functions having The darboux property and SATISFYING SOME FUNCTIONAL EQUATION

BY
ELIZA JABŁOŃSKA (Rzeszów)

Abstract

Let X be a real linear topological space. We characterize solutions $f: X \rightarrow$ \mathbb{R} and $M: \mathbb{R} \rightarrow \mathbb{R}$ of the equation $f(x+M(f(x)) y)=f(x) f(y)$ under the assumption that f and M have the Darboux property.

Let X be a real linear topological space. We know that a function f : $X \rightarrow \mathbb{R}$ having the Darboux property and satisfying the exponential equation

$$
\begin{equation*}
f(x+y)=f(x) f(y) \tag{1}
\end{equation*}
$$

need not be continuous (see [9], cf. also [4, Remark 2]), and also that every solution $f: X \rightarrow \mathbb{R}$ of the Gołąb-Schinzel equation

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y) \tag{2}
\end{equation*}
$$

having the Darboux property is continuous (see [4]). These two classical functional equations, in spite of their different nature, can be "connected" in the following equation:

$$
\begin{equation*}
f(x+M(f(x)) y)=f(x) f(y) \tag{3}
\end{equation*}
$$

i.e. (1) and (2) are particular cases of (3) with $M=1$ and $M=\operatorname{id}_{\mathbb{R}}$, respectively. So, the study of the solutions $f: X \rightarrow \mathbb{R}, M: \mathbb{R} \rightarrow \mathbb{R}$ of (3) having the Darboux property seems to be interesting.

Equation (1) is well known; for further information on it see e.g. [2]. The first paper concerning (2) is due to S. Gołąb and A. Schinzel [7]. This equation and its generalizations have been studied by many authors (the relevant bibliography can be found in [6]). In particular, J. Brzdęk has studied extensively the equation

$$
\begin{equation*}
f\left(x+f(x)^{n} y\right)=f(x) f(y) \quad \text { for a positive integer } n \tag{4}
\end{equation*}
$$

which is tightly connected with some classes of subgroups of the Lie groups L_{s}^{1} (see [3]) and some other groups. Referring to the second part of Hilbert's
fifth problem (cf. [1, p. 153]), he determined solutions of (4) having the Darboux property. As a corollary he proved that such solutions are continuous.

Here we solve the equation (3), which also generalizes equation (4), under the assumption that $f: X \rightarrow \mathbb{R}$ and $M: \mathbb{R} \rightarrow \mathbb{R}$ are unknown functions having the Darboux property. Our results correspond to a problem of J. Brzdęk (see [6, Problem, p.21]) and extend [5, Corollary 1].

Let us recall that a function $f: X \rightarrow \mathbb{R}$ has the Darboux property whenever for every nonempty connected set $D \subset X$ the set $f(D)$ is connected in \mathbb{R}.

We start with some lemmas.
Lemma 1 ([4, Corollary 1]). Every linear functional $h: X \rightarrow \mathbb{R}$ having the Darboux property is continuous.

In the next lemma we collect several properties of functions satisfying (3). For their proofs we refer the reader to [8, Lemma 2(ii), Lemma 3, Proposition 2 and the proof of Corollary 1].

Lemma 2. Let $f: X \rightarrow \mathbb{R}$ and $M: \mathbb{R} \rightarrow \mathbb{R}$ satisfy equation (3), and $f \neq 0, f \neq 1$. Set $A=f^{-1}(\{1\})$ and $W=f(X) \backslash\{0\}$. Then
(i) A is a subgroup of $(X,+)$ and $A \backslash\{0\}$ is the set of periods of f;
(ii) W is a subgroup of $(\mathbb{R} \backslash\{0\}, \cdot)$;
(iii) $M(a) A=A$ for $a \in W$;
(iv) $(M \circ f)^{-1}(\{0\})=f^{-1}(\{0\})$;
(v) if, moreover, $M(1)=1$ and $M \circ f \neq 1$, then $0 \in f(X)$;
(vi) f and \widetilde{M} satisfy (3), where

$$
\begin{equation*}
\widetilde{M}(a)=\frac{M(a)}{M(1)} \quad \text { for each } a \in \mathbb{R} . \tag{5}
\end{equation*}
$$

Now, we give further properties of solutions of (3), especially a necessary form of functions f satisfying (3).

Lemma 3 (cf. [8, Lemma 4]). Let $f: X \rightarrow \mathbb{R}$ and $M: \mathbb{R} \rightarrow \mathbb{R}$ satisfy equation (3), $f \neq 0$ and $M(1)=1$. Set $W=f(X) \backslash\{0\}$ and $A=f^{-1}(\{1\}$. Suppose that $M(W) \backslash\{1\} \neq \emptyset$ and A is a linear subspace of X. Then there exists $x_{0} \in X \backslash A$ such that

$$
f(x)= \begin{cases}a & \text { if } x \in(M(a)-1) x_{0}+A \text { for some } a \in W, \tag{6}\\ 0 & \text { otherwise },\end{cases}
$$

and $\left.M\right|_{f(X)}$ is injective and multiplicative.
Proof. By [8, Lemma 4] we only have to show the multiplicativity of $\left.M\right|_{f(X)}$. Using Lemma 2(iv), (v), it is easy to see that

$$
M(f(x) f(y))=0=M(f(x)) M(f(y))
$$

for $x, y \in X$ with $f(x) f(y)=0$. Now, take $x, y \in X$ such that $f(x) f(y) \neq 0$. Then, by (6),

$$
x=(M(f(x))-1) x_{0}+z_{1} \quad \text { and } \quad y=(M(f(y))-1) x_{0}+z_{2}
$$

for some $z_{1}, z_{2} \in A$. According to equation (3),

$$
\begin{aligned}
f(x) f(y) & =f(x+M(f(x)) y) \\
& =f\left((M(f(x))-1) x_{0}+z_{1}+M(f(x))\left((M(f(y))-1) x_{0}+z_{2}\right)\right) \\
& =f\left((M(f(x)) M(f(y))-1) x_{0}+z_{1}+M(f(x)) z_{2}\right)
\end{aligned}
$$

Since A is linear, $z_{1}+M(f(x)) z_{2} \in A$. Thus, in view of Lemma 2(i),

$$
f(x) f(y)=f\left((M(f(x)) M(f(y))-1) x_{0}\right) \neq 0
$$

Next, by (6),

$$
(M(f(x)) M(f(y))-1) x_{0} \in(M(f(x) f(y))-1) x_{0}+A
$$

and hence

$$
[M(f(x)) M(f(y))-M(f(x) f(y))] x_{0} \in A
$$

Consequently, since $x_{0} \notin A$, we have $M(f(x)) M(f(y))=M(f(x) f(y))$, which completes the proof.

Now we are in a position to prove our main result.
Theorem 1 (cf. [4, Theorem 1]). Let $f: X \rightarrow \mathbb{R}$ and $M: \mathbb{R} \rightarrow \mathbb{R}$ have the Darboux property. Then f, M satisfy (3) if and only if one of the following conditions holds:
(i) $f=0$ or $f=1$;
(ii) $\left.M\right|_{(0, \infty)}=1$ and there is an additive surjection $a: X \rightarrow \mathbb{R}$ such that $f=\exp a$
(iii) there are a nontrivial continuous linear functional $h: X \rightarrow \mathbb{R}$ and some $c>0$ such that either

$$
\begin{align*}
f(x) & =|h(x)+1|^{1 / c} \operatorname{sgn}(h(x)+1) & & \text { for } x \in X \\
M(y) & =|y|^{c} \operatorname{sgn} y & & \text { for } y \in \mathbb{R} \tag{7}
\end{align*}
$$

or

$$
\begin{align*}
f(x) & =(\max \{0, h(x)+1\})^{1 / c} & & \text { for } x \in X \\
M(y) & =y^{c} & & \text { for } y \in[0, \infty) \tag{8}
\end{align*}
$$

Proof. Let f, M satisfy (3). If $f=$ const, then, according to (3), $f=1$ or $f=0$. So assume that $f \neq$ const. Then $1 \in f(X)$ by Lemma 2(ii). Since f has the Darboux property and X is connected, so is $f(X)$. Hence int $f(X) \neq \emptyset$ and, in view of Lemma $2($ ii $), W=f(X) \backslash\{0\} \in\{(0, \infty), \mathbb{R} \backslash\{0\}\}$. Moreover, by Lemma $2(\mathrm{vi}), f$ with \widetilde{M} given by (5) also fulfills (3) and $\widetilde{M}(1)=1$.

If $M \circ f=c$ for some $c \in \mathbb{R}$, then $\widetilde{M} \circ f=1$. Using equation (3) we find that f is a nonconstant exponential function and hence, according to [10, Theorem 1, p. 308], $f=\exp a$, where $a: X \rightarrow \mathbb{R}, a \neq 0$, is an additive function. Thus $f(X)=(0, \infty)$. Putting $x=0$ in (3), we have $f((c-1) y)=1$ for each $y \in X$. Consequently, $c=1$ and so (ii) holds.

Now assume that $M \circ f \neq$ const. Then $\widetilde{M} \circ f \neq 1$ and $\widetilde{M}(1)=1$. Since $W \in\{(0, \infty), \mathbb{R} \backslash\{0\}\}$, according to Lemma $2(\mathrm{v})$ we have $f(X) \in\{[0, \infty), \mathbb{R}\}$. Moreover, since \widetilde{M} has the Darboux property and $f(X)$ is connected, so is $\widetilde{M}(f(X))$. In view of Lemma 2(iv) the inclusion $\{0,1\} \subset f(X)$ implies $\{0,1\} \subset \widetilde{M}(f(X))$. Hence $[0,1] \subset \widetilde{M}(f(X))$.

Let W_{0} be the multiplicative group generated by $\widetilde{M}(W)$. By Lemma 2(iv), $(0,1] \subset \widetilde{M}(W) \subset W_{0}$ and thus $W_{0} \in\{(0, \infty), \mathbb{R} \backslash\{0\}\}$. Moreover, in view of Lemma 2(iii), $W_{0} A \subset A$. Consequently, Lemma 2(i) implies that $\mathbb{R} A \subset A$ and A is a linear subspace of X. Then, according to Lemma 3, there is some $x_{0} \in X \backslash A$ such that (6) holds and $\left.\widetilde{M}\right|_{f(X)}$ is a multiplicative injection. Hence $\widetilde{M}(W)=W_{0} \in\{(0, \infty), \mathbb{R} \backslash\{0\}\}$ by Lemma $2(\mathrm{ii})$.

Put $Y=\mathbb{R} x_{0}+A$ and define a linear functional $h: Y \rightarrow \mathbb{R}$ as follows: $h\left(a x_{0}+y\right)=a$ for every $a \in \mathbb{R}$ and $y \in A$. Then

$$
h(x)=\widetilde{M}(f(x))-1 \quad \text { for each } x \in(\widetilde{M}(W)-1) x_{0}+A
$$

Consequently, if $\widetilde{M}(W)=\mathbb{R} \backslash\{0\}$, then $\widetilde{M}(f(x))=h(x)+1$ for $x \in Y$, while if $\widetilde{M}(W)=(0, \infty)$, then $\widetilde{M}(f(x))=\max \{h(x)+1,0\}$ for $x \in Y$. Moreover, in view of (6) and Lemma 2(iv), $\widetilde{M}(f(x))=0$ for each $x \in X \backslash Y$.

Suppose that $X \neq Y$ and pick an $x_{1} \in X \backslash Y$. By the linearity of Y, $r x_{1} \notin Y$ for each $r \in \mathbb{R} \backslash\{0\}$. Since $\widetilde{M}(1)=1$ and $f(0)=1$, we obtain $\widetilde{M}\left(f\left(\mathbb{R} x_{1}\right)\right)=\{0,1\}$. But $\mathbb{R} x_{1}$ is connected and f, \widetilde{M} have the Darboux property, so $\widetilde{M}\left(f\left(\mathbb{R} x_{1}\right)\right)$ is connected. This contradiction proves $X=Y$. Hence either

$$
\begin{equation*}
\widetilde{M}(f(x))=h(x)+1 \quad \text { for } x \in X \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\widetilde{M}(f(x))=\max \{0, h(x)+1\} \quad \text { for } x \in X \tag{10}
\end{equation*}
$$

Since $\widetilde{M} \circ f$ has the Darboux property, so does the linear functional h. Thus, by Lemma 1, h is continuous. Moreover, in view of the injectivity and multiplicativity of $\left.\widetilde{M}\right|_{f(X)}$, and (5), we see that $\left.M\right|_{f(X)}$ is injective,

$$
M(1) M(a b)=M(a) M(b) \quad \text { for every } a, b \in f(X)
$$

and either

$$
M(f(x))=M(1)(h(x)+1) \quad \text { for } x \in X
$$

or

$$
M(f(x))=M(1) \max \{0, h(x)+1\} \quad \text { for } x \in X
$$

Since f, M satisfy (3), it is easy to check that $M(1)=1$ (see the proof of [8, Theorem 1]). Hence $M=\widetilde{M}$, once again by (5).

Let $G=f(X) \in\{[0, \infty), \mathbb{R}\}$. Note that every injection $M: G \rightarrow \mathbb{R}$ having the Darboux property is monotonic. Indeed, suppose otherwise and, without loss of generality, take $x_{1}, x_{2}, x_{3} \in G$ such that $x_{1}<x_{2}<x_{3}$ and $M\left(x_{2}\right)<M\left(x_{3}\right)<M\left(x_{1}\right)$. Then, by the Darboux property of M, there is $x_{0} \in\left(x_{1}, x_{2}\right)$ with $M\left(x_{0}\right)=M\left(x_{3}\right)$, which contradicts the injectivity of M. Since $M(0)=0$ and $M(1)=1, M$ is increasing. Hence, by the multiplicativity of $\left.M\right|_{G}$, according to [10, Theorem 3, p. 310], there is an additive function $a: \mathbb{R} \rightarrow \mathbb{R}$ such that M is given by

$$
M(z)= \begin{cases}\exp (a(\ln |z|)) \operatorname{sgn} z & \text { for } z \in G \backslash\{0\} \\ 0 & \text { for } z=0\end{cases}
$$

But $\left.M\right|_{G}$ is increasing, hence is a. Therefore, from [2, Corollary 5, p. 15], $a(z)=c z$ with some $c>0$. Thus $M(z)=|z|^{c} \operatorname{sgn} z$ for $z \in G$. So, condition (iii) holds. This ends the first part of the proof. The converse is easy to check.

From the above theorem we obtain
Corollary 1 (cf. [4, Corollary 2]). If $f: X \rightarrow \mathbb{R}$ and $M: \mathbb{R} \rightarrow \mathbb{R}$ having the Darboux property satisfy (3), then either f is continuous, or f is a nontrivial exponential function.

REFERENCES

[1] J. Aczél, The state of the second part of Hilbert's fifth problem, Bull. Amer. Math. Soc. 20 (1989), 153-163.
[2] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia Math. Appl. 31, Cambridge Univ. Press, 1989.
[3] J. Brzdęk, Subgroups of the group Z_{n} and a generalization of the Gołab-Schinzel functional equation, Aequationes Math. 43 (1992), 59-71.
[4] -, On solutions of the Gotab-Schinzel functional equation, Publ. Math. Debrecen 44 (1994), 235-241.
[5] -, On the continuous solutions of a generalization of the Gotab-Schinzel equation, ibid. 63 (2003), 421-429.
[6] -, Gołab-Schinzel equation and its generalizations, Aequationes Math. 70 (2005), 14-24.
[7] S. Gołąb et A. Schinzel, Sur l'équation fonctionnelle $f(x+f(x) y)=f(x) f(y)$, Publ. Math. Debrecen 6 (1959), 113-125.
[8] E. Jabłonska, On solutions of a generalization of the Gołab-Schinzel equation, Aequationes Math. 71 (2006), 269-279.
[9] F. B. Jones, Connected and disconnected plane sets and the functional equation $f(x+y)=f(x)+f(y)$, Bull. Amer. Math. Soc. 48 (1942), 115-120.
[10] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, PWN and Uniwersytet Sląski, Warszawa-Kraków-Katowice, 1985.

Department of Mathematics
Rzeszów University of Technology
W. Pola 2

35-959 Rzeszów, Poland
E-mail: elizapie@prz.rzeszow.pl

Received 16 February 2008;
revised 9 May 2008

