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REAL HYPERSURFACES WITH AN INDUCED ALMOST
CONTACT STRUCTURE

BY

MICHAŁ SZANCER and ZUZANNA SZANCER (Kraków)

Abstract. We study real affine hypersurfaces f : M → Cn+1 with an almost contact
structure (ϕ, ξ, η) induced by any J-tangent transversal vector field. The main purpose of
this paper is to show that if (ϕ, ξ, η) is metric relative to the second fundamental form
then it is Sasakian and moreover f(M) is a piece of a hyperquadric in R2n+2.

1. Introduction. In [2], V. Cruceanu studied centro-affine real hyper-
surfaces in complex affine spaces. He proved that such hypersurfaces are
hyperquadrics if and only if the induced almost contact structure is metric
relative to the affine fundamental form induced by a centro-affine transversal
vector field.

In this paper we consider hypersurfaces with an arbitrary J-tangent
transversal vector field. Such a vector field induces in a natural way an
almost contact structure (ϕ, ξ, η) and the second fundamental form h. We
prove that if (ϕ, ξ, η, h) is an almost contact metric structure then it is a
Sasakian structure and the hypersurface is a piece of a hyperquadric, while
the transversal vector field is centro-affine.

2. Preliminaries. We briefly recall the basic formulas of affine differ-
ential geometry. For more details, we refer to [3]. Let f : M → Rn+1 be an
orientable connected differentiable n-dimensional hypersurface immersed in
affine space Rn+1 equipped with its usual flat connection D. Then for any
transversal vector field C we have

DXf∗Y = f∗(∇XY ) + h(X,Y )C

and
DXC = −f∗(SX) + τ(X)C,

where X,Y are tangent vector fields. Here ∇ is a torsion-free connection,
h is a symmetric bilinear form on M , called the second fundamental form,
S is a tensor of type (1, 1), called the shape operator, and τ is a 1-form.
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We assume that h is non-degenerate so that h defines a semi-Riemannian
metric on M . If h is non-degenerate, then we say that the hypersurface or
the hypersurface immersion is non-degenerate. We have the following

Theorem 2.1 (Fundamental equations). For an arbitrary transversal
vector field C the induced connection ∇, the second fundamental form h, the
shape operator S, and the 1-form τ satisfy the following equations:

R(X,Y )Z = h(Y,Z)SX − h(X,Z)SY,(2.1)

(∇Xh)(Y,Z) + τ(X)h(Y, Z) = (∇Y h)(X,Z) + τ(Y )h(X,Z),(2.2)

(∇XS)(Y )− τ(X)SY = (∇Y S)(X)− τ(Y )SX,(2.3)

h(X,SY )− h(SX, Y ) = 2dτ(X,Y ).(2.4)

The equations (2.1), (2.2), (2.3), and (2.4) are called the equation of
Gauss, Codazzi for h, Codazzi for S, and Ricci, respectively.

For an affine immersion the cubic form Q is defined by the formula

(2.5) Q(X,Y, Z) = (∇Xh)(Y,Z) + τ(X)h(Y,Z).

It follows from the Codazzi equation (2.2) that Q is symmetric in all three
arguments.

For a hypersurface immersion f : M → Rn+1 a transversal vector field C
is said to be equiaffine (resp. locally equiaffine) if τ = 0 (resp. dτ = 0).

Let dimM = 2n + 1 and f : (M, g) → (R2n+2, g̃) be a non-degenerate
(relative to the second fundamental form) isometric immersion, where g̃ is
the standard inner product on R2n+2. We assume that R2n+2 is endowed
with the standard complex structure J ,

J(x1, . . . , xn+1, y1, . . . , yn+1) = (−y1, . . . ,−yn+1, x1, . . . , xn+1).

Let C be a transversal vector field on M . We say that C is J-tangent if
JCx ∈ f∗(TxM) for every x ∈ M . We also define a distribution D on M to
be the biggest J-invariant distribution on M , that is,

Dx = f−1
∗ (f∗(TxM) ∩ J(f∗(TxM)))

for every x ∈ M . It is clear that dimD = 2n. A vector field X is called a
D-field if Xx ∈ Dx for every x ∈M . We use the notation X ∈ D for vectors
as well as for D-fields. Additionally we define two 1-dimensional distributions
D1 and D2 as follows:

D1x := {X ∈ TxM : g(X,Y ) = 0 ∀Y ∈ Dx},
D2x := {X ∈ TxM : h(X,Y ) = 0 ∀Y ∈ Dx},

where h is the second fundamental form on M relative to any transversal
vector field. It follows from [3, Prop. 2.5] that the definition of D2 is indepen-
dent of the choice of the transversal vector field. We say that the distribution
D is non-degenerate if h is non-degenerate on D. It is easy to see that D is
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non-degenerate if and only if D ⊕ D2 = TM . To simplify notation, we will
omit f∗ in front of vector fields.

Denote by N0 the metric normal for f (relative to g̃). The metric normal
induces objects ∇0, h0 and S0. Recall that the induced connection ∇0 is the
Levi-Civita connection of the metric g, and the objects h0, S0 and the metric
g are related by h0(X,Y ) = g(S0X,Y ) for every X,Y ∈ TxM . We have the
following

Lemma 2.2. The distributions D1 and D2 coincide if and only if ∇0
NN

= 0, where N is a g-normal vector field to D (that is, g(N,N) = 1 and
g(N,X) = 0 for every X ∈ D).

Proof. Since N0 is the metric normal, N := JN0 is a tangent g-normal
vector field to D. We have

h0(N,X) = g(S0N,X) = −g(DNN
0, X) = g(DNJN,X)

= g(JDNN,X) = −g(DNN, JX)

= −g(∇0
NN + h0(N,N)N0, JX),

where X is any tangent vector field. Now for every X ∈ D we have

h0(N,X) = −g(∇0
NN, JX).

Since ∇0 is the Levi-Civita connection for g, we also have g(∇0
NN,N) = 0.

Thus ∇0
NN ∈ D. It remains to observe that D1 = D2 if and only if

h0(N,X) = −g(∇0
NN, JX) = 0

for every X ∈ D, that is, if and only if ∇0
NN = 0.

3. Almost contact structures. A (2n+1)-dimensional manifold M is
said to have an almost contact structure if there exist on M a tensor field ϕ
of type (1, 1), a vector field ξ and a 1-form η which satisfy

ϕ2(X) = −X + η(X)ξ,(3.1)
η(ξ) = 1(3.2)

for every X ∈ TM . If additionally there is a semi-Riemannian metric g on
M such that

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )(3.3)

for every X,Y ∈ TM then (ϕ, ξ, η, g) is called an almost contact metric
structure. An almost contact metric structure is called Sasakian if

(∇̂Xϕ)(Y ) = g(X,Y )ξ − η(Y )X,(3.4)

where ∇̂ is the Levi-Civita connection for g. An almost contact metric struc-
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ture (ϕ, ξ, η, g) is called a contact metric structure if

g(X,ϕY ) = dη(X,Y )(3.5)

for every X,Y ∈ TM . We say that an almost contact structure (ϕ, ξ, η) is
normal if

[ϕ,ϕ] + 2dη ⊗ ξ = 0,

where [ϕ,ϕ] is the Nijenhuis tensor for ϕ. We have

Theorem 3.1 ([1]). A contact metric structure (ϕ, ξ, η, g) is Sasakian if
and only if (ϕ, ξ, η) is normal.

Let f : M → R2n+2 be a non-degenerate hypersurface with a J-tangent
transversal vector field C. Then we can define a vector field ξ, a 1-form η
and a tensor field ϕ of type (1, 1) as follows:

ξ := JC,(3.6)

η|D = 0 and η(ξ) = 1,(3.7)

ϕ|D = J |D and ϕ(ξ) = 0.(3.8)

It is easy to see that (ϕ, ξ, η) is an almost contact structure on M . This
structure will be called the almost contact structure on M induced by C.
An induced almost contact structure (ϕ, ξ, η) is called compatible with the
second fundamental form h if

η(X) = h(X, ξ) for every X ∈ TM .

It is not difficult to see that if the distribution D is non-degenerate then
there exists exactly one J-tangent transversal vector field such that the in-
duced structure (ϕ, ξ, η) is compatible with h. Clearly, if (ϕ, ξ, η, h) is an
almost contact metric structure then (ϕ, ξ, η) is compatible with h.

We shall now prove

Theorem 3.2. If (ϕ, ξ, η) is an induced almost contact structure on M
then the following equations hold :

η(∇XY ) = −h(X,ϕY ) +X(η(Y )) + η(Y )τ(X),(3.9)

ϕ(∇XY ) = ∇XϕY + η(Y )SX − h(X,Y )ξ,(3.10)

η([X,Y ]) = −h(X,ϕY ) + h(Y, ϕX) +X(η(Y ))− Y (η(X))(3.11)

+ η(Y )τ(X)− η(X)τ(Y ),

ϕ([X,Y ]) = ∇XϕY −∇Y ϕX − η(X)SY + η(Y )SX,(3.12)

η(∇Xξ) = τ(X),(3.13)

η(SX) = h(X, ξ)(3.14)

for every X,Y ∈ X (M).
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Proof. For every X ∈ TM we have

JX = ϕX − η(X)C.

Furthermore,

J(DXY ) = J(∇XY + h(X,Y )C) = J(∇XY ) + h(X,Y )JC

= ϕ(∇XY )− η(∇XY )C + h(X,Y )ξ

and

DXJY = DX(ϕY − η(Y )C) = DXϕY −X(η(Y ))C − η(Y )DXC

= ∇XϕY + h(X,ϕY )C −X(η(Y ))C − η(Y )(−SX + τ(X)C)

= ∇XϕY + η(Y )SX + (h(X,ϕY )−X(η(Y ))− η(Y )τ(X))C.

Since DXJY = J(DXY ), comparing these two equations, we obtain (3.9)
and (3.10). Equations (3.11)—(3.14) follow directly from (3.9) and (3.10).
(For (3.14), set Y = ξ in (3.10).)

From the above theorem we immediately get

Corollary 3.3. For every Z,W ∈ D we have

η(∇ZW ) = −h(Z,ϕW ),(3.15)

η(∇ξZ) = −h(ξ, ϕZ),(3.16)

ϕ(∇ZW ) = ∇ZϕW − h(Z,W )ξ,(3.17)

η([Z,W ]) = −h(Z,ϕW ) + h(W,ϕZ),(3.18)

η([Z, ξ]) = h(ξ, ϕZ) + τ(Z).(3.19)

Moreover ,

(3.20) S(D) ⊂ D if and only if ξ ∈ D2.

Almost contact normal structures can be characterized as follows:

Proposition 3.4 ([4, Th. 3.3]). The induced almost contact structure
(ϕ, ξ, η) is normal if and only if

SϕZ − ϕSZ + τ(Z)ξ = 0 for every Z ∈ D.

4. Main results. In this section we always assume that (ϕ, ξ, η) is an
induced almost contact structure. Let us denote by ∇̂ the Levi-Civita con-
nection for the second fundamental form h. We have
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Proposition 4.1. If (ϕ, ξ, η) is an almost contact structure compatible
with h then

S(D) ⊂ D,(4.1)
ξ is h-orthogonal to D,(4.2)
Sξ = ξ + Z0 where Z0 ∈ D,(4.3)
τ(X) = −h(X,ϕZ0) for every X ∈ D,(4.4)
∇ξξ = −ϕZ0 + τ(ξ)ξ,(4.5)

∇̂ξξ = −ϕZ0.(4.6)

Proof. Properties (4.1) and (4.2) are obvious from (3.20), while (4.3) is
an immediate consequence of the definition of an almost contact structure
compatible with h and Theorem 3.2 (equation (3.14)). The Codazzi equation
for S implies that

∇XSξ − S(∇Xξ)− τ(X)Sξ = ∇ξSX − S(∇ξX)− τ(ξ)SX.
Since (ϕ, ξ, η) is compatible with h, formula (3.16) implies ∇ξZ ∈ D for
every Z ∈ D. We also have (4.3). Thus, by (4.1),

η(∇Zξ) + η(∇ZZ0)− η(S(∇Zξ)) = τ(Z)(4.7)

for every Z ∈ D. Now, using (3.9), (3.14) and compatibility of (ϕ, ξ, η) we
get

η(∇ZZ0) = −h(Z,ϕZ0), η(S(∇Zξ)) = η(∇Zξ)
for every Z ∈ D. Hence equation (4.7) can be rewritten as

−h(Z,ϕZ0) = τ(Z),

which proves (4.4). (4.5) can be easily deduced from (3.10), (3.13) and (4.3).
To prove (4.6), note that

2h(∇̂ξξ,X) = 2ξ(h(ξ,X)) + 2h([X, ξ], ξ).

Setting X = ξ we obtain h(∇̂ξξ, ξ) = 0, that is, ∇̂ξξ ∈ D. On the other hand,
if we take X = Z ∈ D then by Corollary 3.3 (equation (3.19)) we obtain

h(∇̂ξξ, Z) = τ(Z) = h(−ϕZ0, Z)

for every Z ∈ D. Now, the non-degeneracy of h on D implies (4.6).

As an immediate consequence of Proposition 4.1 we get

Corollary 4.2. If (ϕ, ξ, η) is an almost contact structure compatible
with h then the following conditions are equivalent :

∇̂ξξ = 0,(4.8)
Sξ = ξ,(4.9)
τ |D = 0.(4.10)
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Let us recall that the cubic form Q is given by the equation (2.5). We
shall prove

Lemma 4.3. If (ϕ, ξ, η, h) is an almost contact metric structure then

Q(X,W,Z) = Q(X,ϕW,ϕZ),(4.11)

Q(W1,W2,W3) = 0,(4.12)

Q(ξ,W,W ) = −h(SW,ϕW ) = h(SϕW,W )(4.13)

for every X ∈ X (M) and W,W1,W2,W3, Z ∈ D.

Proof. Let X ∈ X (M) and W,Z ∈ D. Then
Q(X,ϕW,ϕZ) = X(h(ϕW,ϕZ))− h(∇XϕW,ϕZ)− h(ϕW,∇XϕZ)

+ τ(X)h(ϕW,ϕZ)

= X(h(W,Z))− h(∇XϕW,ϕZ)− h(ϕW,∇XϕZ)

+ τ(X)h(W,Z).

By Theorem 3.2 we see that

∇XϕW = ϕ(∇XW ) + h(X,W )ξ

for every X ∈ X (M) and W ∈ D. Thus
Q(X,ϕW,ϕZ) = X(h(W,Z))− h(ϕ(∇XW ), ϕZ)− h(ϕW,ϕ(∇XZ))

+ τ(X)h(W,Z)

= X(h(W,Z))− h(∇XW,Z)− h(W,∇XZ) + τ(X)h(W,Z)

= Q(X,W,Z),

which proves (4.11). To prove (4.12) observe that from (4.11) we have

Q(W,W,W ) = Q(W,ϕW,ϕW ) = Q(ϕW,W,ϕW ) = 0

for every W ∈ D. Since Q is symmetric in all three arguments, the last
equation implies that Q(W1,W2,W3) = 0 for every W1,W2,W3 ∈ D. It is
easy to see that

Q(ξ,W,W ) = Q(W, ξ,W ) = −h(∇W ξ,W )− h(ξ,∇WW )

for every W ∈ D. Formulas (3.10) and (3.15) imply that for every W ∈ D,
ϕ(∇W ξ) = SW and ∇WW ∈ D.

We now have

Q(ξ,W,W ) = −h(SW,ϕW ) for every W ∈ D.
From (4.11) we obtain

Q(ξ,W,W ) = Q(ξ, ϕW,ϕW )



48 M. SZANCER AND Z. SZANCER

and consequently

−h(SW,ϕW ) = h(SϕW,W ),

which completes the proof.

We shall now prove

Theorem 4.4. Let f : M → R2n+2 be a nondegenerate hypersurface with
a J-tangent transversal vector field and let (ϕ, ξ, η) be the induced almost
contact structure on M . If (ϕ, ξ, η, h) is an almost contact metric structure
then

S = id and τ = 0.

Proof. Let W,Z ∈ D. Formulas (2.3) and (4.1) imply that

η(∇WSZ)− η(S(∇WZ)) = η(∇ZSW )− η(S(∇ZW )).

Thus, by (3.14),

η(∇WSZ)− η(∇ZSW ) = η(S([W,Z])) = η([W,Z]).

By Corollary 3.3 (formulas (3.15) and (3.18)) we get

−h(W,ϕSZ) + h(Z,ϕSW ) = −h(W,ϕZ) + h(Z,ϕW ).

Replacing Z with ϕZ, and using the fact that (ϕ, ξ, η, h) is a metric structure
we have

(4.14) h(ϕW,SϕZ) + h(Z, SW ) = 2h(W,Z) for every W,Z ∈ D.

Using the Gauss equation we get

(R(W,ϕW ) · h)(ϕW,ϕW ) = −2h(R(W,ϕW )ϕW,ϕW )(4.15)
= −2h(W,W )h(SW,ϕW )

for every W ∈ D. On the other hand,

(R(W,ϕW ) · h)(ϕW,ϕW ) = (∇W∇ϕWh)(ϕW,ϕW )
− (∇ϕW∇Wh)(ϕW,ϕW )− (∇[W,ϕW ]h)(ϕW,ϕW ).

The following formulas are obvious:

(∇W∇ϕWh)(ϕW,ϕW ) = W (∇ϕWh(ϕW,ϕW ))− 2∇ϕWh(∇WϕW,ϕW ),
(∇ϕW∇Wh)(ϕW,ϕW ) = ϕW (∇Wh(ϕW,ϕW ))− 2∇Wh(∇ϕWϕW,ϕW ).

We have

(∇Xh)(Y,Z) = Q(X,Y, Z)− τ(X)h(Y,Z)
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for every X,Y, Z ∈ X (M). Thus Lemma 4.3 and the above formulas imply

(∇W∇ϕWh)(ϕW,ϕW )
= W (Q(ϕW,ϕW,ϕW )− τ(ϕW )h(ϕW,ϕW ))

− 2Q(ϕW,∇WϕW,ϕW ) + 2τ(ϕW )h(∇WϕW,ϕW )

= −W (τ(ϕW ))h(W,W )− τ(ϕW )W (h(ϕW,ϕW ))

− 2Q(∇WϕW,W,W ) + 2τ(ϕW )h(∇WϕW,ϕW )

= −W (τ(ϕW ))h(W,W )− τ(ϕW )(∇Wh)(ϕW,ϕW )

− 2η(∇WϕW )Q(ξ,W,W )

= −W (τ(ϕW ))h(W,W ) + τ(ϕW )τ(W )h(W,W )

− 2η(∇WϕW )Q(ξ,W,W )

= −W (τ(ϕW ))h(W,W ) + τ(ϕW )τ(W )h(W,W )

− 2h(W,W )Q(ξ,W,W ),

where, in the last equality, we used (3.15), and

(∇ϕW∇Wh)(ϕW,ϕW )
= ϕW (Q(W,ϕW,ϕW )− τ(W )h(ϕW,ϕW ))

− 2Q(W,∇ϕWϕW,ϕW ) + 2τ(W )h(∇ϕWϕW,ϕW )

= − ϕW (τ(W ))h(W,W )− τ(W )ϕW (h(ϕW,ϕW ))

+ 2τ(W )h(∇ϕWϕW,ϕW )

= − ϕW (τ(W ))h(W,W )− τ(W )(∇ϕWh)(ϕW,ϕW )

= − ϕW (τ(W ))h(W,W ) + τ(W )τ(ϕW )h(W,W ).

We also have, from (3.18),

(∇[W,ϕW ]h)(ϕW,ϕW ) = Q([W,ϕW ], ϕW,ϕW )− τ([W,ϕW ])h(ϕW,ϕW )

= η([W,ϕW ])Q(ξ,W,W )− τ([W,ϕW ])h(W,W )
= 2h(W,W )Q(ξ,W,W )− τ([W,ϕW ])h(W,W ).

Using (4.13) and the Ricci equation (2.4), we get

−2Q(ξ,W,W ) = h(SW,ϕW )− h(W,SϕW ) = −2dτ(W,ϕW ).(4.16)

From (4.16) and the preceding formulas, we obtain

(R(W,ϕW ) · h)(ϕW,ϕW ) = −6dτ(W,ϕW )h(W,W )

and so, by (4.16) and (4.13),

(R(W,ϕW ) · h)(ϕW,ϕW ) = −6Q(ξ,W,W ) = 6h(W,W )h(SW,ϕW ),
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which, combined with (4.15), yields

(4.17) h(SW,ϕW ) = 0

for every W ∈ D. (4.17) now implies

0 = h(S(W + 2ϕZ), ϕW − 2Z) = −2h(SW,Z) + 2h(SϕZ,ϕW ).

Therefore
h(SϕZ,ϕW ) = h(SW,Z).

By (4.14) we also have

h(SϕZ,ϕW ) = 2h(W,Z)− h(SW,Z).

The above formulas imply that

h(SW,Z) = h(W,Z)

for every Z ∈ D. Thus, since D is non-degenerate and SW − W is h-
orthogonal to D whenever W ∈ D, it follows that SW = W for every
W ∈ D. From Proposition 4.1 we easily get

(4.18) SX = X + η(X)Z0

for every X ∈ X (M). We shall show that Z0 = 0. Suppose Z0 6= 0; then
using the Codazzi equation for S we have

∇WSZ0 − S(∇WZ0)− τ(W )SZ0 = ∇Z0SW − S(∇Z0W )− τ(Z0)SW.

Since τ(Z0) = 0 (Prop. 4.1), using (4.18) we can rewrite the above equality
as

−η(∇WZ0)Z0 − τ(W )Z0 = −η(∇Z0W )Z0,

that is, by (3.18) and (4.4),

τ(W )Z0 = η([Z0,W ])Z0 = 2h(W,ϕZ0)Z0 = −2τ(W )Z0.

The last equality implies that τ |D = 0. Now, (4.4) implies Z0 = 0, which
contradicts our assumption. The property τ = 0 easily follows from the fact
S = id and the Codazzi equation for S.

Theorem 4.5. Let f : M → R2n+2 be a non-degenerate hypersurface
with a J-tangent transversal vector field and let (ϕ, ξ, η) be the induced almost
contact structure on M . The following conditions are equivalent :

(ϕ, ξ, η, h) is an almost contact metric structure,(4.19)
(ϕ, ξ, η, h) is a contact metric structure,(4.20)
(ϕ, ξ, η, h) is a Sasakian structure.(4.21)

Proof. If (ϕ, ξ, η, h) is an almost contact metric structure then by The-
orem 4.4 we obtain τ = 0. Theorem 3.2 (eq. (3.11)) implies that (ϕ, ξ, η, h)
is a contact metric structure. Again by Theorem 4.4 we get S = id. Hence
(ϕ, ξ, η) is normal (Prop. 3.4). Now Theorem 3.1 completes the proof.
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In [2] Cruceanu introduced a notion of special hypersurfaces, that is,
centro-affine hypersurfaces with J-tangent centro-affine transversal vector
field. He proved that if the induced almost contact structure is metric, then
it is a hyperquadric. Now, using the Pick–Berwald theorem we will give an
alternative proof of this theorem.

Theorem 4.6. Let f : M → R2n+2 be a non-degenerate hypersurface
with a J-tangent transversal vector field and let (ϕ, ξ, η) be the induced almost
contact structure on M . If (ϕ, ξ, η, h) is an almost contact metric structure,
then f(M) is a piece of a hyperquadric.

Proof. We shall show that Q ≡ 0. By Lemma 4.3 we have
Q(W1,W2,W3) = 0 for W1,W2,W3 ∈ D,
Q(ξ,W1,W2) = 0 for W1,W2 ∈ D.

Since τ = 0 by Theorem 4.4, using (3.9) we obtain
Q(X, ξ, ξ) = −2h(∇Xξ, ξ) = −2η(∇Xξ) = −2τ(X) = 0

for every X ∈ X (M). The above equalities imply that
Q(X1, X2, X3) = 0 for all X1, X2, X3 ∈ X (M).
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