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GOOD-λ INEQUALITIES FOR WAVELETS OF COMPACT SUPPORT

BY

SARAH V. COOK (Topeka, KS)

Abstract. For a wavelet ψ of compact support, we define a square function Sw
and a maximal function NΛ. We then obtain the Lp equivalence of these functions for
0 < p <∞. We show this equivalence by using good-λ inequalities.

1. Introduction. In 1970, Burkholder and Gundy [4] showed, among
other results, that if for a martingale f = (fn) the square function Sf and
maximal function f∗ are given by

Sf(x) =
( ∞∑

n=1

(fn(x)− fn−1(x))2
)1/2

, f∗(x) = sup
n
|fn(x)|,

then ‖Sf‖p ≈ ‖f∗‖p for 0 < p < ∞. Previously this result was known only
for 1 < p <∞.

Burkholder and Gundy proved their results by first showing that Sf
controls f∗ and conversely f∗ controls Sf by what is now commonly known
as a good-λ inequality.

Definition 1. For positive measurable functions f and g, we say that
g controls f by a good-λ inequality if there exist constants K > 1, 0 < ε0 ≤ 1
and a function C(ε), with C(ε) → 0 as ε → 0, such that for all λ > 0 and
0 < ε < ε0 we have

|{x ∈ R : f(x) > Kλ, g(x) < ελ}| ≤ C(ε)|{x ∈ R : f(x) > λ}|.
Burkholder ([2], [3]) later refined these results and in particular gave

in [2] the following lemma, which demonstrates the usefulness of a good-λ
inequality.

Lemma 1. Consider a non-decreasing continuous function Φ defined on
[0,∞) such that Φ(0) = 0 and Φ is not identically zero. Suppose Φ sat-
isfies Φ(2λ) ≤ CΦ(λ) for all λ > 0 and for some fixed constant C de-
pending only on Φ. Suppose also that g controls f by a good-λ inequality.
For a fixed ε, 0 < ε < ε0, there exist real numbers % and ν which satisfy
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Φ(Kλ) ≤ %Φ(λ) and Φ(ε−1λ) ≤ νΦ(λ) for every λ > 0. (The growth condi-
tion on Φ ensures the existence of % and ν.) Finally , suppose %C(ε) < 1 and�
R Φ(min{1, f(x)}) dx <∞. Then

�

R
Φ(f(x)) dx ≤ %ν

1− %C(ε)

�

R
Φ(g(x)) dx.

Burkholder and Gundy’s results along with the fact that a martingale is
essentially a Haar wavelet provide us with a reason to believe that good-λ
inequalities exist for a more generalized wavelet. As further justification, we
have the following theorem from Meyer [8] which shows the Lp equivalence of
two square functions for an r-regular wavelet. In the statement of the theo-
rem and throughout the paper, for a dyadic interval Q = [k/2n, (k + 1)/2n),
let ψQ(x) := ψn,k(x) = 2n/2ψ(2nx−k) be the standard dilation and transla-
tion of a wavelet ψ. Also, for each dyadic Q, let aQ denote the corresponding
wavelet coefficient.

Theorem 1. For ψ an r-regular wavelet and 1 < p < ∞, the norms
‖(∑J |aJ |2 |ψJ(x)|2)1/2‖p and ‖(∑J |aJ |2 |J |−1XJ(x))1/2‖p are equivalent.

We now make some definitions which will be used throughout the paper.
Fix ψ to be a wavelet with compact support. Then there exists M ∈ Z such
that if Q is the unique interval that has the same center as Q and length
|Q| = 2M |Q|, then supp(ψQ) ⊆ Q. Fix such an M and for a dyadic Q,

define Q in this manner. Similarly, define Q̂ to be the interval of R that has
the same center as Q and length |Q̂| = 2M+3|Q|. Further, let Qn(x) be the
unique dyadic interval that contains x and has length |Qn(x)| = 2−n.

In this paper, we show the Lp equivalence, 0 < p < ∞, of a maximal
function and a square function for our wavelet by using good-λ inequalities.
We define our maximal function, NΛ, by

NΛ(x) := sup
n

sup
y∈Qn(x)

|Λn(y)|, where Λn(x) :=
∑

|J|>2−n

aJψJ (x).

We also define the square function, Sw, by

Sw(x) :=
(∑

Q⊆R
a2
Q

1
|Q| XQ̂(x)

)1/2

.

In Section 2, we show Sw controls NΛ by a good-λ inequality. The proof
of this inequality roughly follows the proof of the martingale case. In fact,
we shall make use of the following theorem, which is a variation of that
found in [4].

Theorem 2. There exists a constant K > 1, and constants C and c
possibly depending on K, such that for 0 < ε < 1, λ > 0 we have

|{x ∈ Q0 : f∗(x) > Kλ, Sf < ελ}| ≤ C exp
(−c
ε2

)
|{x ∈ Q0 : f∗(x) > λ}|.
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In the third section, we will define a new maximal function NαΛ and
show NαΛ controls Sw. We shall then estimate NΛ by NαΛ. In that section
we will use the theory of dyadic bounded mean oscillation to obtain our
good-λ inequality. In particular, we will use the following corollary to the
John–Nirenberg Theorem [9].

Corollary 1. Suppose g ∈ BMOd, g 6≡ 0, with ‖g‖d ≤ C(ελ)2 for
some 0 < ε < 1 and λ > 0. Then there exist constants K > 1, c1 > 0, and
c2 > 0 independent of ε and λ such that

|{x ∈ R : |g(x)| > Kλ2}| ≤ c1 exp
(
− c2
ε2

)
|{x ∈ R : |g(x)| > λ2}|.

2. Control of NΛ by Sw. Our goal in this section is to prove the
following good-λ inequality:

Theorem 3. There exist k > 1, 0 < ε0 ≤ 1 and constants C and c such
that for 0 < ε < ε0, λ > 0 we have

|{x ∈ R :NΛ(x)>kλ, Sw(x)<ελ}| ≤C exp
(
− c

ε2

)
|{x ∈ R :NΛ(x)>λ}|.

To prove Theorem 3, we shall divide the dyadic intervals of R into a
finite number of sets and examine the square function indexed over these
sets. To this end, we make use of the following which is a slight variation of
a lemma found in [6].

Lemma 2. Let F denote the set of all dyadic intervals of R and for
m ∈ Z let Fm = {Q ∈ F : |Q| = 2−m}. For x ∈ R, set F x = {x+Q : Q ∈ F}
and F xm = {x+Q : Q ∈ Fm}. For a dyadic interval Q0, there exist N ∈ N,
{xj}Nj=1 ⊆ R, and disjoint subsets (Bj)Nj=1 of F such that

{Q ∈ F : Q ⊆ Q0} =
N⋃

j=1

Bj .

Furthermore, if Q ∈ Bj , then we have Q ⊆ Q′ for a unique Q′ ∈ F xj with
|Q′| = 2M+2|Q|. Also, if Q1, Q2 ∈ Bj and Q1 6= Q2, then Q′1 6= Q2

′.

Of importance here is the fact that for any dyadic Q0, we have subsets
Bj , j ∈ {1, . . . , N}, where N depends only on M. For simplification, we shall
assume in what follows that Q0 is the unit dyadic interval [0, 1). Similar
results for an arbitrary dyadic Q0 also hold and we shall be free to use this
later on.

Fix j ∈ {1, . . . , N}, where N is as in Lemma 2. Continuing with the
notation from the lemma, we re-index the wavelet coefficients and functions
by

c
(j)
Q′ := aQ, ω

(j)
Q′ (x) := ψQ(x).



10 S. V. COOK

Similarly, we also subdivide the function Λn by defining

Λ
(j)
Q0,m

(x) :=
∑

Q∈Bj
|Q|>2−m

aQψQ(x) =
∑

Q′∈Gxj
|Q′|>2−m+M+2

c
(j)
Q′ ω

(j)
Q′ (x),

for m ≥ 0 and where Gxj := {Q′ ∈ F xj : Q ⊆ Q0, Q ∈ Bj}.
Note that we now have suppω(j)

Q′ ⊆ Q′ and
�
Q′ ω

(j)
Q′ (x) dx = 0. Thus, if we

set f (j)
Q0,m

:= E(Λ(j)
Q0,m

| Gxjm ) where Gxjm is the σ-field generated by intervals

in F
xj
m−M+2, then f

(j)
Q0

= (f (j)
Q0,m

) is a martingale with f
(j)
Q0,0 ≡ 0. For each

martingale in this indexed collection, we denote the martingale maximal
function and square function as (f (j)

Q0
)∗(x) and Sf

(j)
Q0

(x) respectively.
We wish to estimate the wavelet square function by the martingale square

functions and apply Theorem 2. Since we have a collection of indexed mar-
tingales, it is necessary to define an indexed set of functions similar to the
wavelet square function by

S
(j)
Q0,w(x) :=

( ∑

Q′∈Gxj
(c(j)Q′ )

2 1
|Q′| XQ′(x)

)1/2
.

The following lemmas relate the wavelet square function to the martingale.
Lemma 3 is due to Bañuelos and Moore [1].

Lemma 3. There exist c1 and c2 depending only on ψ such that

(Sf (j)
Q0

(x))2 ≤ c1(S(j)
Q0,w(x))2(1)

|f (j)
Q0,k

(x)− Λ(j)
Q0,k

(x)|2 ≤ c2(S(j)
Q0,w(x))2.(2)

Lemma 4. Fix Qn to be a dyadic interval with length 2−n. There exists
a constant c3, depending only on ψ, such that if x, y ∈ Qn then

(3)
∣∣∣
N∑

j=1

(Λ(j)
Q0,n

(y)− Λ(j)
Q0,n

(x))
∣∣∣ ≤ c3Sw(x).

Proof. We have
∣∣∣
N∑

j=1

(Λ(j)
Q0,n

(y)− Λ(j)
Q0,n

(x))
∣∣∣ =

∣∣∣
∑

J⊆Q0
|J|>2−n

aJ (ψJ (y)− ψJ (x))
∣∣∣.

Since x, y ∈ Qn it follows that if either x or y is in suppψJ for some dyadic
interval J with |J | > 2−n, then both x, y ∈ J. Hence we may approximate
the above by∣∣∣

∑

J⊆Q0
|J|>2−n

aJ(ψJ (y)− ψJ (x))
∣∣∣ ≤

∑

J⊆Q0
|J|>2−n

|aJ |2−n‖ψ′J‖∞XJ(x)
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≤
∑

|J|>2−n

|aJ |2−n‖ψ′‖∞|J |−3/2XJ (x)

≤ ‖ψ′‖∞
( ∑

|J|>2−n

|aJ |2|J |−1XJ (x)
)1/2( ∑

|J|>2−n

2−2n|J |−2XJ (x)
)1/2

≤ 2‖ψ′‖∞Sw(x).

To prove Theorem 3, we must obtain constants k and ε0. We shall explain
how these constants are obtained later. In what follows, we simply assume
k > 1, ε0 ≤ 1, and ε < ε0.

Choose a maximal dyadicQ ⊆ R with |{x ∈ Q : NΛ(x) > λ}| > 1
4 |Q|. By

maximality of Q, there exists x0 ∈ Q such that NΛ(x0) ≤ λ. In particular,
for y ∈ Q we have

(4)
∣∣∣
∑

|J|>|Q|
aJψJ (y)

∣∣∣ ≤ λ.

Fix xQ ∈ Q such that NΛ(xQ) > kλ and Sw(xQ) < ελ. Say Q has length
|Q| = 2−m. Note that since x0, xQ ∈ Q, it follows that for every n with n <
m, both x0 and xQ must be in the same dyadic interval of length 2−n. Thus,
if supy∈Qn(xQ) |Λn(y)| > kλ, then supy∈Qn(x0) |Λn(y)| > kλ, which implies
NΛ(x0) > kλ. But by choice of x0, NΛ(x0) ≤ λ < kλ. Hence, for NΛ(xQ),
it suffices to take the supremum over only those n where n ≥ m. Thus

NΛ(xQ) = sup
m≤n

sup
y∈Qn(xQ)

|Λn(y)|

≤ sup
m≤n

sup
y∈Qn(xQ)

∣∣∣
∑

|Q|≥|J|>2−n

aJψJ (y)
∣∣∣+
∣∣∣
∑

|J|>|Q|
aJψJ (y)

∣∣∣

≤ λ+ sup
m≤n

sup
y∈Qn(xQ)

∣∣∣
∑

|Q|≥|J|>2−n

aJψJ (y)
∣∣∣

where the last inequality comes from (4).
Since NΛ(xQ) > kλ, we then have

(k − 1)λ ≤ sup
m≤n

sup
y∈Qn(xQ)

∣∣∣
∑

|Q|≥|J|>2−n

aJψJ (y)
∣∣∣.

By applying Lemma 2 to Q, there must exist n0 > m and yn0 ∈ Qn0(xQ)
where

(k − 1)λ ≤
∣∣∣
N∑

j=1

Λ
(j)
Q,n0

(yn0)
∣∣∣

≤
∣∣∣
N∑

j=1

Λ
(j)
Q,n0

(xQ)
∣∣∣+
∣∣∣
N∑

j=1

(Λ(j)
Q,n0

(yn0)− Λ(j)
Q,n0

(xQ))
∣∣∣.(5)
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It is clear that
∑N

j=1(S(j)
Q,w(xQ))2 ≤ 2−M (Sw(xQ))2. Using this with (2)

and Sw(xQ) < ελ, we may estimate the first summation in (5) by

(6)
N∑

j=1

|Λ(j)
Q,k0

(xQ)| ≤ cψελ+
N∑

j=1

f
(j)
Q,k0

(xQ).

Using (3) and (6) in inequality (5) we obtain

(k − 1)λ ≤ cψελ+
N∑

j=1

f
(j)
Q,k0

(xQ) + c3ελ,

which implies k∗λ ≤∑N
j=1 f

(j)
Q,k0

(xQ) ≤∑N
j=1(f (j)

Q )∗(xQ). We then have

|{x ∈ Q : NΛ(x) > kΛ, Sw(x) < ελ}|

≤
N∑

j=1

∣∣∣∣
{
x ∈ Q : (f (j)

Q )∗(x) >
k∗λ
N

, S
(j)
Q,w(x) <

ελ√
2M+2

}∣∣∣∣

≤
N∑

j=1

∣∣∣∣
{
x ∈ Q : (f (j)

Q )∗(x) >
k∗λ
N

, Sf
(j)
Q (x) < c1

ελ√
2M+2

}∣∣∣∣

where the last estimate is from (1). Now set k large enough and ε0 small
enough so that we may apply Theorem 2 to the above to obtain

|{x ∈ Q : NΛ(x) > kΛ, Sw(x) < ελ}| ≤ C exp
(
− c

ε2

)
|Q|.

Note that our constants will depend on N. However, recall that for all
dyadic Q, N depends only on M. Summing over all such maximal dyadic Q
yields Theorem 3.

3. Control of Sw by NΛ. Ideally, in this third section we would prove
a version of Theorem 3 with the roles of NΛ and Sw reversed. Unfortunately,
we have not been able to obtain this inequality. However, we will obtain our
desired Lp equivalence of Sw and NΛ by showing Sw is controlled by a new
maximal function, NαΛ, where we shall take the supremum over non-dyadic
intervals.

Before we specifically define the maximal function NαΛ, we require
a few definitions. Since ψ is of compact support, there is a smallest in-
teger L such that for a dyadic interval J = [k/2j , (k + 1)/2j), we have
Ĵ ⊆ [(k − L)/2j , (k + L)/2j). Fix this L and for a dyadic interval J, define
J = [(k − L− 1)/2j , (k + L+ 2)/2j). Thus suppψJ ⊆ Ĵ ⊆ J.

For α > 0, n ∈ Z, and x ∈ R, define Γn,α(x) := {t ∈ R : |t−x| < α2−n},
the open interval of length 2−n+1α that has its center at x. We now define
the maximal function NαΛ by
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NαΛ(x) := sup
n

sup
t∈Γn,α(x)

|Λn(t)|.

As mentioned before, our intermediate goal is to prove NαΛ controls Sw by
a good-λ inequality. We record this as Theorem 4.

Theorem 4. There exist α0 > 0, K > 1 and constants C, c such that

|{x : Sw(x) > Kλ, NαΛ(x) < ελ}| ≤ C exp
(−c
ε2

)
|{x : Sw(x) > λ}|

for 0 < ε < 1, λ > 0, α > α0.

To prove this theorem, we shall define a function similar to Sw that is
of dyadic bounded mean oscillation. To obtain our desired BMOd function,
set E := {x ∈ R : NαΛ(x) ≤ ελ} for fixed λ > 0, 0 < ε < 1, and define

S̃w(x) :=
( ∑

J⊆R
Ĵ∩E 6=∅

a2
J

1
|J | XĴ(x)

)1/2
.

Note that Sw(x) ≥ S̃w(x) for all x ∈ R, and Sw(x) = S̃w(x) for all x ∈ E.
We shall show

Proposition 1. (S̃w)2 ∈ BMOd and ‖(S̃w)2‖d ≤ c4(ελ)2, where c4 de-
pends only on suppψ.

Fix an arbitrary dyadic interval Q0, say |Q0| = 2−m0 . We define

T := {Q : |Q| > 2−m0 , Q̂ ∩E 6= ∅}, B := {Q : |Q| ≤ 2−m0 , Q̂ ∩ E 6= ∅}.
For fixed x ∈ R, set

S̃Tw (x) :=
( ∑

Q∈T
a2
Q

1
|Q| XQ̂(x)

)1/2

, S̃Bw(x) :=
(∑

Q∈B
a2
Q

1
|Q|XQ̂(x)

)1/2
.

Note that (S̃w(x))2−(S̃Tw (x))2 = (S̃Bw(x))2 and that S̃Tw (x) is constant onQ0.
Thus,

�

Q0

((S̃w(x))2 − (S̃Tw (x))2) dx =
�

Q0

(S̃Bw(x))2 dx

=
�

Q0

∑

Q̂∩E 6=∅
|Q|≤|Q0|

a2
Q

1
|Q| XQ̂(x) dx

≤ 2M+3
∑

Q̂∩E 6=∅, Q̂∩Q0 6=∅
|Q|≤|Q0|

a2
Q ≤ 2M+3

∑

Q∈G
a2
Q,

where G := {Q : Q ∩ E 6= ∅, Q ∩Q0 6= ∅, |Q| ≤ |Q0|}.
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By orthonormality, we have

(7)
∑

Q∈G
a2
Q =

�

R

∑

Q∈G
a2
Q|ψQ(x)|2 dx =

�

R

∣∣∣
∑

Q∈G
aQψQ(x)

∣∣∣
2
dx.

To estimate (7), we first note that
∑

Q∈G aQψQ has support of length C|Q0|,
where C depends only on M . To complete the estimate of (7), we need to
make a pointwise estimate for the partial sum of wavelets associated to
dyadics in G. We will make this estimate by taking the summation over a
larger collection of dyadic intervals. We remark that this procedure is similar
to one used by Gundy and Iribarren [7]. Define

H := {Q : Q ∩ J 6= ∅ for some J ∈ G, |J | = |Q|},
I := {Q : Q ∩ J 6= ∅ for some J ∈ H, |J | = |Q|},
J := {Q : Q ∩ J 6= ∅ for some J ∈ I, |J | = |Q|}.

Note that clearly G ⊆ H ⊆ I ⊆ J .
We may now select α0 large enough so that if α > α0 and Q ∈ J ,

|Q| = 2−j , then Q ⊆ Γj,α(x0) for some x0 ∈ E. We remark that α0 depends
only on M.

There are three properties of this collection of sets which we state now
as propositions. The proof of Proposition 2 is clear from the definition of
the relevant sets and is omitted.

Proposition 2. For dyadic Q, let Q̃ be the parent dyadic interval of Q.
If |Q| < |Q0| and Q ∈ G (respectively H, I,J ) then Q̃ ∈ G (respectively
H, I,J ).

Proposition 3. Let Q ∈ J with |Q| = 2−j . For for all t ∈ Q, and all
l1, l2 ∈ N with m0 ≤ l1 < l2 ≤ j, we have

∣∣∣
∑

2−l1≥|J|>2−l2

aJψJ (t)
∣∣∣ ≤ 2ελ.

Proof. By choice of α0, Q ⊆ Γj,α(x0) for some x0 ∈ E. Proposition 2
implies that if J is the unique dyadic interval with |J | = 2−l2 and Q ⊆ J,
then J ∈ J . Thus, again by choice of α0, we get J ⊆ Γl2,α(x0) and |Λl2(t)| ≤
ελ for all t ∈ J.

Similar reasoning shows that if I is the unique dyadic interval of length
2−l1+1 containing Q then |Λl1−1(t)| ≤ ελ for all t ∈ I. The proposition then
follows from the triangle inequality.

Our last proposition estimates the wavelet coefficient aQ for Q ⊆ I.
Proposition 4. If Q ∈ I is such that |Q| = 2−i, then there exists a

constant C, depending only on ψ, such that |aQ| ≤ 2−i/2Cελ.
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Proof. Fix such a Q and say Q = [r/2i, (r + 1)/2i). Let t ∈ Q be arbi-
trary. There must exist some dyadic I ⊆ Q with t ∈ I and |I| = |Q|. Thus,
since Q ∈ I, we have I ∈ J . By Proposition 3,∣∣∣

∑

J:|J|=|I|
aJψJ (x)

∣∣∣ ≤ 2ελ

for all x ∈ I. In particular, the above inequality holds for t.
Using the orthonormality of {ψJ} and applying the above estimate we

get

|aQ| =
∣∣∣

�

R

∑

J:|J|=|Q|
aJψJ (s)ψQ(s) ds

∣∣∣ ≤
�

R
|ψQ(s)|

∣∣∣
∑

J:|J|=|Q|
aJψJ (s)

∣∣∣ ds

≤
�

R
|ψQ(s)| 2ελ ds.

Since ψQ(s) = 2i/2ψ(2is − k), we may substitute y = 2is − k in the above
to obtain

|aQ| ≤
�

R
|ψQ(s)| 2ελ ds = 2ελ

�

R
2−i/2|ψ(y)| dy ≤ 2ελ2−i/2‖ψ‖1.

We are now prepared to make the desired pointwise estimate for the
partial sum of wavelets associated to dyadic intervals in G.

Lemma 5. There is a constant c5 depending only on ψ such that for all
t ∈ R, ∣∣∣

∑

Q∈G
aQψQ(t)

∣∣∣ ≤ c5ελ.

Proof. Fix t ∈ supp(
∑

Q∈G aQψQ). Then t ∈ J for some J ∈ H. By
Proposition 2 applied to H, we have the following two cases.

Case 1: There exists a sequence {Jk}∞k=m0
of dyadic intervals with t ∈

Jk ∈ H and |Jk| = 2−k. For each k ≥ m0, there exist xk ∈ E and yk ∈ Q0

with |xk − t| ≤ C2−k and |yk − t| ≤ C2−k where C depends only on M.
Since E is closed we have t ∈ E, which implies |∑|I|>2−n aIψI(t)| ≤ ελ for
all n and consequently, for every n > m0,

(8)
∣∣∣

∑

2−m0≥|I|>2−n

aIψI(t)
∣∣∣ ≤ 2ελ.

Fix n > m0. We wish to show

{I ∈ G : t ∈ suppψI , |I| > 2−n} = {I : t ∈ suppψI , 2−m0 ≥ |I| > 2−n}.
To see this, let I be dyadic with |I| = 2−l, m0 ≤ l < n, and let t ∈ suppψI .
Note that t ∈ suppψI ⊆ I and, from the above, t ∈ E. Thus, I ∩E 6= ∅. By
definition of Î, it must be that Î∩Q0 6= ∅ and hence I∩Q0 6= ∅. Thus, I ∈ G.
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This gives half of the desired set equality. The remaining set containment is
trivial.

We substitute into (8) to obtain |∑I∈G, |I|>2−n aIψI(t)| ≤ 2ελ for every
n > m0. The conclusion of the lemma is then immediate in this case.

Case 2: There exists a maximum integer n0, with n0 ≥ m0, and dyadic
intervals {Jk}n0

k=m0
⊆ H with |Jk| = 2−k, such that t ∈ Jk for all n0 ≥ k ≥

m0. Consider the dyadic interval Jn0 ∈ H. By Proposition 3,

(9)
∣∣∣

∑

2−m0≥|I|≥2−n0

aIψI(t)
∣∣∣ ≤ 2ελ.

Similarly to Case 1, we can show

{I ∈ I : t ∈ suppψI , |I| ≥ 2−n0} = {I : t ∈ suppψI , 2−m0 ≥ |I| ≥ 2−n0}.
Hence, (9) becomes |∑I∈I, |I|≥2−n0 aIψI(t)| ≤ 2ελ and we obtain our de-
sired inequality by estimating the quantities |∑I∈I\H, |I|≥2−n0 aIψI(t)| and
|∑I∈H\G, |I|≥2−n0 aIψI(t)| by means of the following claim.

Claim. There exists an N, depending only on ψ, such that for any
dyadic Q ∈ I \ H (or Q ∈ H \ G) with |Q| ≥ 2N/2n0 , we have t 6∈ suppψQ.

Proof. The condition t ∈ Jn0 ∈ H implies that there exists some x0 ∈ E
and some y0 ∈ Q0 such that |t−x0| ≤ C2−n0 and |y0− t| ≤ C2−n0 . Choose
N large enough so that 2N > 2C. Then |y0 − x0| ≤ 2N/2n0 . Let Q ∈ I \ H
(respectively Q ∈ H\G), with |Q| = 2−i ≥ 2N/2n0 . Thus, x0 and y0 must be
either in the same dyadic interval with sidelength 2−i or in adjacent dyadic
intervals with sidelengths 2−i, and t must be in the same dyadic with either
x0 or y0. If t ∈ suppψQ, the choice of Q̂ implies that x0, y0 ∈ Q̂. This gives
us Q ∈ G, which is impossible since Q ∈ I \ H (respectively Q ∈ H \ G).
Hence it must be that t 6∈ suppψQ, which proves the Claim.

To complete the proof of Lemma 5, fix i. There exist at most 2L dyadics
Q with |Q| = 2−i and t ∈ suppψQ. By the above Claim, t ∈ suppψQ for at
most 2LN dyadics Q with Q ∈ I \ H (respectively Q ∈ H \ G).

Finally, if t ∈ suppψQ for Q ∈ I \ H (respectively Q ∈ H \ G), then
Proposition 4 yields |aQψQ(t)| = |aQ| |ψQ(t)| ≤ 2−i/2Cελ|ψQ(t)|, where
|Q| = 2−i. Note that |ψQ(t)| ≤ 2i/2 supy∈R |ψ(y)|. Since ψ is continuous
with compact support, we have |aQψQ(t)| ≤ Cελ.

Thus,
∣∣∣

∑

J∈I\H
|J|≥2−n0

aJψJ (t)
∣∣∣ ≤ 2NLCελ,

∣∣∣
∑

J∈H\G
|J|≥2−n0

aJψJ (t)
∣∣∣ ≤ 2NLCελ.

This combined with (9) completes the proof of the lemma.
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Using the result of Lemma 5 in (7) we have
�

R

∣∣∣
∑

Q∈G
aQψQ(x)

∣∣∣
2
dx ≤ C(ελ)2|Q0|.

Thus,
�
Q0

((S̃w(x))2 − (S̃Tw (x))2) dx ≤ C(ελ)2|Q0|, which finishes the proof
of Proposition 1.

From this proposition and Corollary 1, we now have

|{x ∈ R : S̃w(x) > Kλ}| ≤ C1 exp
(−C2

ε2

)
|{x ∈ R : S̃w(x) > λ}|.

This gives the estimate

|{x ∈ R : Sw(x) > Kλ, NαΛ(x) < ελ}|
≤ |{x ∈ E : S̃w(x) > Kλ, NαΛ(x) ≤ ελ}|

≤ |{x ∈ R : S̃w(x) > Kλ}|

≤ C1 exp
(−C2

ε2

)
|{x ∈ R : S̃w(x) > λ}|

≤ C1 exp
(−C2

ε2

)
|{x ∈ R : Sw(x) > λ}|,

where the last inequality comes from the fact that Sw(x) ≥ S̃w(x) for all
x ∈ R. We have thus proved Theorem 4.

We shall now show the following corollary to Theorem 4, which will give
the desired relationship between Sw and NΛ. Namely, we will show

Corollary 2. For Φ as in Lemma 1, we have
�

R
Φ(Sw(x)) dx ≤ C

�

R
Φ(NΛ(x)) dx,

where C depends only on Φ and ψ.

To prove the corollary, we make use of the following lemma. The proof
of (a) is given in [5]; (b) follows using similar arguments.

Lemma 6. (a) For γ > β > 0, there exists a constant Cγ,β , depending
only on γ, β, such that

|{x ∈ R : NγΛ(x) > λ}| ≤ Cγ,β |{x ∈ R : NβΛ(x) > λ}|.
(b) For α > 0, there exists a constant Cα, depending only on α, such

that
|{x ∈ R : NαΛ(x) > λ}| ≤ Cα|{x ∈ R : NΛ(x) > λ}|.
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Applying Lemma 6 with the Lebesgue–Stieltjes measure associated
with Φ, we obtain Corollary 2. Combining Corollary 2 with Theorem 3 we
have our desired result of ‖Sw‖p ≈ ‖NΛ‖p, 0 < p <∞.
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