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WEAK MULTIPLICATION MODULES OVER
A PULLBACK OF DEDEKIND DOMAINS

BY

S. EBRAHIMI ATANI and F. FARZALIPOUR (Rasht)

Abstract. Let R be the pullback, in the sense of Levy [J. Algebra 71 (1981)],
of two local Dedekind domains. We classify all those indecomposable weak multiplica-
tion R-modules M with finite-dimensional top, that is, such that M/Rad(R)M is finite-
dimensional over R/Rad(R). We also establish a connection between the weak multipli-
cation modules and the pure-injective modules over such domains.

1. Introduction. One of the aims of the modern representation the-
ory is to solve classification problems for subcategories of modules over
a unitary ring R. The reader is referred to [1], [28, Chapters 1 and 14],
[30, Chapter 19] and [28] for a detailed discussion of classification problems,
representation types (finite, tame, or wild), and useful computational reduc-
tion procedures; see also a recent paper [29] for a discussion of the notion of
wild representation type for module classification problems.

Nazarova and Rŏıter [21] (also see [5], [22] and [25]) described all finitely
generated modules over the pullback of two local Dedekind rings R1, R2

for which the residue fields are isomorphic, say to R. Nazarova and Rŏıter
used this to describe all finitely generated ZpGp-modules (p prime, Zp the
p-localization of Z), hence all finite ZGp-modules. Their method was to
reduce the problem to a matrix problem over R and then solve the matrix
problem (see [27, Chapters 1 and 16]). Their results were extended in [16],
by allowing R1 and R2 to be arbitrary Dedekind domains, with R still a
field (but the reduction to a matrix problem was done differently). This
permitted the classification of all finitely generated (rather than just finite)
ZGp-modules, as well as modules over many subrings of Z⊕Z. Dedekind-like
rings (see [15]) have cyclic index in their integral closure (see [15, Lem-
ma 1.1]). Equivalently, every ideal of R is generated by two elements. Thus
there is some overlap with results of Bass [5]. However, he only studied
torsion-free modules.
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Indecomposable weak multiplication modules over a Dedekind domain
have been classified in [9]. Let R be the pullback of two local Dedekind do-
mains over a common factor field. Indecomposable pure-injective modules
(and also indecomposable representable and indecomposable prime mod-
ules) with finite-dimensional top (for any module M we define its top as
M/Rad(R)M) have been classifed in [6–8], and here we follow the idea of
those papers. More precisely, our purpose is to give a complete description of
the indecomposable weak multiplication R-modules with finite-dimensional
top over R. The classification is divided into two stages: first, we describe
all indecomposable separated weak multiplication R-modules, and then we
show that non-separated indecomposable weak multiplication R-modules
with finite-dimensional top are factor modules of finite direct sums of sep-
arated indecomposable weak multiplication R-modules. Then we use the
classification of separated indecomposable weak multiplication modules from
Section 2, together with results of Levy [15], [16] on the possibilities for amal-
gamating finitely generated separated modules, to classify the non-separated
indecomposable weak multiplication modules M with finite-dimensional top
(see Theorem 3.12). We will see that the non-separated modules may be rep-
resented by certain amalgamation chains of separated indecomposable weak
multiplication modules (where infinite length weak multiplication modules
can occur only at the ends) and where adjacency corresponds to amalgama-
tion in the socles of these separated weak multiplication modules.

It is well-known that, for a vast majority of rings, the classification of ar-
bitrary modules is impossible. In the present paper we introduce a new class
of R-modules, called weak multiplication modules (see Definition 1.2), and
we study them in detail from the classification point of view. We are mainly
interested in the case where R is a pullback of two local Dedekind domains.
For any field k, the infinite-dimensional k-algebra T = k[x, y : xy = 0](x,y) is
the pullback (k[x](x) → k ← k[y](y)) of the local Dedekind domains k[x](x)

and k[y](y). This paper includes the classification of indecomposable weak
multiplication modules with finite-dimensional top over T . The above ex-
ample illustrates the difficulties in extending the classification to arbitrary
weak multiplication modules over T : the k-algebra T has, among its factor
algebras, the “Gelfand–Ponomarev” algebras k[x, y : xy = 0 = xn = ym].
These are algebras of tame, non-domestic (for n + m ≥ 5) representation
type (see [1], [27, Chapter 14] and [30, Chapter XIX]) and the classification
of the indecomposable weak multiplication modules over these has not yet
been achieved (at least as far as we are aware). We show that every inde-
composable non-separated weak multiplication R-module is pure-injective
(Corollary 3.13). It seems that the classification of those indecomposable
pure-injectives over a pullback ring which have infinite-dimensional top is a
very difficult problem (see e.g. [3], [24]).
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For the sake of completeness, we state some definitions and notations
used throughout. In this paper all rings are commutative with identity and
all modules unitary. Let v1 : R1 → R and v2 : R2 → R be homomorphisms
of two local Dedekind domains Ri onto a common field R. Denote the pull-
back R = {(r1, r2) ∈ R1 ⊕ R2 : v1(r1) = v2(r2)} by (R1

v1−→ R
v2←− R2),

where R = R1/J(R1) = R2/J(R2). Then R is a ring under coordinatewise
multiplication. Denote the kernel of vi, i = 1, 2, by Pi. Then Ker(R→ R) =
P = P1 × P2, R/P ∼= R ∼= R1/P1

∼= R2/P2, and P1P2 = P2P1 = 0 (so R is
not a domain). Furthermore, for i 6= j, 0 → Pi → R → Rj → 0 is an exact
sequence of R-modules (see [14]).

Definition 1.1. An R-module S is defined to be separated if there exist
Ri-modules Si, i = 1, 2, such that S is a submodule of S1⊕S2 (the latter is
made into an R-module by setting (r1, r2)(s1, s2) = (r1s1, r2s2)).

Equivalently, S is separated if it is a pullback of an R1-module and an
R2-module and then, using the same notation for pullbacks of modules as
for rings, S = (S/P2S → S/PS ← S/P1S) [14, Corollary 3.3] and S ⊆
(S/P2S) ⊕ (S/P1S). Also S is separated if and only if P1S ∩ P2S = 0 [14,
Lemma 2.9].

If R is a pullback ring, then every R-module is an epimorphic image of a
separated R-module; indeed, every R-module has a “minimal” such repre-
sentation: a separated representation of an R-module M is an epimorphism
ϕ : S →M of R-modules where S is separated and, if ϕ admits a factoriza-
tion ϕ : S

f→ S′ → M with S′ separated, then f is one-to-one. The module
K = Ker(ϕ) is then an R-module, since R = R/P and PK = 0 [14, Propo-
sition 2.3]. An exact sequence 0 → K → S → M → 0 of R-modules with
S separated and K an R-module is a separated representation of M if and
only if PiS∩K = 0 for each i and K ⊆ PS [14, Proposition 2.3]. Every mod-
ule M has a separated representation, which is unique up to isomorphism
[14, Theorem 2.8]. Moreover, R-homomorphisms lift to separated represen-
tations, preserving epimorphisms and monomorphisms [14, Theorem 2.6].

If R is a ring and N is a submodule of an R-module M , then the ideal
{r ∈ R : rM ⊆ N} is denoted by (N : M). Thus (0 : M) is the annihilator
of M . A proper submodule N of a module M over a ring R is said to be a
prime submodule if whenever rm ∈ N for some r ∈ R, m ∈M , then m ∈ N
or r ∈ (N : M), so (N : M) = P is a prime ideal of R, and N is said to be
a P -prime submodule. The set of all prime submodules in an R-module M
is denoted Spec(M).

Definition 1.2.

(a) An R-module M is defined to be a weak multiplication module if
Spec(M) = ∅ or for every prime submodule N of M , N = IM for
some ideal I of R (note that we can take I = (N : M)).
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(b) An R-module M is defined to be a multiplication module if for each
submodule N of M , N = IM for some ideal I of R. In this case we
can take I = (N : M).

(c) We say that an R-module M is prime if the zero submodule of M
is a prime submodule of M (so if N is a prime R-submodule of M ,
then M/N is a prime R-module).

Let M be an R-module and N a submodule of M . Call N a pure sub-
module of M if any finite system of equations over N which is solvable
in M is also solvable in N . A submodule N of an R-module M is called
relatively divisible (or an RD-submodule) in M if rN = N ∩ rM for all
r ∈ R. A module M is pure-injective if it has the injective property relative
to all pure exact sequences [23]. An important property of modules N,M
over a Dedekind domain is that N is pure in M if and only if N is an
RD-submodule of M (see [13] and [31] for more details). In particular, by
[13] and [31], an R-module is pure-injective if and only if it is algebraically
compact (see also [26] and [12]). The indecomposable weak multiplication
modules over discrete valuation domains are known.

Proposition 1.3 (see [9, Proposition 3.3]). If R is a discrete valuation
domain with a unique maximal ideal P then the indecomposable weak mul-
tiplication R-modules are: R, R/Pn (n ≥ 1), E(R/P ), the injective hull of
R/P , and Q(R), the field of fractions of R.

Theorem 1.4 (see [9, Theorem 3.5]). Let R be a discrete valuation do-
main. Then the following hold :

(i) If M 6= R is a torsion-free weak multiplication R-module, then M
is a direct sum of copies of Q(R).

(ii) If M is a torsion weak multiplication R-module, then M is a direct
sum of copies of R/Pn (n ≥ 1) and E(R/P ).

Throughout this paper we shall assume, unless otherwise stated, that

R = (R1
v1−→ R

v2←− R2)(1)

is the pullback of two local Dedekind domain R1, R2 with maximal ideals
P1, P2 generated respectively by p1, p2; moreover, P denotes P1 ⊕ P2, and
R1/P1

∼= R2/P2
∼= R/P ∼= R is a field.

In particular, R is a commutative noetherian local ring with unique max-
imal ideal P . The other prime ideals of R are easily seen to be P1 (that is,
P1 ⊕ 0) and P2 (that is, 0⊕ P2).

2. The separated case. In this section we determine the indecompos-
able weak multiplication separated R-modules where R is the pullback of
two local Dedekind domains (we do not need the a priori assumption of
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finite-dimensional top for this classification). We need the following lemma
proved in [18, Lemma 4.1].

Lemma 2.1. Let R be a ring , and let M be an R-module. Let K ⊆ N be
submodules of M . Then N is a prime submodule of M if and only if N/K
is a prime submodule of M/K.

Lemma 2.2. Let I be an ideal of a commutative ring R, M a weak
multiplication R-module, and N a non-zero R-submodule of M with I ⊆
(N : M). Then M/N is a weak multiplication R/I-module.

Proof. Let L be a prime submodule of M/N . Then L = K/N for some
prime submodule K of M by 2.1. So K = (K : M)M , since M is a weak mul-
tiplication module. An inspection will show that (L :R/I M/N)M/N = L.

Lemma 2.3. Let M be a weak multiplication module over a commutative
ring R. Then the following hold :

(i) If N is a submodule of M , then M/N is a weak multiplication R-
module.

(ii) Every direct summand of M is a weak multiplication R-module.

Proof. (i) Take I = 0 in Lemma 2.2. (ii) follows from (i).

Lemma 2.4. Let M be an R-module, N a P -prime submodule of M ,
and I an ideal of R with I ⊆ (0 : M). Then N is a P/I-prime submodule
of M as an R/I-module.

Proof. Since N is a P -prime submodule of M , it follows that M/N is
a P -prime R-module. Then M/N is P/I-prime as an R/I-module by [8,
Lemma 2.2]; hence (0 :R/I M/N) = (N :R/I M) = P/I, as needed.

Lemma 2.5. Let R and R′ be any commutative rings, f : R → R′ a
surjective homomorphism, and M an R′-module. Then the following hold :

(i) If N is a prime R-submodule of M , then N is a prime R′-submodule
of M .

(ii) If M is a weak multiplication R′-module, then M is a weak multi-
plication R-module.

Proof. (i) Since M/N is a prime R-module, [8, Lemma 2.1] shows M/N
is a prime R′-module; hence N is a prime R′-submodule of M .

(ii) Let N be a prime R-submodule of M . Then N is a prime R′-
submodule of M , so N = I ′M for some ideal I ′ of R′. Set I = f−1(I ′).
Then I is an ideal of R and f(I) = f(f−1(I ′)) = I ′ ∩ f(R) = I ′; hence
IM = f(I)M = N .

Proposition 2.6. Let R be the pullback ring as in (1), and let

S = (S/P2S = S1
f1−→ S = S/PS

f2←− S2 = S/P1S)
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be any separated R-module. Then the following hold :

(i) If S has a P -prime R-submodule T , then T/P2S is a P1-prime
submodule of S1 and T/P1S is a P2-prime submodule of S2. In
particular , Si 6= 0 for i = 1, 2.

(ii) If S has a (P1⊕0)-prime R-submodule T , then T/P1S is a 0-prime
submodule of S2 and S1 = 0.

(iii) If S has a (0⊕P2)-prime R-submodule T , then T/P2S is a 0-prime
submodule of S1 and S2 = 0.

Proof. (i) Since (P1⊕0)S ⊆ PS ⊆ T , Lemma 2.1 implies T/(P1 ⊕ 0)S is
a P -prime R-submodule of S/(P1 ⊕ 0)S (note that (T/(P1 ⊕ 0)S :
S/(P1 ⊕ 0)S) = (T : S) = P ). As (P1 ⊕ 0) ⊆ (0 : S/(P1 ⊕ 0)S), T/(P1 ⊕ 0)S
is a P/(P1 ⊕ 0) ∼= P2-prime submodule of R/(P1 ⊕ 0) ∼= R2-module S2

∼=
S/(P1⊕0)S, by Lemma 2.4. Similarly, T/P2S is a P1-prime submodule of S1.
Finally, it is clear that Si 6= 0.

(ii) If T is a (P1 ⊕ 0)-prime submodule of S, then (P1 ⊕ 0)S ⊆ T and
(0⊕P2)S * T since (P1⊕0)∩(0⊕P2) = 0. We show that S1 = 0. Suppose not.
Let s1 ∈ S1. Then there is an element s2 ∈ S2 such that f1(s1) = f2(s2),
so (s1, s2) ∈ S; hence (P1 ⊕ 0)(s1, s2) ⊆ T gives P1s1 ⊆ T1 = T/P2T . It
follows that P (s1, 0) ⊆ T , so s1 ∈ T1; hence T1 = T/P2S = S1, which is
a contradiction. Moreover, by Lemma 2.1, T/(P1 ⊕ 0)S is a (P1 ⊕ 0)-prime
submodule of R-module S/(P1 ⊕ 0)S; hence Lemma 2.4 shows T/(P1 ⊕ 0)S
is a 0-prime submodule of R/(P1 ⊕ 0) ∼= R2-module S2

∼= S/(P1 ⊕ 0)S. The
proof of (iii) is similar to that of (ii).

Theorem 2.7. Let R be the pullback ring as in (1), and let S =
(S1 → S ← S2) be a separated R-module. Then Spec(S) = ∅ if and only if
Spec(Si) = ∅ for i = 1, 2.

Proof. For the necessity, assume that Spec(S) = ∅ and let π be the
projection map of R onto Ri. Suppose that Spec(S1) 6= ∅ and let N1 be a
prime submodule of S1, so N1 is a prime R-submodule of S/(0 ⊕ P2)S;
hence Spec(S) 6= ∅, by Lemma 2.1, which is a contradiction. Similarly,
Spec(S2) = ∅. The sufficiency is clear by Proposition 2.6.

Theorem 2.8. Let R be the pullback ring as in (1), and let S =
(S1 → S ← S2) be a separated R-module. Then S is a weak multiplication
R-module if and only if Si is a weak multiplication Ri-module for i = 1, 2.

Proof. By Theorem 2.7, we may assume that Spec(S) 6= ∅. Assume that
S is a weak multiplication R-module. Since (0 ⊕ P2) ⊆ ((0 ⊕ P2)S :R S),
Lemma 2.3 shows S1

∼= S/(0⊕P2)S is a weak multiplicationR/(0⊕P2) ∼= R1-
module. Similarly, S2 is a weak multiplication R2-module. Coversely, assume
that each Si is a weak multiplicationRi-module. Let T be a prime submodule
of S. We split the proof into two cases.
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Case 1: (T : S) = P . By Proposition 2.6(i), Si 6= 0 for i = 1, 2. By
a similar argument to that in Proposition 2.6, we find that T/P1S is a
P2-prime submodule of R2-module S2, so T/P1S = P2S2, since S2 is weak
multiplication. Similarly, T/P2S = P1S1. Therefore, T = PS.

Case 2: (T : S) = P1 ⊕ 0. By Proposition 2.6(ii), we must have S1 = 0
and T/(P1 ⊕ 0)S is a 0-prime R2-submodule of S2; hence T/(P1 ⊕ 0)S =
(T/(P1 ⊕ 0)S : S2)S2 = 0. Therefore, T = (P1 ⊕ 0)S. For (T : S) = 0⊕ P2,
we get T = (0⊕ P2)S, and the proof is complete.

Lemma 2.9. Let R be the pullback ring as in (1). The following separated
R-modules are indecomposable and weak multiplication:

(I) R = (R1 → R← R2);
(II) S = (E(R1/P1) → 0 ← 0), (0 → 0 ← E(R2/P2)) where E(Ri/Pi)

is the Ri-injective hull of Ri/Pi for i = 1, 2;
(III) S = (Q(R1)→ 0← 0) where Q(R1) is the field of fractions of R1;
(IV) (0→ 0← Q(R2)) where Q(R2) is the field of fractions of R2;
(V) S = (R1/P

n
1 → R← R2/P

m
2 ) for all positive integers n,m.

Proof. By [6, Lemma 2.8], these modules are indecomposable. Weak mul-
tiplication follows from Proposition 1.3 and Theorem 2.8 (note that R is
weak multiplication since for each i = 1, 2, Ri is multiplication).

We refer to modules of type (II) in Lemma 2.9 as P1-Prüfer and P2-
Prüfer respectively.

Proposition 2.10. Let R be the pullback ring as in (1), and let S 6= R
be a separated weak multiplication R-module. Then S is of the form S =
M ⊕N ⊕K, where M is a direct sum of copies of modules as in (II), N is
a direct sum of copies of modules as in (III)–(IV), and K is a direct sum
of copies of modules as in (V) of Lemma 2.9. In particular , every separated
weak multiplication R-module not isomorphic to R is pure-injective.

Proof. Let T denote an indecomposable summand of S. Then we can
write T = (T1 → T ← T2), and T is a weak multiplication R-module by
Lemma 2.3. We split the proof into three cases.

Case 1. If Spec(T ) = ∅, then Spec(Ti) = ∅ by Theorem 2.7, so Ti = PiTi

for each i = 1, 2 by Proposition 1.1; hence T = PT = P1T1⊕P2T2 = T1⊕T2.
Therefore, T = T1 or T2 and so T is of type (II) by Proposition 1.3.

Case 2. If T has a (P1 ⊕ 0)-prime R-submodule N , then N/P1T is a
0-prime R2-submodule of the weak multiplication module T2 and T1 = 0
(so T = 0) by Proposition 2.6 and Theorem 2.8; hence T is of type (III).
Similarly, if T has a (0⊕ P2)-prime R-submodule, then T is of type (IV).
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Case 3. If T has a P -prime R-submodule N = (N1 → N ← N2),
then PT ⊆ N 6= T , so PT 6= T (that is, T 6= 0). Then by Proposi-
tion 2.6 and Theorem 2.8, we must have P1T1 = N1 6= T1 and P2T2 =
N2 6= T2; hence for each i = 1, 2, Ti is torsion and it is not a divisi-
ble Ri-module (see [9, Proposition 3.3]). Then there are positive integers
m,n and k such that Pm

1 T1 = 0, P k
2 T2 = 0 and PnT = 0. For t ∈ T , let

o(t) denote the least positive integer m such that Pmt = 0. Now choose
t ∈ T1∪T2 with t 6= 0 and o(t) maximal. There exists a t = (t1, t2) such that
o(t) = n, o(t1) = m and o(t2) = k. Then Riti is pure in Ti for i = 1, 2 (see
[6, Theorem 2.9]). Thus, R1t1 ∼= R1/(0 : t1) ∼= R1/P

m
1 is a direct summand

of T1, since R1t1 is pure-injective. Similarly, R2t2 ∼= R2/P
k
2 is a direct sum-

mand of T2. Let M be the R-subspace of T generated by t. Then M ∼= R.
Let M = (R1t1 = M1 → M ← M2 = R2t2). Then M is a direct summand
of T ; this implies that T = M , and T is as in (V) (see [6, Theorem 2.9]).

Theorem 2.11. Let R be the pullback ring as in (1), and let S 6= R
be an indecomposable separated weak multiplication R-module. Then S is
isomorphic to one of the modules listed in Lemma 2.9.

Proof. Apply Proposition 2.10 and Lemma 2.9.

3. The non-separated case. We continue to use the notation already
established, so R is a pullback ring as in (1).

In this section we find the indecomposable non-separated weak multipli-
cation modules with finite-dimensional top. It turns out that each can be
obtained by amalgamating finitely many separated indecomposable weak
multiplication modules. We begin by describing one indecomposable non-
separated weak multiplication module, namely the injective hull of the
unique simple module.

For i = 1, 2, let Ei be the Ri-injective hull of Ri/Pi, regarded as an R-
module (so E1, E2 are as in (II) of Lemma 2.9). Set An = AnnE1(Pn

1 ), and
Bn = AnnE2(Pn

2 ) (n ≥ 1). Then An is a cyclic R1-module, say An = R1an,
and we may choose an so that an = p1an+1 for each n ≥ 0. Also p1a0 = 0
and R1a0

∼= R/P . Similarly, Bn is a cyclic R2-module with Bn = R2bn,
where we may suppose that bn = p2bn+1, p2b0 = 0 and R2b0 ∼= R/P . Then
F = (E1 ⊕ E2)/〈a0 − b0〉 is the injective hull of Ra0 = Rb0 ∼= R/P and is a
non-separated R-module (see [6, p. 4053]). Consider the R-module F with
a0 = b0 and let Cn = AnnF (Pn). Moreover, we identify An (resp. Bn) with
the submodule A′n (resp. B′n) of F , consisting of all elements of the form
a + 〈a0, b0〉 (resp. b + 〈a0, b0〉), where a ∈ An (resp. b ∈ Bn). The above
notation will be kept in the first two results.

Proposition 3.1. Let R be the pullback ring as in (1). Then the fol-
lowing hold :
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(i) For each n, Cn = An + Bn, C0 = R/P = Ra0 = Rb0, Cn ⊆ Cn+1

and F =
⋃
Cn.

(ii) The non-zero proper R-submodules of F are: E1, E2, An, Bm, E1 +
Bn, Am + E2 and Am +Bn for all n,m ≥ 1.

Proof. (i) If x ∈ Cn, then Pnx = 0, and x = x1 + x2, where xi ∈ Ei for
i = 1, 2. Therefore, Pn

1 x = 0 = Pn
2 x, so 0 = Pn

1 x = Pn
1 x1 + Pn

1 x2 = Pn
1 x1.

Similarly, Pn
2 x2 = 0. Thus, Cn ⊆ An+Bn. The proof of the other implication

is similar. Moreover, Cn ⊆ An+1 + Bn+1 = Cn+1 for each n. Finally, if
z = z1 + z2 ∈ F (zi ∈ Ei), then z ∈ Ck for some k, and so F =

⋃
Cn.

(ii) Let L be a non-zero proper submodule of F . Then either L∩E1 = E1

or L∩E1 6= E1. Similarly for E2. If L∩Ei = Ei for each i, then E1 +E2 ⊆ L,
so F = L, which is a contradiction. If L∩E1 = E1 and L∩E2 6= E2, then by
[10, Lemma 2.6], there is an integer m such that L ∩Bm = Bm−1, Bm * L
and E1 + Bm−1 ⊆ L. Let c ∈ L. Then there are integers s, t such that c =
c1as + d1bt for some c1, d1 ∈ R− P ; hence p2c = d1p2bt = d1bt−1. It follows
that Bt−1 ⊆ p2L. Therefore, t− 1 ≤ m− 1, which implies L ⊆ E1 +Bm. So
L = L ∩ (E1 +Bm) = E1 +Bm ∩ L = E1 +Bm−1. Similarly for E2.

Now it suffices to show that if L 6= E1, E2, E1 + Bm, An + E2, An, Bm

(n,m ≥ 1), then L = Am + Bt for some m and t. Clearly, (E1 ∩ L) +
(E2 ∩ L) ⊆ L. There exist integers m and t such that E1 ∩ L = Am−1

and E2 ∩ L = Bt−1, and so Am−1 + Bt−1 ⊆ L, Am * L, and Bt * L.
Let c ∈ L. Then there are integers n, s such that c = c1an + d1bs for some
c1, d1 ∈ R − P . So p1c = c1p1an = c1an−1 and p2c = d1p2bs = d1bs−1;
hence An−1 ⊆ p1L ⊆ p1Am−1 = Am−2 and Bs−1 ⊆ p2L ⊆ Bt−2. Therefore,
n− 1 ≤ m− 2 and s− 1 ≤ t− 2, which implies L ⊆ Am−1 +Bt−1, and the
proof is complete.

Theorem 3.2. Let R be the pullback ring as in (1). Then F , the injective
hull of R/P , is a non-separated weak multiplication R-module.

Proof. It suffices to show that Spec(F ) = ∅. Let L be any submodule of F
as described in Proposition 3.1(ii). We claim that (L : F ) = 0. Suppose that
r ∈ (L : F ) with r 6= 0. Then rF ⊆ L and for all x ∈ F , we must have x = ry
for some y ∈ F , since F is divisible. Thus x ∈ L; hence L = F , which is a
contradiction. Set P = 〈p1, p2〉 = 〈p〉. However, no L, say E1+An, is a prime
submodule of F , for if m is any positive integer, then pm /∈ (L : F ) = 0 and
x1 +an+m /∈ E1 +An (x1 ∈ E1), but pm(x1 +an+m) = pm

1 x1 +an ∈ E1 +An,
as required.

We need the following lemma proved in [19, Result 4.1].

Lemma 3.3. Let M be a module over a commutative ring R, N an R-
submodule of M , and K a prime R-submodule of M with N * K. Then
(K : M) = (K : N).
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Proposition 3.4. Let R be the pullback ring as in (1), and let M be
any weak multiplication R-module. Then the following hold :

(i) If M has a P1 ⊕ 0-prime submodule N , then M is separated.
(ii) If M has a 0⊕ P2-prime submodule N , then M is separated.

Proof. (i) Since M/N is a prime R-module, it is a separated R-module
by [8, Proposition 3.1]. By assumption, (0⊕P2)N = (0⊕P2)(P1⊕0)M = 0;
hence P1N ∩ P2N = 0. Therefore, N is separated. Now we show that M is
separated. It suffices to show that p1M ∩ p2M = 0. Let x = p1a = p2b for
some a, b ∈M . Then p1(a+N) = p2(b+N) ∈ (P1(M/N))∩(P2(M/N)) = 0,
so p1a = p2b ∈ N . Then N prime gives b ∈ N ; hence x = 0, and the proof
is complete. The proof of (ii) is similar and we omit it.

Lemma 3.5. Let R be the pullback ring as in (1) and let M be any
R-module. Let 0→ K → S → M → 0 be a separated representation of M .
If T is a prime submodule of S, then K ⊆ T .

Proof. If (T : S) = P , then [14, Proposition 2.3] shows that K ⊆ PS =
(T : S)S ⊆ T . So suppose that (T : S) = P1⊕0 and K * T . Then Lemma 3.3
gives (T : S) = (T : K). Since PK = 0 by [14, Proposition 2.4], we must
have P ⊆ (T : K) = (T : S) = P1 ⊕ 0, which is a contradiction. Likewise, if
(T : S) = 0⊕ P2, then K ⊆ T .

Proposition 3.6. Let R be the pullback ring as in (1) and let M be any
R-module. Let 0→ K → S → M → 0 be a separated representation of M .
Then SpecR(S) = ∅ if and only if SpecR(M) = ∅.

Proof. First suppose that SpecR(S) = ∅ and SpecR(M) 6= ∅. So M ∼=
S/K has a prime submodule, say T/K where T is a prime submodule of S,
which is a contradiction. Next suppose that SpecR(M)=∅ and SpecR(S) 6=∅.
Let T be a prime submodule of S. Then by Lemma 3.5, K ⊆ T ; hence T/K
is a prime submodule of M , which is a contradiction.

Proposition 3.7. Let R be the pullback ring as in (1) and let M be
any non-separated R-module. Let 0 → K → S → M → 0 be a separated
representation of M . Then S is weak multiplication if and only if M is
weak multiplication.

Proof. By Proposition 3.6, we may assume that Spec(S) 6= ∅. If S is
weak multiplication, then M ∼= S/K is weak multiplication, by Lemma 2.3.
Conversely, assume thatM is a weak multiplication R-module and letN be a
prime submodule of S. First suppose that (N : S) = P . Then by Lemma 3.5,
K ⊆ N , and N/K is a prime submodule of S/K ∼= M by Lemma 2.1, so
(N/K : S/K) = (N : S) = P ; hence P (S/K) = N/K, since S/K is weak
multiplication. As K ⊆ PS, we must have N = PS. If (N : S) = P1 ⊕ 0
(resp. (N : S) = 0⊕P2), then N/K is a (P1⊕0)-prime (resp. (0⊕P2)-prime)
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submodule of M , which is a contradiction by Proposition 3.4. Thus S is weak
multiplication.

Proposition 3.8. Let R be the pullback ring as in (1) and let M be an
indecomposable weak multiplication non-separated R-module with M/PM
finite-dimensional over R. Let 0 → K → S → M → 0 be a separated
representation of M . Then S is pure-injective.

Proof. By [6, Proposition 2.6(i)], S/PS ∼= M/PM , so S has finite-
dimensional top. Now the assertion follows from Propositions 3.7 and 2.10.

Let R be the pullback ring as in (1) and let M be an indecomposable
weak multiplication non-separated R-module with M/PM finite-dimension-
al over R. Consider the separated representation 0→ K → S →M → 0. By
Proposition 3.8, S is pure-injective. So in the proofs of [6, Lemma 3.1, Propo-
sition 3.2 and Proposition 3.4] (here the pure-injectivity of M implies the
pure-injectivity of S by [6, Proposition 2.6(ii)]) we can replace the statement
“M is an indecomposable pure-injective non-separated R-module” by “M is
an indecomposable weak multiplication non-separated R-module”, because
the main keys to those results are the pure-injectivity of S, and the inde-
composability and non-separability of M . So we have the following results:

Corollary 3.9. Under the assumptions of Proposition 3.8, the quotient
fields Q(R1) and Q(R2) do not occur among the direct summands of S.

Corollary 3.10. Under the assumptions of Proposition 3.8, S is a di-
rect sum of finitely many indecomposable weak multiplication modules.

Corollary 3.11. Under the assumptions of Proposition 3.8, at most
two copies of modules of infinite length can occur among the indecomposable
summands of S.

Before we state the main theorem of this section, let us explain the idea
of proof. Let M be an indecomposable weak multiplication non-separated
R-module with M/PM finite-dimensional over R, and let 0 → K → S →
M → 0 be a separated representation of M . Then by Corollary 3.10, S is a
direct sum of finitely many indecomposable separated weak multiplication
modules, and these are known by Theorem 2.11. In any separated represen-
tation 0 → K

i→ S
ϕ→ M → 0 the kernel of the map ϕ to M is annihilated

by P , hence is contained in the socle of the separated module S. Thus M
is obtained by amalgamation in the socle of the various direct summands
of S. This explains Corollary 3.9: the modules Q(R1) and Q(R2) have zero
socle and so cannot occur in a separated (hence “minimal”) representation.
So the questions are: does this provide any further condition on the possible
direct summands of S? How can these summands be amalgamated in order
to form M?
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In [16], Levy shows that the indecomposable finitely generated R-mo-
dules are of two non-overlapping types which he calls deleted cycle and block
cycle types. It is the modules of deleted cycle type that are most relevant
to us. Such a module is obtained from a direct sum, S, of indecomposable
separated modules by amalgamating the direct summands of S in pairs to
form a chain but leaving the two ends unamalgamated [16] (see also [15,
Section 11]).

Since every “block cycle” type R-module is a quotient of a weak mul-
tiplication R-module, it is weak multiplication. So by Corollary 3.11, the
infinite length non-separated indecomposable weak multiplication modules
are obtained in just the same way as the deleted cycle type indecompos-
able ones are, except that at least one of the two “end” modules must be
a separated indecomposable weak multiplication module of infinite length
(that is, P1-Prüfer or P2-Prüfer). Note that one cannot have, for instance,
a P1-Prüfer module at each end (consider the alternation of primes P1, P2

along the amalgamation chain). So, apart from any finite length modules
we have amalgamations involving two Prüfer modules as well as modules
of finite length (the injective hull E(R/P ) is the simplest module of this
type), a P1-Prüfer module and a P2-Prüfer module. If the P1-Prüfer and the
P2-Prüfer modules are direct summands of S then we will describe these
modules as doubly infinite. Those where S has just one infinite length sum-
mand will be called singly infinite (see [6, Section 3]). It remains to show that
the modules obtained by these amalgamations are, indeed, indecomposable
weak multiplication modules.

Theorem 3.12. Let R = (R1 → R← R2) be the pullback of two discrete
valuation domains R1, R2 with common factor field R. Then the indecom-
posable non-separated weak multiplication modules with finite-dimensional
top are the following :

(i) the indecomposable modules of finite length (apart from R/P which
is separated),

(ii) the doubly infinite weak multiplication modules as described above,
(iii) the singly infinite weak multiplication modules as described above,

apart from the two Prüfer modules (II) in Lemma 2.9.

Proof. We already know that every indecomposable weak multiplica-
tion non-separated module with finite-dimensional top has one of these
forms so it remains to show that the modules obtained by these amalga-
mations are, indeed, indecomposable weak multiplication modules. Let M
be an indecomposable non-separated weak multiplication R-module with
finite-dimensional top and let 0 → K

i→ S
ϕ→ M → 0 be a separated

representation of M .
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(i) Since M is a quotient of a weak multiplication R-module, it is weak
multiplication. The indecomposability follows from [16, 1.9].

(ii) & (iii) (one or two Prüfer modules), Since a quotient of any weak
multiplication R-module is weak multiplication, M is weak multiplication
and the indecomposability follows from [6, Theorem 3.5].

Corollary 3.13. Let R be the pullback ring as described in Theo-
rem 3.12. Then every indecomposable non-separated weak multiplication R-
module with finite-dimensional top is pure-injective.

Proof. Apply [6, Theorem 3.5] and Theorem 3.12.
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[22] L. A. Nazarova, A. V. Rŏıter, V. V. Sergĕıchuk and V. M. Bondarenko, Applica-
tions of modules over a dyad to a classification of finite p-groups having an abelian
subgroup of index p, and of pairs of mutually annihilated operators, Zap. Nauchn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 69–92 (in Russian).

[23] M. Prest, Model Theory and Modules, London Math. Soc. Lecture Note Ser. 130,
Cambridge Univ. Press, Cambridge, 1988.

[24] I. Reiner, Maximal Orders, Academic Press, London, 1975.
[25] C. M. Ringel, Some algebraically compact modules I , in: A. Facchini and C. Menini

(eds.), Abelian Groups and Modules, Kluwer, 1995, 419–439.
[26] D. Simson, On pure global dimension of locally finitely presented Grothendieck cat-

egories, Fund. Math. 96 (1977), 91–116.
[27] —, Linear Representations of Partially Ordered Sets and Vector Space Categories,

Algebra Logic Appl. 4, Gordon and Breach, 1992.
[28] —, On representation types of modules subcategories and orders, Bull. Polish Acad.

Sci. Math. 41 (1993), 77–93.
[29] —, On Corner type endo-wild algebras, J. Pure Appl. Algebra 202 (2005), 118–132.
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