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ON DIFFEOMORPHISMS WITH POLYNOMIAL GROWTH
OF THE DERIVATIVE ON SURFACES

BY

KRZYSZTOF FRACZEK (Torun)

Abstract. We consider zero entropy C°°-diffeomorphisms on compact connected
C*°-manifolds. We introduce the notion of polynomial growth of the derivative for such
diffeomorphisms, and study it for diffeomorphisms which additionally preserve a smooth
measure. We show that if a manifold M admits an ergodic diffeomorphism with polynomial
growth of the derivative then there exists a smooth flow with no fixed point on M. More-
over, if dim M = 2, then necessarily M = T? and the diffeomorphism is C°°-conjugate to
a skew product on the 2-torus.

1. Introduction. Let f : M — M be a smooth diffeomorphism of
a compact connected smooth manifold M. An important question of the
theory of smooth dynamical systems is whether asymptotic properties of
the sequence {Df"} affect the dynamical properties of the diffeomorphism
f: M — M. There are classical results describing this phenomenon in some
special cases.

For example, suppose that f : T — T¢ is a diffeomorphism of the
d-dimensional torus, homotopic to the identity. If the sequence {Df"} is
uniformly bounded and the coordinates of the rotation vector of f are ra-
tionally independent then f is C°-conjugate to an ergodic rotation (see
[8, p. 181]). On the other hand, suppose that M is a surface (2-dimensional
case). If the sequence {Df"} has an “exponential growth”, more precisely,
if f is an Anosov diffeomorphism then f is C°-conjugate to a hyperbolic
automorphism of the 2-torus (see [7]).

Let us first define the notion of polynomial growth of the derivative. Let
M be a k-dimensional compact connected C*°-manifold. There is a natural
collection of sets of measure zero on M. This is the collection of sets A such
that for any local chart (U, ¢) the set p(ANU) C R* has Lebesgue measure
zero. Let f : M — M be a C°°-diffeomorphism and let {(U;, ¢;)}ier be
a C'°°-atlas of M.

DEFINITION 1. We say that the pair (f,{(U;, ¢;)}ier) has B-polynomial
growth of the derivative if for every i, j € I there exists a measurable function
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Aji : Uy — Mj(R) non-zero at a.e. point such that for a.e. z € U; we have

% D(pjo " oo (wi(x)) — Aji(x)

whenever n tends to infinity through values such that f"(z) € U;. We
say that the diffeomorphism f : M — M has G-polynomial growth of the
derivative if there exists an atlas {(U;, ;) }ier for which (f, {(U;, ¢i) }ier)
has such growth.

Suppose that M is the d-torus and {(U;, ¢;) }ier is an atlas which comes
from the natural projection of R% on T?. Then the notion of -polynomial
growth of the derivative of f : T¢ — T? with respect to {(U;, ;)} coincides
with the definition presented in [4], i.e. nPDf" converges a.e. to a non-
zero function, where f : R? — R? is a lift of f. In [4], it is shown that
if f: T2 — T2 is an area-preserving ergodic C?-diffeomorphism with (-
polynomial growth of the derivative (in the above sense) then § =1 and f
is algebraically conjugate (i.e. via a group automorphism) to a skew product

TO&,SO(‘Tl’ 1“2) = (1‘1 + o,z + 90(‘/1"1))’

where « is irrational and the topological degree d(¢p) of ¢ is non-zero. Further
versions of this result can be found in [5] and [6].

The aim of this paper is a further study of diffeomorphisms with polyno-
mial growth of the derivative on general smooth manifolds, more precisely,
we will consider such diffeomorphisms which possess an ergodic positive
smooth invariant measure. In Section 2 we show that if a manifold M ad-
mits such a diffeomorphism then there exists a smooth flow with no fixed
point on M. In particular, the Euler characteristic of M equals 0, by the
Poincaré-Hopf Index Formula. It follows that if dim M = 2, then M is dif-
feomorphic either to the 2-torus or to the Klein bottle. In Section 3, roughly
speaking, we prove that every diffeomorphism with polynomial growth of
the derivative on the 2-torus is diffeomorphic to a skew product T4, where
d(p) # 0. In particular, the matrix of the algebraic action of such a dif-
feomorphism on the 1-homology group Hi(T?,Z) cannot be conjugate to
a diagonal matrix. Next we will apply this result to eliminate the Klein
bottle. More precisely, we lift diffeomorphisms with polynomial growth of
the derivative on the Klein bottle to diffeomorphisms with such growth on
the torus. However it will turn out that the matrices of the algebraic ac-
tions of such lifts on the 1-homology group are diagonal. It follows that
the two-dimensional torus is the only two-dimensional compact smooth sur-
face which admits ergodic diffeomorphisms with polynomial growth of the
derivatives.
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2. Fundamental properties. Let f : M — M be a C°°-diffeomor-
phism of a compact connected C'*°-manifold M. Let p be an f-invariant
positive probability C*°-measure on M (see [10, Ch. 5] for the definition of
positive smooth measures).

LEMMA 1. Suppose that f : (M,u) — (M, pn) is ergodic and has (3-
polynomial growth of the derivative. Then there exists an atlas {(U;, &;) }ier
such that (f,{(Ui, i) }icr) has B-polynomial growth of the derivative and
Aji(x) is independent of j € I for each i € I and for a.e. x € Uj.

Proof. Let {(Ui, i) }ier be an atlas such that (f, {(Ui,¢;)}icr) has (-
polynomial growth of the derivative. Take 4,7,k € I. Suppose that y €
U; N Uy. By the ergodicity of f, for a.e. & € U; the orbit {f"x}72, is dense
in M. Therefore for a.e. x € U; there exists an increasing sequence {n;};°,
of natural numbers such that

fffeeU;NU; and  fMa — .

Since

L D(gjo f7 0 o) (i)
Yy

_ 1 _
= D(pj 09, Neu(f"2)) - =5 D(gr o f" o o ) (i),
n
!
letting | — oo we obtain
(1) Aji(x) = D(pj 0 03 N en(y)) - Ari()
for every y € U; N Uy, and for a.e. z € U;.

Fix jo € I. Since M is connected, for every j € I we can choose a
sequence {U;, }7, of sets and a sequence {y,}7; of points such that ys €
Uj, ,NUj, for s =1,...,m, where j,, = j. Let $; : Uj — R* be defined by

@j(x) :== Bj pj(x)

= D(pjo 005, )5 (1)) -+ D@41 © 05 ) (@4 (ym)) 05 ().
Clearly, {(U;, 9;) }icr is a C*-atlas on M. Take i, j € I. Then for a.e. x € U;
we have

DG "o ) (@i(x)
= B;- niﬁ D(pjo "o )(pi(x)) - B!
= D(io 0 ¢ 0n 00) - Dy 0932 (Um)) - Asyi(@) - BT

= Ajoi(m) ’ Bz‘_17

whenever n — oo with f"x € Uy, by (1), and the proof is complete. =
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By the above lemma, we can assume that for every i € I there exists
A; : U; — RF such that

n_lﬁ D(gj0 f" o g7 ") (pilx)) — Ai(x)

whenever n — oo with f"z € U;.
LEMMA 2. For every i,j,k € I and for any natural n we have
Ai(x) = D(pr o [ oo 1) (pi(y)) - Ai(x)
for any y € U; N f7"Uy, and for a.e. x € U;.
Proof. Take y € U;N f~"Uy. Since for a.e. € U; the orbit {f"z}7 is

dense in M (by the ergodicity of f), we can choose an increasing sequence
{n;}72, of natural numbers such that

e eU;N "0, and  fMa — .

Since

L Digro 7 0 o) (1)
ny

_ 1 _
= D(pr o [" o9 (i (f"x)) - —5 D(pj o [ o ¢y (i),
W
letting | — oo we obtain the assertion. m
THEOREM 3. Suppose that a C™-diffeomorphism f : (M,u) — (M, u)
is ergodic and has B-polynomial growth of the derivative. Then there exists

a C*®-flow ' on M such that

o foyl =l o f for any real t,

e ! has no fized point.

Proof. Fix ¢ € I. By Lemma 2, there exists x € U; such that

Ai(x) #0 and  Ai(z) = D(pr o [" o 9) )(p;(y)) - Ail)
whenever y € U; N f~"Uy. Let @ € R* be a non-zero column of A;(z). Then
(2) a=D(po f"op; " )(pi(y))a
whenever y € U; N f~"Uj. Consider the C*°-vector field X : M — TM
defined by
X(x) := D(gp; ") (pj(x))a

whenever z € Uj. Clearly, X (z) does not depend on the choice of the chart

(Uj,¢;j), by (2). Moreover, X (z) # 0 for all x € M. Let ¢ stand for the
associated flow on M, i.e.

d t _ t
Sl (@) = X(u'a).
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Suppose that z € U; and choose € > 0 such that ¢’z € U, for any ¢ € (—¢,¢).
Then

d
a@j Owt(l’)

(o) (@' (@) - (@)
(01)(0'(2)) - X' (2))
= D)) (') Dl )y (') = a

whenever ¢t € (—¢,¢). Now suppose that x € U; N f~1Uj and choose 0 <
e’ < e such that foy'(z),¢' o f(x) € Uy for any t € (—¢’,&’). Then
d
ko fo P! (x) = pr oYt o f(a))
_ d d
= D(gx o f o0 )W) - 7oy 0v'(2) = oro v (f2)

dt
= D(pro fop;)(p;(W'z))a—a=0

for all t € (—¢',€), by (2). Consequently, f o ¢!(z) = ¢! o f(x) for all
t € (—€',€’). Since M is compact, we conclude that f o! = 9t o f for all
real t. m

D
D

COROLLARY 4. Let M be a connected compact C°°-manifold. Suppose
that there exists an ergodic positive C'*°-measure-preserving C*°-diffeomor-
phism with polynomial growth of the derivative on M. Then the Fuler char-
acteristic x(M) equals zero. m

Let T : (X,B,u) — (X,B, ) be a measure-preserving automorphism
of standard Borel space. We will denote by Zp(u) the o-algebra of B-
measurable T-invariant sets. Each measurable function f : X — R de-
termines a cocycle over the automorphism 7' given by

f@)+ f(Tz)+ ...+ f(T" o) for n > 0,

f™Ma@y=<0 for n =0,

—(f(Trz) + f(T" ) + ...+ f(T71x)) for n <O0.

Denote by T¢ : (X x R, 4 ® Ag) — (X x R, p ® Ar) the skew product

Ty(2,y) = (Ta,y + f(2)).
Then T} (z,y) = (Tz,y + f@™(z)) for any integer n.

REMARK 1. Suppose that a C*°-diffeomorphism f : M — M preserves
a positive probability C°°-measure p on M. Assume that a C*°-diffeomor-

phism g : M — M commutes with f. It is easy to check that if the o-algebra
T¢(p) is finite, then g preserves p as well.

3. 2-dimensional case. In this section we study the case where M is a
surface. Let f : M — M be a C*°-diffeomorphism and let p be an f-invariant
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positive probability C'°°-measure on M. Suppose that f is ergodic and has
polynomial growth of the derivative. By Corollary 4, the Euler characteristic
of M must be zero. Therefore M is C'°°-diffeomorphic either to the torus or
to the Klein bottle. Here is the main result of this paper.

THEOREM 5. Let f: M — M be a C*®-diffeomorphism of a connected
compact C*®-surface. Suppose that f has polynomial growth of the derivative
and possesses an invariant ergodic positive probability C'°°-measure on M.
Then f is C°°-conjugate to a skew product of the form

T 5 (x1,22) — (1 + a,z2+ B(z1)) € T?.

Before passing to the proof of the theorem let us consider the case where
M is the 2-torus T? = R?/Z2. By A2 we will denote the Lebesgue measure
on T2. We will identify functions on T? with Z2-periodic (i.e. 1-periodic in
each coordinate) functions on R2. Let f : T2 — T? be a smooth diffeomor-
phism. We will identify f with its lift, i.e. with a diffeomorphism f : R? — R?
such that
f@1+1,32) = fz1,32) + (a11, az1),
flzr, 22 +1) = f(a1,22) + (a12, az2)

for every (z1,x2) € R?, where [a;j]; j=1.2 € GLa(Z). Then the induced auto-
morphism of the 1-homology group

fe1 : Hi(T?,Z) — H,(T?,7Z)

is determined by the matrix [a;j]; j=12. Givena € T=R/Z and §: T — T
let Ty 5 : T2 — T2 stand for the skew product

Top(x1,22) = (21 + 0, 22 + B(1)).
LEMMA 6. Let f: (T2, p) — (T2, 1) be a C*®-diffeomorphism such that

e f has polynomial growth of the derivative,

o the o-algebra Ty(p) is finite,

o there exists on T? a C®-flow ¥ which commutes with f and has no
fixed point.

Then f is C°°-conjugate to a skew product Tp, 3 : T? — T2, where a € T is
wrrational and B : T — T is a C*°-mapping with non-zero topological degree.

Proof. The proof starts with the observation that we only need to prove
the lemma in the case where p = Ap2. Indeed, by Theorem 1 in [11], there
exists a C°-diffeomorphism o : T2 — T? such that o*yt = Ar2. Then the
diffeomorphism g o f o o' : T2 — T? preserves the Lebesgue measure and
satisfies the assumption of the lemma.

Therefore we can suppose that p = Ap2. By Remark 1, the flow
preserves the Lebesgue measure as well. It follows that 1! is a Hamiltonian
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flow on T? with no fixed point, i.e. there exists a C*>°-function H : R? — R
such that DH is Z?-periodic, non-zero at each point and

4 [ Ha(@)
) [ —Hy, () (2)) }'
Put

d = { S’H‘Z Hy, (x)dx/ S"[[‘Q H,,(z)dx if STQ H,,(z)dx # 0,

00 otherwise.

First suppose that d is irrational. Then ! is C*°-conjugate to a spe-
cial flow constructed over the rotation by an irrational number a and under
a positive C®°-function b : T — R with {,b(z)dz = 1 (see for instance
[1, Ch. 16]), i.e. there exists an area-preserving C*°-diffeomorphism p :
R? — R? and a matrix N € GLg(Z) such that

YPog=goct,
where o!(z1,22) = (21,72 + ct), ¢ > 0, and
o(x1 +my + maa, zg — b (21)) = o(x1, x2) + (M1, ma) N

for all (m1,mz) € Z* Let T, : T x R — T x R stand for the skew
product T, _p(z1,22) = (21 + a,22 — b(x1)). Consider the quotient space
Mgy = T x R/~, where the relation ~ is defined by (z1,22) ~ (y1,y2) iff
(x1,29) = Tf’_b(yl,yg) for an integer k. Then the quotient flow afhb of the
action ¢! by the relation ~ is the special flow constructed over the rotation
by a and under the function b. Moreover, o : M, — T? conjugates the flows

ot and 9", Let f: M, — M,y be given by f=o0lofoo. As f:R? - R?
commutes with the flow o we have

Flar, @) = foo™/%(a1,0) = 0™/ o f(21,0) = (fi(x1,0),x2 + fa(z1,0)).

Since f : R? — R? preserves area, 8%1]/"\1(:61,0) =det Df = ¢ = £1. Conse-
quently,

~

f(x1,22) = (ex1 + o, w2 + B(x1)),

where [(z) = fg(x,O). Since f is a diffeomorphism of M, there exist
m1,mo € Z such that

(ex1 +e+a,za+ B(z1+1))

~ ~

= f(z1+ L,22) = T, (21, 22) + (m1,0)
= (ex1 + a + my + moa, xo + (1) — b(mQ)(axl + a)).

It follows that m; = &, mo = 0, hence that 5 : T — R. Moreover, there exist
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ni,ng € Z such that
(ex1 +ea+ a,xe — b(x1) + B(z1 + a))
= foTs—p(z1,22) =172, f(21,22) + (n1,0)

= (ex1 + o+ ny + npa, xo + B(21) — b (21 + a)).

It follows that n; = 0, ny = ¢, hence that B(z) — b (ex + a) = —b(z) +
B(xz + a). Suppose that ¢ = —1. Then

—2={(-b(-z+a-a)—b)dz = (8(z) - Bz +a))dr = 0.
T T
Therefore

f(z1,22) = (71 + a, 22 + B(21))
and the skew products fand T,,—» commute. By Lemma 9 (see Appendix),
f : T? — T? is tangentially non-transient, which contradicts the fact that
f has polynomial growth of the derivative. Consequently, d must be either
rational or infinite. Then

" Hy, ()
Dﬂ)[_Hm@)

It follows that

= Lyt f(a)

A
|- 4 | =5

-]

t=0

DH(fx)- Df(z) = eDH(x),
where € = det Df = £1, and finally that
Ho f(x) =eH(x) + a.

Since DH is Z?-periodic, we can represent H as

H(xl, xg) = H(xl, xg) + dlxl + d21‘2,

where d; = (., Hy,(z)dz, i = 1,2 and H : T2 — R. Without loss of gener-
ality we can assume that dy, ds are relatively prime integer numbers and at
least one of them is non-zero, because DH is non-zero at each point. Now
notice that € = 1. Indeed, suppose, contrary to our claim, that ¢ = —1. Let
¢ : T? — C be given by &(x1,22) = exp 2miH (21, z2). Then & o f2 = £. Since
the o-algebra 7y is finite, it is easy to show that the o-algebra Z¢2 is finite as
well. It follows that £ and finally H is constant, which is impossible. In the
same manner we can show that « is irrational. Now applying Theorem 13
of [6] we conclude that f is C*°-conjugate to a skew product T, 3 : T? — T2.

Finally, suppose, contrary to our claim, that the topological degree d(03)
of B: T — T equals zero. Then

DTq“:{ 1 0}_}[1 0]
a0 DBl 1 0 1
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uniformly (see [8, p. 189]), where {g,} is the sequence of the denomina-
tors of o, which contradicts the fact that f has polynomial growth of the
derivative. m

Let us turn to the case where M is the Klein bottle. Let G C Aut(R?)
denote the subgroup of all group automorphisms of the plane generated by
the following two isometries:

5(1‘1,1172) = (1‘1 +1, —:Ez), T(l‘l,l‘Q) = (113‘1, To + 1).

Then the compact surface K = R?/G is a model of the Klein bottle. Since
S o T = T(D"M 6 g7 each element of G can be represented as T™ o S,

where m,n € Z. Moreover, G is isomorphic to the semidirect product Z X oy Z,
where ev : Z — Aut(Z) is given by ev(n)m = (—1)"m, i.e. the multiplica-
tion is given by
(n1,m1) o (n2,ma) = (n1 + ng,my + (=1)"ma).
The group isomorphism is established by the map
L Xey Z3 (n,m) —TMo 8" € G.

Suppose that f : K — K is a C*®-diffeomorphism. Let f : R> — R? be a

lift of f. Then there exists a group automorphism ¢ : G — G such that

f((n,m)z) = &(n,m) f(x)
for any (n,m) € G. Put
(CLH, a12) = @(1, O), (agl, CLQQ) = 415(0, 1).
As (1,1) 0 (1,1) = (2,0) = (1,0) o (1,0), we have
(2(a11 + a21), (1 + (=172 ) (az2 + (—1)"'a12))
= &((1,1) 0 (1,1)) = &((1,0) o (1,0)) = (2a11, (1 + (=1)"*)a1a).
It follows that as; = 0 and (1 4+ (—1)*")age = 0. Consider the subgroup
Go C G of all elements of the form (2n,m), m,n € Z. Then Gy = Z2,
because (2n1, m1) o (2ng, ma) = (2n1 + 2ng, my + my). Moreover,
®(2n,m) = ¢(0,1)™ o &(1,0)*" = (0, az2)™ o (a1, ai2)*"
= (0,mag2) o (2nai;,n(l+ (=1)*")ay2)
= (2nai1, mazz + n(l + (—=1)"")aq2) € Gy.

It follows that @ : Gy — Gy is a group automorphism, hence that there
exists B € GL2(Z) such that

d(2n, m) = (2b11n + 2b1om, bo1n + b22m).

However,
(2[)11, 621) = @(2, O) = (2@11, (1 + (—l)an)alg),
(2b12, bgg) = @(0, 1) = (O, agg).
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It follows that b11 = aii, b12 = 0, 521 = (1 + (—1)“11)a12 and 522 = a2, and
finally that aq1, a2 € {—1,1} and be; = 0. Consider the C'*°-diffeomorphism
f : R? — R? given by
(3) Fz1,w9) == (3 F1(221, 22), f2(221, 22)).
Then

f(z1 4+ n,ze +m) F1((2n,m)(2x1, 22)), f2((2n, m) (231, 22)))
Ja(

(21, 2) + nbiy, f2(221, 22) + mbas)
= [(z1,22) + (nbi1, mbaz).

Therefore fcan be treated as a C'°°-diffeomorphism of the torus.

COROLLARY 7. For every smooth diffeomorphism f : K — K the matriz
of the induced automorphism f. : Hi(T? Z) — Hy(T%,Z) of f:T? — T?
is diagonal.

Denote by o : T? — K the twofold cover of the Klein bottle given by

o(z1,x2) := (2z1, z2).
Then R
foo=oolf.
Suppose that p is an f-invariant positive probability C*°-measure on K.
Then p is equivalent to the Lebesgue measure Ag on K. Set p := du/dk.
Let p : T2 — R be given by p = p o o. Then the positive C*°-measure
dpp = p dA\p2 is f-invariant.

LEMMA 8. If the diffeomorphism f : (K, Bg, u) — (K, Bk, 1) is ergodic,
then the o-algebra of invariant sets of ]? (’]I‘ Bz, i) — (T2, B2, 1) is
finite.

Proof. 1t is easy to check that the group of all measure-preserving au-
tomorphisms g : (T2, Bra2, i) — (T2, By, /1) such that g o f = fo g and
g o™ Bx = 0718k equals {Ide I}, where I(x1,22) = (21 + 1/2,—x2).
By Lemma 1.8.1 of [9], IR (T? ; Bre, 1) — (T2, By, i) is a Zg-extension of
[ (K Bg,u) — (K, Bg, p), ie. f is measure theoretically isomorphic to a
skew product fe : (K x Za, p® (604 01)/2) — (KX Za, p® (60 + 01)/2) given
by

fe(w,y) = (f(x),y + (@),
where £ : K — Zo is a measurable function. It is now easy to check that the
o-algebra Ty, is generated by at most two sets. m

Proof of Theorem 5. By Lemma 6, it is sufficient to prove that there is
no ergodic positive C*°-measure-preserving C'°°-diffeomorphism of the Klein
bottle with polynomial growth of the derivative on K. Suppose, contrary to
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our claim, that f : K — K s such a diffeomorphism. Consider the associated
C*°-diffeomorphism f T? — T? given by (3). It is easy to see that f has
polynomial growth of the derivative as well. Let 1 denote the f—mvarlant
positive C*°-measure on T? given by dji = ((du/dA\g)o 0)dAg2. By Lemma 8,
the o-algebra of invariant sets of f : (T2, By2, i) — (T?, By2, fi) is finite.

By Theorem 3, there exists an area-preserving C*°-flow ! on K such
that f o ¢! = ' o f for any real ¢t and v’ has no fixed point. Denote by
Y a flow which is a lift of ¢! to R2. Since 9! and f commute, there exists
(n,m) € G such that

P'o f=(nm)foy
for all real t. Letting t = 0, we see that f = (n,m)f, and finally that
(n,m) = (0,0), because G acts freely on R2. Denote by P' the C*®-flow on
T? defined by

Pz, 20) = (304 (221, 22), 95221, 22) ).

Then the flow wt has no fixed point and commutes with f Therefore f
satisfies the assumption of Lemma 6. Consequently, f is C'°°-conjugate to a
skew product Ti, g : T? — T2, where a € T is irrational and §: T — T is a
C*°-function with non-zero topological degree. This contradicts the fact that
the matrix of the induced automorphism f,; is diagonal (see Corollary 7),
which proves the theorem. m

A. Tangentially non-transient diffeomorphisms. Let f: M — M
be a C*°-diffeomorphism of a compact C°°-manifold M.

DEFINITION 2. We say that f is tangentially non-transient if there exists
a Riemannian C°°-structure on M such that

liminf [|[Df"(z)|| < oo for a.e. x € M.
n—oo

In fact, the above notion does not depend on the choice of the Rieman-
nian structure, because all Riemannian structures are equivalent. Clearly,
the notion of the tangential non-transience is invariant under C'°°-conjuga-
tion. Moreover, there is no diffeomorphism which is simultaneously tangen-
tially non-transient and with polynomial growth of the derivative. In this
section we present a class of tangentially non-transient diffeomorphisms of
the torus.

Given a € T and 3 : T — R we will denote by T, 3: T x R — T x R the
skew product T, g(x1,22) = (1 + «,x2+ 5(21)). Let a € T be an irrational
number and let b : T — R be a positive C*°-function with {.b(z)dz = 1.
Let o! denote the flow on T x R given by o!(z1,x2) = (w1, 72 +t). Consider
the quotient space My, = T X R/~, where the relation ~ is defined by
(x1,22) ~ (y1,y2) iff (z1,22) = Tf,_b(yl,yg) for an integer k. Then the
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quotient flow aé’b of the action o' by the relation ~ is the special flow
constructed over the rotation by a and under the function b. By Lemma 2
of [3] and Theorem 1 of [11], there exists a C°°-diffeomorphism g : M, — T?
such that the flow ! := po UZ,b o o' is a Hamiltonian flow on T? with no

fixed points, i.e. there exists a C*°-function H : R? — R such that DH is
Z?-periodic, non-zero at each point and

e
ton-[ 1531
1
We will identify o with a diffeomorphism o : R?> — R? such that
o(w1 + 1,22) = o(x1,72) + (N11, N12),

o(z1 + a,x2 — b(x1)) = o(x1,x2) + (Na1, Nag),
for any (z1,22) € R%, where N € GLy(Z). Then
(4) Do(z1 + 1,22) = Do(z1, x2),

1 0

n
(5) DQ(Ta,—b(xl’xQ)) —Db(n)<1‘1) 1
for any integer n.

Let T, g : TXR — T xR be a skew product commuting with T;, _;, where
B:T — Ris of class C°°. Then T, g can be treated as a C*°-diffeomorphism
of Mgyp. Denote by f : T? — T? the area-preserving C*°-diffeomorphism
given by f:=poT,z0 o L.

LEMMA 9. The diffeomorphism f : T? — T2 is tangentially non-tran-
sient.

= DQ('xlva))

To prove this lemma we will need some information on recurrent cocycles
over Z?-actions. Let

ZE 57— T € Aut(X, B, i)
be a measure-preserving ergodic free Z?-action on a standard Borel space

such that the automorphism 79 is ergodic as well. Let @ : Z2 x X — R2
be an L'-cocycle over the Z?-action T, i.e.

PM+12) (1) = (M) (1) 4 @) (T )
for all 77y, 7y € Z and ||@™|| € LY(X, ) for all 7@ € Z. We will denote by T
the Z2-action on (X x R?, u ® \g2) given by the skew product
T3 (2,y) = (T"(2),y + 27 (2)).
For the background on the theory of cocycles we refer to [12].

LEMMA 10. Suppose that @ is a recurrent cocycle such that the cocycle

@gl’o) over the automorphism T is transient. Then for a.e. z € X and all
e>0 and N €N there exists i € 72 such that |®™ (z)| < e and ny > N.
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Proof. Denote by < C Z? x Z? the lexicographic order on Z2, i.e.

m=<n < mp<niV(m=n Ama < ng).
Fix ¢ > 0. First we show that for a.e. z € X we have || (z)|| < ¢ for
infinitely many 7 > 0. Put

V=X xB(0,¢/2), D:=Vn([)T,”V

m=0

Since T7'D NTgD = for m # n, we obtain p ® Ag2(D) = 0, because Ty
is conservative. Consequently, for a.e. x € X there exists m > 0 such that
™ (z)| < &, by the Fubini theorem. Therefore the set

(o.9]
Fo=J U (zex: oM (Tm)| > e/2"}
k=1mez2 n>0
has zero p-measure. Clearly, if x € X \ F., then there exists a strictly
increasing sequence {7, }icy in {m € Z2 : 7 > 0} such that ||®)(z)| < e.
Now suppose that the set
B. ={z € X : Iyen Varo (|2™(2)]] < e = na < N)}

. . 1,0) . . .
has positive p-measure. Since @g ) is a transient cocycle over the ergodic

automorphism 709 the set C' C X of all € X such that

% " (1) — [ @ dp # 0
X
for every m € Z? has full y-measure. Suppose that x € B.NCNX \ F.. Then
there exists a strictly increasing sequence {m'};ey in {m € Z? : m = 0} such
that ||®™)(z)|| < e. As x € B, there exists a natural number N such that
mb < N. Without loss of generality we can assume that mb = N for all
i € N. Then m} — oo and

m?,0 mt
12" (TON ) | < (|80 (@) + [|8ON ()] < £ + |9V ()]

is bounded, which contradicts the fact that x € C. Consequently, p(B:) = 0
for every € > 0. Finally, if € X \ U, By, then for all ¢ >0 and N € N
there exists @ € Z? such that ||¢((z)|| < e and ny > N, which completes
the proof. u

Proof of Lemma 9. Since
1 0
DI (@) = DTy 007 @)| Ly D@
’ DB (o (7)) 1
it suffices to show that

lim inf
n—oo

1 0
DQ(TOCL,B(xl,m))[ DM () 1 }H < 00
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for a.e. (w1, 22) in the set M’ = {(x1,22) : x1 € R, 0 < 25 < b(x1)}. Put
C := ||b||sup- From (4), for every v > 0 there exists a positive constant K,
such that

|Do(x1,x2)|| < K, whenever (z1,z2) € Rx[—y,C +7].
Consider the Z2-action on (T, Ar) given by
TMm2) (1) = & 4 nya + naa
and the cocycle @ : Z2 x T — R? over the action T given by
dM1m2) (1) = (™) (z + nga) + ) (z), — Db (z + nga) + DB ().
CASE 1. Suppose that the Z2-action T is free. Since
dL0) () d -1 0
rank[ ST (z) :E}—r [ ]:1,
§p 0OV (2) dz §pB(x)dz 0

the cocycle @ : Z? x T — R? is recurrent, by Corollary of [2]. By Lemma 10,
the set A C T of all z € T for which there exists a sequence {7’ };ey in Z?
such that n} — oo and [|#™)(z)| < 1 has full Lebesgue measure. Suppose
that (z1,22) € M’ and 21 € A. From (5) we have

[Pettsen | H\
1

= | Do(T™ 21, 2 + o™z [ i
H o( 1,22 1 (21))) @(2”)(361

0
s

because (T™ 1,y + @gﬁi)(ml))) € R x [-1,C + 1] for any natural ¢, which
implies the tangential non-transience of f.

CASE 2. Suppose that the Z2-action T is not free. Then there exist
ki, ko, k € Z such that kya+kyo = k and ky # 0. As TW250TH = T 0T,
we have

—b*1) () + %) (2 + kya) = 852 (2) — b (2 4 koa).
Consequently,
bR (2 4 kya) + 85D (2 + kya) = B*) (x) 4+ 00K (2)
and p*2)(z) = —b(=F1)(z) + ¢, because a is irrational. Then
TRy (@1, w2) = (21 + krov, 32 + 35V (1))
= (x1 — kea,x2 — b(kQ)(xl) +¢) ~ (z1,22 + ).

Since the tangential non-transience of f*1 implies that of f, we can narrow
our consideration down to the case where a = 0 and [ is a constant func-
tion. If 5 = 0, then f = Idy. Assume that 3 # 0. Denote by {gn}nen
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the sequence of the denominators of the irrational number a € T. Set
my = sgn(B)([gn/0] + 1), where sgn(3) = (/|8]. Then m,, — +oo and
0 < Bmy, —sgn(B)gn < |5| Suppose that (z1,z2) € M'. From (5) we have

otz g )|

=||Do(z1, 22 + my )|

1 0
— _ p(sen(B)an)
Dot +sgn(@n ot mag = vy | L]

Since bl4n) — g, and Db%) tend uniformly to zero (see [8, p. 189]),
18] < ma — ) (21) < 20|, [DOEEDI) ()] < 1,
for any z; € R and for all n large enough. It follows that
(21 + sgn(B)gna, za + my,f — bR (1)) e R x [-2|8], C + 2|8]],
and finally that
HDQ(IL’l, To + mnﬁ)H < 3K2m|

for all (x1,z9) € M’ and for all n large enough, which completes the proof. m
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