊗

∧µlE → E(M̃λ)

by βλ(e(U)) = u1 ⊗ · · · ⊗ uk ⊗ [S◦] for any filling of λ corresponding to
U = (ui), ui homogeneous elements of E (see Section 2). Note first that βλ
is a well-defined map of gl(E)-modules. In order to prove this we take two
entries from the jth column of U and denote by τ their transposition; then

βλ(e(U) +∆(U ; τ)e(Uτ )) = e(U) · (1 + τ)⊗ [S◦]
= e(U)⊗ ([S◦] + [τS◦]) = 0

since [τ S◦] = −[S◦] in M̃λ. It is easy to see that βλ is an isomorphism (note
that M̃λ is a cyclic Σk-module generated by [S◦]).

We now have the following diagram of gl(E)-modules:

0 −−−−→ kerΦλ −−−−→
∧µ1E ⊗ · · · ⊗

∧µlE
Φλ−−−−→ E(λ) −−−−→ 0yβλ

0 −−−−→ E(ker fλ) −−−−→ E(M̃λ)
1⊗fλ−−−−→ E(Sλ) −−−−→ 0

with exact rows. The exactness of the bottom row follows from the fact
that Sλ is a projective (even irreducible) Σk-module. We will show that
βλ(kerΦλ) ⊂ E(ker fλ). Indeed, by Theorem 4.1(iii) we know that kerΦλ is
generated by the elements of the form Gj(T ;V,W ). We have

(1⊗ fλ)βλ(Gj(T ;V,W )) = (1⊗ fλ)
[( ∑

σ∈Z(V,W )

δ(T ;σ)e(Tσ)
)
⊗ [S◦]

]
= (1⊗ fλ)

[
e(T )·

( ∑
σ∈Z(V,W )

(sgnσ)σ
)]
⊗ [S◦]

= e(T )⊗ fλ(gj(S◦;V,W )) = 0,

the last identity by the fact that gj(S◦;V,W ) ∈ ker fλ. Therefore the map
βλ induces a map β̃λ : E(λ)→ E(Sλ) such that β̃λ(D(U)) = e(U)⊗ vS◦ for
any U as above. It is obvious that this map is an epimorphism (note that Sλ
is a cyclic Σk-module generated by vS◦). On the other hand, both E(λ) and
E(Sλ) have the same dimension over K. Indeed, we proved earlier in part B
of this section that the dimension of E(λ) is equal to the number of tableaux
of shape λ with entries in A. Sergeev [10] and Berele and Regev [3] proved
independently that E(Sλ) has the same dimension (and a basis indexed by
the same set of tableaux). They also proved that E(Sλ) is irreducible (in both
cases using the Schur–Weyl duality for the actions ofΣk and gl(E) on

⊗k E).
Hence β̃λ is an isomorphism and E(λ) is irreducible as a gl(E)-module.
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Remark 4.2. For T a filling of λ with entries in A, 1 ≤ j ≤ l and
W ⊂ S◦j+1 we can define an element

Hj(T ;W ) := e(T )−
∑

σ∈Y (W )

∆(T ;σ)e(Tσ)

in
∧µ1E ⊗ · · · ⊗

∧µlE. By Proposition 3.6 we find that Hj(T ;W ) ∈ kerΦλ.
Fulton showed in [6] that the Hj(T ;W ) generate kerΦλ in case E1 = 0, i.e.,
for the Lie algebra gl(E0), or equivalently, for a general linear group. I have
been unable to prove Theorem 4.1(ii) using the elements Hj(T ;W ) instead
of Gj(T ;V,W ).

Remark 4.3. The proof of Theorem 4.1 shows that the relations
Gj(T ;V,W ) of Proposition 3.3 correspond to the Garnir relations for sym-
metric groups.

Remark 4.4. It would be interesting to find a proof of the irreducibility
of the E(λ) without using the Schur–Weyl duality for actions of Σk and
gl(E) on

⊗k E.

5. Dual results. The usual duality between symmetric and exterior
superalgebras allows us to present dual results. We formulate below the basic
definitions and the counterpart of Theorem 4.1 only.

For a superspace E over a field K let R̃(E) :=
∧

(
⊕
Ei). If (a1, . . . , ak) ∈

Ak then we define

D̃(a1, . . . , ak) :=
∑
σ∈Σk

(sgnσ)Zσ(1)
a1
∧ · · · ∧ Zσ(k)

ak
∈ R̃(E),

where {Zia | a ∈ A} is theK-basis of Ei corresponding to a basis {Za | a ∈ A}
for E.

Let λ = (λ1, . . . , λp) be a partition and let T be a filling of λ with entries
in A and with rows T̃1, . . . , T̃p. We define D̃(T ) := D̃(T̃1) · · · D̃(T̃p). There is
a well-defined map of gl(E)-modules

Ψλ(E) : Sλ1E ⊗ · · · ⊗ SλpE → R̃(E)

such that Ψλ(E)(ẽ(T )) = D̃(T ) where

ẽ(T ) := ẽ(T̃1)⊗ · · · ⊗ ẽ(T̃p) ∈ Sλ1E ⊗ · · · ⊗ SλpE

and ẽ(a1, . . . , ak) := Za1 · · ·Zak ∈ SkE. We define Ẽ(λ) := imΨλ(E).
For a partition λ and a filling T of λ as before let us fix j such that

1 ≤ j < p; moreover, let V be a subset of the index set of the entries in T̃j
and let W be a subset of the index set of the entries in T̃j+1. Then we define

G̃j(T ;V,W ) :=
∑
σ

∆(T ;σ)ẽ(Tσ)
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where the summation runs over a transversal {σ} of Σ(V ∪W ) for Σ(V )×
Σ(W ).

Theorem 5.1. Let K be a field of characteristic 0 and let E be a super-
space over K with dimE0 = m and dimE1 = n. With the above notations
and definitions we have, for any partition λ with λm+1 ≤ n:

(i) Ẽ(λ) is an irreducible gl(E)-module.
(ii) The set {D̃(T )} where T runs over the set of tableaux of shape λ is

a basis of Ẽ(λ) over K.
(iii) kerΨλ(E) is generated by elements of the form G̃j(T ;V,W ) with

varying j, T , V and W.
Remark 5.2. The elements

H̃j(T ;W ) := ẽ(T )−
∑

σ∈Y (W )

δ(T ;σ)ẽ(Tσ)

are counterparts of the elements Hj(T ;W ) of Remark 4.2 and play a similar
role in the dual theory.

Remark 5.3. The elements Hj(T ;W ) and H̃j(T ;W ) correspond to re-
lations discussed already by Young in [13] for symmetric groups and Towber
in [12] for general linear groups. These relations formed a basis of Fulton’s
approach in [6].
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