SOME NOTIONS OF AMENABILITY FOR CERTAIN PRODUCTS OF BANACH ALGEBRAS

BY
EGHBAL GHADERI, RASOUL NASR-ISFAHANI and MEHDI NEMATI (Isfahan and Tehran)

Abstract

For two Banach algebras \mathcal{A} and \mathcal{B}, an interesting product $\mathcal{A} \times{ }_{\theta} \mathcal{B}$, called the θ-Lau product, was recently introduced and studied for some nonzero characters θ on \mathcal{B}. Here, we characterize some notions of amenability as approximate amenability, essential amenability, n-weak amenability and cyclic amenability between \mathcal{A} and \mathcal{B} and their θ-Lau product.

1. Introduction. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \sigma(\mathcal{B})$, the spectrum of \mathcal{B} of all nonzero characters on \mathcal{B}. Then the θ-Lau product of \mathcal{A} and \mathcal{B}, denoted by $\mathcal{A} \times{ }_{\theta} \mathcal{B}$, is defined as the space $\mathcal{A} \times \mathcal{B}$ equipped with the multiplication

$$
(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}+\theta(b) a^{\prime}+\theta\left(b^{\prime}\right) a, b b^{\prime}\right),
$$

and the norm

$$
\|(a, b)\|=\|a\|+\|b\|,
$$

for all $a, a^{\prime} \in \mathcal{A}$ and $b, b^{\prime} \in \mathcal{B}$. The θ-Lau product $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is a Banach algebra.

This product was first introduced by Lau [1] for Lau algebras; recall that a Lau algebra is a Banach algebra which is the predual of a von Neumann algebra for which the identity of the dual is a multiplicative linear functional. The study of this large class of Banach algebras originated with a paper published in 1983 by Lau [L1] in which he referred to them as "F-algebras"; see also Lau [L2]. Later on, in his useful monograph Pier [Pi] introduced the name "Lau algebra". Examples of Lau algebras include the group algebra and the measure algebra of a locally compact group or hypergroup (see Lau [1]), and also the Fourier algebra and

[^0]the Fourier-Stieltjes algebra of a topological group (see Lau and Ludwig (LL).

The algebraic and topological properties of the Banach algebra $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ were recently studied by Monfared [M]. If we allow $\theta=0$, we obtain the usual direct product of Banach algebras. Since direct products often exhibit different properties, we exclude the case $\theta=0$. In $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ we identify $\mathcal{A} \times\{0\}$ with \mathcal{A}, and $\{0\} \times \mathcal{B}$ with \mathcal{B}. Hence, \mathcal{A} is a closed two-sided ideal while \mathcal{B} is a closed subalgebra of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$; moreover, $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) / \mathcal{A}$ is isometrically isomorphic to \mathcal{B}.

We note that if \mathcal{B} is the Banach algebra \mathbb{C} of all complex numbers and θ is the identity map on \mathbb{C}, then $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is the unitization \mathcal{A}^{\sharp} of \mathcal{A}.

Furthermore, the dual $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)^{(1)}$ of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ can be identified with $\mathcal{A}^{(1)} \times \mathcal{B}^{(1)}$ in the natural way

$$
\left\langle\left(a^{(1)}, b^{(1)}\right),(a, b)\right\rangle=\left\langle a^{(1)}, a\right\rangle+\left\langle b^{(1)}, b\right\rangle,
$$

for all $a \in \mathcal{A}, b \in \mathcal{B}, a^{(1)} \in \mathcal{A}^{(1)}$ and $b^{(1)} \in \mathcal{B}^{(1)}$. The dual norm on $\mathcal{A}^{(1)} \times$ $\mathcal{B}^{(1)}$ is of course the maximum norm $\left\|\left(a^{(1)}, b^{(1)}\right)\right\|=\max \left\{\left\|a^{(1)}\right\|,\left\|b^{(1)}\right\|\right\}$. Moreover, suppose that the second duals $\mathcal{A}^{(2)}, \mathcal{B}^{(2)}$ and $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)^{(2)}$ are equipped with their first Arens products (see [M). Then $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)^{(2)}$ is isometrically isomorphic to $\mathcal{A}^{(2)} \times_{\theta[2]} \mathcal{B}^{(2)}$, where $\theta^{[2]} \in \sigma\left(\mathcal{B}^{(2)}\right)$. Now, take $\mathcal{A}^{(n)} \times \mathcal{B}^{(n)}$ as the underlying space of $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)^{(n)}$. By induction, the $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)$ bimodule actions on $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)^{(n)}$ are as follows:

$$
\begin{aligned}
& (a, b) \cdot\left(a^{(n)}, b^{(n)}\right) \\
& \quad= \begin{cases}\left(a \cdot a^{(n)}+\theta^{[n]}(b) a^{(n)}+\theta^{[n]}\left(b^{(n)}\right) a, b \cdot b^{(n)}\right) & \text { if } n \text { is even, } \\
\left(a \cdot a^{(n)}+\theta^{[n-1]}(b) a^{(n)}, a^{(n)}(a) \theta^{[n-1]}+b \cdot b^{(n)}\right) & \text { if } n \text { is odd, }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(a^{(n)}, b^{(n)}\right) & \cdot(a, b) \\
& = \begin{cases}\left(a^{(n)} \cdot a+\theta^{[n]}(b) a^{(n)}+\theta^{[n]}\left(b^{(n)}\right) a, b^{(n)} \cdot b\right) & \text { if } n \text { is even, } \\
\left(a^{(n)} \cdot a+\theta^{[n-1]}(b) a^{(n)}, a^{(n)}(a) \theta^{[n-1]}+b^{(n)} \cdot b\right) & \text { if } n \text { is odd, }\end{cases}
\end{aligned}
$$

for all $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$ and $\left(a^{(n)}, b^{(n)}\right) \in \mathcal{A}^{(n)} \times \mathcal{B}^{(n)}$, where $\theta^{[2 k]} \in \sigma\left(\mathcal{B}^{(2 k)}\right)$ denotes the k th adjoint of θ. Also, for $(m, n),(p, q) \in\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)^{(2)}$ we have

$$
(m, n) \square(p, q)=(m \square p+n(\theta) p+q(\theta) m, n \square q)
$$

(see [M, Proposition 2.12]).
On the other hand, recently several important notions of amenability have been defined and studied on Banach algebras. In this paper, we are going to investigate these concepts on $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ and their relations with \mathcal{A} and \mathcal{B}.
2. Approximate amenability. Let \mathcal{A} be a Banach algebra and \mathcal{X} be an \mathcal{A}-bimodule. A derivation is a linear map $D: \mathcal{A} \rightarrow \mathcal{X}$ such that

$$
D\left(a a^{\prime}\right)=D(a) \cdot a^{\prime}+a \cdot D\left(a^{\prime}\right)
$$

for all $a, a^{\prime} \in \mathcal{A}$. For $x \in \mathcal{X}$ set $\operatorname{ad}_{x}: a \mapsto a \cdot x-x \cdot a$ from \mathcal{A} into \mathcal{X}. Hence, ad_{x} is a derivation; these are the inner derivations.

A derivation $D: \mathcal{A} \rightarrow \mathcal{X}$ is approximately inner if there exists a net $\left(x_{\alpha}\right)_{\alpha} \subseteq \mathcal{X}$ such that

$$
D(a)=\lim _{\alpha}\left(a \cdot x_{\alpha}-x_{\alpha} \cdot a\right)
$$

for each $a \in \mathcal{A}$, so that $D=\lim _{\alpha}$ ad $_{x_{\alpha}}$ in the strong operator topology.
The dual space $\mathcal{X}^{(1)}$ of a Banach \mathcal{A}-bimodule \mathcal{X} becomes a Banach \mathcal{A} bimodule with the module actions

$$
\left\langle a \cdot x^{(1)}, x\right\rangle=\left\langle x^{(1)}, x \cdot a\right\rangle, \quad\left\langle x^{(1)} \cdot a, x\right\rangle=\left\langle x^{(1)}, a \cdot x\right\rangle,
$$

for all $a \in \mathcal{A}, x \in \mathcal{X}$ and $x^{(1)} \in \mathcal{X}^{(1)}$. A Banach algebra \mathcal{A} is called amenable if for any \mathcal{A}-bimodule \mathcal{X}, every continuous derivation $D: \mathcal{A} \rightarrow \mathcal{X}^{(1)}$ is inner. This notion was first introduced and studied by Johnson [J1] in 1972. Amenability has known hereditary properties (see [D], J1] and [R]). In particular, $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is amenable if and only if both \mathcal{A} and \mathcal{B} are amenable (see (M]).

The Banach algebra \mathcal{A} is called weakly amenable if every continuous derivation from \mathcal{A} into $\mathcal{A}^{(1)}$ is inner. The notion of weak amenability for an arbitrary Banach algebra was defined by Johnson [J2]; the study of this notion was pursued by several authors: see for example [G], J2], LE], M], $[\mathrm{NS}]$ and $[\mathrm{R}$. Monfared $[\mathrm{M}]$ shows that weak amenability of \mathcal{A} and \mathcal{B} implies weak amenability of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$, but in the general case the converse is not true. However, he proves that weak amenability of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ implies weak amenability of \mathcal{B} and cyclic amenability of \mathcal{A}.

A Banach algebra \mathcal{A} is called approximately amenable if any continuous derivation $D: \mathcal{A} \rightarrow \mathcal{X}^{(1)}$ is approximately inner for all Banach \mathcal{A} bimodules \mathcal{X}. Moveover, \mathcal{A} is called approximately weakly amenable if any continuous derivation $D: \mathcal{A} \rightarrow \mathcal{A}^{(1)}$ is approximately inner. The concepts of approximate amenability and approximate weak amenability were introduced and studied by Ghahramani and Loy [GL] (see also [GLZ]).

Proposition 2.1. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \sigma(\mathcal{B})$. If $\mathcal{A} \times_{\theta} \mathcal{B}$ is approximately amenable, then \mathcal{A} and \mathcal{B} are approximately amenable.

Proof. Suppose that $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is approximately amenable. Then it is clear that $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) / \mathcal{A}$ is isometrically isomorphic to \mathcal{B}, and so \mathcal{B} is approximately amenable by [GL, Corollary 2.1]. Now, we show that \mathcal{A} is also approximately amenable. Let \mathcal{X} be a Banach \mathcal{A}-bimodule and $D: \mathcal{A} \rightarrow \mathcal{X}^{(1)}$ be a derivation.

Then it is easy to show that \mathcal{X} is an $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)$-bimodule with the module actions

$$
(a, b) \cdot x=a \cdot x+\theta(b) x, \quad x \cdot(a, b)=x \cdot a+\theta(b) x,
$$

for all $a \in \mathcal{A}, b \in \mathcal{B}$ and $x \in \mathcal{X}$. We prove that the map

$$
\tilde{D}: \mathcal{A} \times_{\theta} \mathcal{B} \rightarrow \mathcal{X}^{(1)}
$$

defined by $\tilde{D}((a, b))=D(a)$ is a derivation for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. In fact, for every (a, b) and $\left(a^{\prime}, b^{\prime}\right)$ in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ we have

$$
\begin{align*}
\tilde{D}\left((a, b)\left(a^{\prime}, b^{\prime}\right)\right) & =\tilde{D}\left(\left(a a^{\prime}+\theta\left(b^{\prime}\right) a+\theta(b) a^{\prime}, b b^{\prime}\right)\right) \tag{1}\\
& =D\left(a a^{\prime}\right)+\theta\left(b^{\prime}\right) D(a)+\theta(b) D\left(a^{\prime}\right) \\
& =a \cdot D\left(a^{\prime}\right)+D(a) \cdot a^{\prime}+\theta\left(b^{\prime}\right) D(a)+\theta(b) D\left(a^{\prime}\right) .
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& (a, b) \cdot \tilde{D}\left(\left(a^{\prime}, b^{\prime}\right)\right)=(a, b) \cdot D\left(a^{\prime}\right)=a \cdot D\left(a^{\prime}\right)+\theta(b) D\left(a^{\prime}\right) \tag{2}\\
& \tilde{D}((a, b)) \cdot\left(a^{\prime}, b^{\prime}\right)=D(a) \cdot\left(a^{\prime}, b^{\prime}\right)=D(a) \cdot a^{\prime}+\theta\left(b^{\prime}\right) D(a), \tag{3}
\end{align*}
$$

for each $a, a^{\prime} \in \mathcal{A}$ and $b, b^{\prime} \in \mathcal{B}$. Adding (2) to (3) and comparing with (1), we conclude that \tilde{D} is a derivation. From the approximate amenability of $A \times_{\theta} \mathcal{B}$, it follows that $\tilde{D}=\lim _{\alpha} \operatorname{ad}_{x_{\alpha}^{(1)}}$ for some net $\left(x_{\alpha}^{(1)}\right)_{\alpha} \subseteq \mathcal{X}^{(1)}$ in the strong operator topology. We claim that $D=\lim _{\alpha} \operatorname{ad}_{x_{\alpha}^{(1)}}$ in the strong operator topology; indeed,

$$
D(a)=\tilde{D}((a, 0))=\lim _{\alpha}\left((a, 0) \cdot x_{\alpha}^{(1)}-x_{\alpha}^{(1)} \cdot(a, 0)\right)=\lim _{\alpha}\left(a \cdot x_{\alpha}^{(1)}-x_{\alpha}^{(1)} \cdot a\right)
$$

for all $a \in \mathcal{A}$, as required.
We do not know if the converse of Proposition 2.1 is valid; here, we prove the converse under an extra assumption.

Proposition 2.2. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \sigma(\mathcal{B})$. If \mathcal{A} is amenable and \mathcal{B} is approximately amenable, then $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is approximately amenable.

Proof. Since \mathcal{A} is amenable and $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) / \mathcal{A}$ is approximately amenable, $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is approximately amenable. So, the result follows from the fact that \mathcal{A} is a closed two-sided ideal of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ and that $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) / \mathcal{A}$ is isometrically isomorphic to \mathcal{B} (see [GL, Corollary 2.1).
3. Essential amenability. An \mathcal{A}-bimodule \mathcal{X} is called neo-unital if $\mathcal{X}=\mathcal{A} \cdot \mathcal{X} \cdot \mathcal{A}$, where

$$
\mathcal{A} \cdot \mathcal{X} \cdot \mathcal{A}=\{a \cdot x \cdot b: a, b \in \mathcal{A}, x \in \mathcal{X}\} .
$$

Recall from [GL that a Banach algebra \mathcal{A} is called essentially amenable if for any neo-unital \mathcal{A}-bimodule \mathcal{X}, every continuous derivation $D: \mathcal{A} \rightarrow \mathcal{X}^{(1)}$ is inner. Moreover, a Banach algebra \mathcal{A} is called approximately essentially amenable if every continuous derivation $D: \mathcal{A} \rightarrow \mathcal{X}^{(1)}$ is approximately inner for any neo-unital \mathcal{A}-bimodule \mathcal{X}. The concepts of essential amenability and approximate essential amenability of Banach algebras were introduced and studied by Ghahramani and Loy GL.

Note that if \mathcal{X} is a Banach \mathcal{A}-bimodule such that $\mathcal{X}=\mathcal{A} \cdot \mathcal{X} \cdot \mathcal{A}$, then \mathcal{X} is a $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)$-bimodule with $\mathcal{X}=\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) \cdot \mathcal{X} \cdot\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)$ with the module actions

$$
(a, b) \cdot x=a \cdot x+\theta(b) x, \quad x \cdot(a, b)=x \cdot a+\theta(b) x,
$$

for all $a \in \mathcal{A}, b \in \mathcal{B}$ and $x \in \mathcal{X}$. Now, we investigate these notions on $\mathcal{A} \times{ }_{\theta} \mathcal{B}$.
Proposition 3.1. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \sigma(\mathcal{B})$. If $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is essentially amenable, then \mathcal{A} and \mathcal{B} are essentially amenable.

Proof. The result follows by an argument similar to Proposition 2.1 .
The next result proves the converse of Proposition 3.1 under the assumption that \mathcal{A} is amenable. We do not know if it is true for all Banach algebras \mathcal{A}.

Proposition 3.2. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \sigma(\mathcal{B})$. Moreover, suppose that \mathcal{A} is an amenable Banach algebra and \mathcal{B} is an essentially amenable Banach algebra. Then $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is essentially amenable.

Proof. We know that \mathcal{A} is a closed ideal of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ and $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) / \mathcal{A}$ is isometrically isomorphic to \mathcal{B}. Since \mathcal{A} is amenable and $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) / \mathcal{A}$ is essentially amenable, a standard argument as in [Pa, p. 42] shows that $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is essentially amenable.

Proposition 3.3. Let \mathcal{A} be an essentially amenable Banach algebra and I be a closed two-sided ideal of \mathcal{A} with a bounded approximate identity. Then I is amenable.

Proof. Suppose that \mathcal{X} is a neo-unital Banach I-bimodule and $D: I \rightarrow$ $\mathcal{X}{ }^{(1)}$ is a continuous derivation. Then \mathcal{X} is a neo-unital Banach \mathcal{A}-bimodule and D has an extension $\tilde{D}: \mathcal{A} \rightarrow \mathcal{X}^{(1)}$ by [R, Proposition 2.1.6]. Since \mathcal{A} is essentially amenable, \tilde{D} is inner and so D is inner. Thus I is essentially amenable. Since I is a Banach algebra with a bounded approximate identity, it follows from [R, Proposition 2.1.5] that I is amenable.

Theorem 3.4. Let \mathcal{A} and \mathcal{B} be two Banach algebras for which there is a continuous epimorphism from \mathcal{A} onto \mathcal{B}. Then approximate essential amenability of \mathcal{A} implies approximate essential amenability of \mathcal{B}.

Proof. Suppose that \mathcal{A} is approximately essentially amenable and that \mathcal{X} is a neo-unital Banach \mathcal{B}-bimodule. Then \mathcal{X} is a neo-unital Banach \mathcal{A} bimodule via the module actions defined by

$$
a \cdot x=\Phi(a) \cdot x, \quad x \cdot a=x \cdot \Phi(a),
$$

for all $a \in \mathcal{A}$ and $x \in \mathcal{X}$. If $D: \mathcal{B} \rightarrow \mathcal{X}^{(1)}$ is a derivation, then it is clear that the map $D \circ \Phi: \mathcal{A} \rightarrow \mathcal{X}$ is a derivation, where $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ is a continuous epimorphism. Therefore, there exists a net $\left(x_{\alpha}^{(1)}\right)_{\alpha} \subseteq \mathcal{X}^{(1)}$ such that for each $a \in \mathcal{A}$ we have

$$
(D \circ \Phi)(a)=\lim _{\alpha}\left(a \cdot x_{\alpha}^{(1)}-x_{\alpha}^{(1)} \cdot a\right)=\lim _{\alpha}\left(\Phi(a) \cdot x_{\alpha}^{(1)}-x_{\alpha}^{(1)} \cdot \Phi(a)\right) .
$$

Since Φ is epimorphism, we have $D(b)=\lim _{\alpha}\left(b \cdot x_{\alpha}^{(1)}-x_{\alpha}^{(1)} \cdot b\right)$ for every $b \in \mathcal{B}$. So, \mathcal{B} is approximately essentially amenable.

Theorem 3.5. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \sigma(\mathcal{B})$. If $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is approximately essentially amenable, then \mathcal{A} and \mathcal{B} are approximately essentially amenable.

Proof. Approximate essential amenability of \mathcal{B} follows from Theorem 3.4 , Now, suppose that the \mathcal{A}-bimodule \mathcal{X} is neo-unital. Then via the module actions defined by

$$
x \cdot(a, b)=x \cdot a+\theta(b) x, \quad(a, b) \cdot x=a \cdot x+\theta(b) x,
$$

it is clear that $\left(\mathcal{A} \times_{\boldsymbol{\theta}} \mathcal{B}\right)$-bimodule \mathcal{X} is neo-unital for all $a \in \mathcal{A}, b \in \mathcal{B}$ and $x \in \mathcal{X}$. If $D: \mathcal{A} \rightarrow \mathcal{X}^{(1)}$ is a continuous derivation, then we can extend it to $\tilde{D}: \mathcal{A} \times{ }_{\theta} \mathcal{B} \rightarrow \mathcal{X}^{(1)}$ via

$$
\tilde{D}((a, b))=D(a)
$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Clearly, \tilde{D} is a derivation. Thus, there exists $\left(x_{\alpha}^{(1)}\right)_{\alpha} \subseteq \mathcal{X}^{(1)}$ such that

$$
\tilde{D}((a, b))=\lim _{\alpha} \operatorname{ad}_{x_{\alpha}^{(1)}}(a, b)=\lim _{\alpha}\left((a, b) \cdot x_{\alpha}^{(1)}-x_{\alpha}^{(1)} \cdot(a, b)\right)
$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Therefore,

$$
\begin{aligned}
D(a) & =\tilde{D}((a, 0))=\lim _{\alpha}\left((a, 0) \cdot x_{\alpha}^{(1)}-x_{\alpha}^{(1)} \cdot(a, 0)\right) \\
& =\lim _{\alpha}\left(a \cdot x_{\alpha}^{(1)}-x_{\alpha}^{(1)} \cdot a\right)
\end{aligned}
$$

for all $a \in \mathcal{A}$. So, \mathcal{A} is approximately essentially amenable.
4. n-Weak amenability. For $n \in \mathbb{N}$, the concept of n-weak amenability was initiated and intensively developed by Dales, Ghahramani and Grønbæk DGG.

A Banach algebra \mathcal{A} is said to be n-weakly amenable if every continuous derivation from \mathcal{A} into $\mathcal{A}^{(n)}$ is inner. Trivially, 1-weak amenability is nothing other than weak amenability, which was first introduced and intensively studied by Bade, Curtis and Dales BCD for commutative Banach algebras, and then by Johnson [J3] for a general Banach algebra.

Theorem 4.1. Let \mathcal{A} and \mathcal{B} be two Banach algebras, $\theta \in \sigma(\mathcal{B})$ and $n \in \mathbb{N}$.
(i) If $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is $(2 n)$-weakly amenable, then \mathcal{A} is $(2 n)$-weakly amenable.
(ii) If \mathcal{A} and \mathcal{B} are $(2 n+1)$-weakly amenable, then $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is $(2 n+1)$ weakly amenable.

Proof. (i) Let $\mathcal{A} \times_{\theta} \mathcal{B}$ be $(2 n)$-weakly amenable. We show that \mathcal{A} is (2n)-weakly amenable. If $D: \mathcal{A} \rightarrow \mathcal{A}^{(2 n)}$ is a continuous derivation, then we can extend this derivation to $\tilde{D}: \mathcal{A} \times{ }_{\theta} \mathcal{B} \rightarrow \mathcal{A}^{(2 n)} \times_{\theta[2 n]} \mathcal{B}^{(2 n)}$ via

$$
\tilde{D}((a, b))=(d(a), 0),
$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Clearly, \tilde{D} is a derivation on $\mathcal{A} \times_{\theta} \mathcal{B}$. Thus, there exists $\left(a^{(2 n)}, b^{(2 n)}\right) \in \mathcal{A}^{(2 n)} \times_{\theta[2 n]} \mathcal{B}^{(2 n)}$ such that

$$
\tilde{D}((a, b))=(a, b) \cdot\left(a^{(2 n)}, b^{(2 n)}\right)-\left(a^{(2 n)}, b^{(2 n)}\right) \cdot(a, b)
$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Therefore, $D(a)=a \cdot a^{(2 n)}-a^{(2 n)} \cdot a$ and $b \cdot b^{(2 n)}=b^{(2 n)} \cdot b$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. So, \mathcal{A} is $(2 n)$-weakly amenable.
(ii) Suppose that $D: \mathcal{A} \times{ }_{\theta} \mathcal{B} \rightarrow \mathcal{A}^{(2 n+1)} \times \mathcal{B}^{(2 n+1)}$ is a continuous derivation. Moreover, suppose that $\imath: \mathcal{A} \rightarrow \mathcal{A} \times{ }_{\theta} \mathcal{B}$ is the natural embedding,

$$
\imath^{(2 n+1)}: \mathcal{A}^{(2 n+1)} \times \mathcal{B}^{(2 n+1)} \rightarrow \mathcal{A}^{(2 n+1)}
$$

is the $(2 n+1)$-th adjoint of \imath, and $\pi: \mathcal{A} \times{ }_{\theta} \mathcal{B} \rightarrow\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) / \mathcal{A}$ is the quotient map. Then

$$
\imath^{(2 n+1)} \circ D \circ \imath: \mathcal{A} \rightarrow \mathcal{A}^{(2 n+1)}
$$

is a continuous derivation. So, there exists $a^{(2 n+1)} \in \mathcal{A}^{(2 n+1)}$ such that

$$
\left(\imath^{(2 n+1)} \circ D\right)(a)=\operatorname{ad}_{a^{(2 n+1)}}(a)
$$

for all $a \in \mathcal{A}$. We can extend $a^{(2 n+1)}$ to an element of $\mathcal{A}^{(2 n+1)} \times \mathcal{B}^{(2 n+1)}$. Thus, if we put

$$
D_{a^{(2 n+1)}}:=D-\mathrm{ad}_{a^{(2 n+1)}},
$$

then $\left(\imath^{(2 n+1)} \circ D\right)=0$ on \mathcal{A}.

Now, for any $a, a^{\prime} \in \mathcal{A}$ and $\left(a^{(2 n)}, b^{(2 n)}\right) \in \mathcal{A}^{(2 n)} \times_{\theta \theta^{[2 n]}} \mathcal{B}^{(2 n)}$,

$$
\begin{aligned}
\left\langle D\left(a a^{\prime}\right),\left(a^{(2 n)}, b^{(2 n)}\right)\right\rangle= & \left\langle D(a),\left(a^{\prime}, 0\right) \cdot\left(a^{(2 n)}, b^{(2 n)}\right)\right\rangle \\
& +\left\langle D\left(a^{\prime}\right),\left(a^{(2 n)}, b^{(2 n)}\right) \cdot(a, 0)\right\rangle \\
= & \left\langle D(a), \imath^{(2 n)}\left(\left(a^{\prime}, 0\right) \cdot\left(a^{(2 n)}, b^{(2 n)}\right)\right)\right\rangle \\
& +\left\langle D\left(a^{\prime}\right), \imath^{(2 n)}\left(\left(a^{(2 n)}, b^{(2 n)}\right) \cdot(a, 0)\right)\right\rangle \\
== & \left\langle\left(\imath^{(2 n+1)} \circ D\right)(a),\left(a^{\prime}, 0\right) \cdot\left(a^{(2 n)}, b^{(2 n)}\right)\right\rangle \\
& +\left\langle\left(\imath^{(2 n+1)} \circ D\right)\left(a^{\prime}\right),\left(a^{(2 n)}, b^{(2 n)}\right) \cdot(a, 0)\right\rangle \\
= & 0,
\end{aligned}
$$

where $\theta^{[2 n]} \in \sigma\left(\mathcal{B}^{(2 n)}\right)$. Thus, $D=0$ on $\mathcal{A}^{2}:=\mathcal{A} \mathcal{A}$. By the $(2 n+1)$-weak amenability of \mathcal{A} and Proposition 2.8.63(i) of [D, we have $D=0$ on \mathcal{A} since $\overline{\mathcal{A}^{2}}=\mathcal{A}$.

On the other hand, if $\mathcal{X}_{\mathcal{A}}$ is the closed linear subspace of $\mathcal{A}^{(2 n)} \times_{\theta}{ }^{[2 n]} \mathcal{B}^{(2 n)}$ spanned by

$$
\mathcal{A}\left(\mathcal{A}^{(2 n)} \times_{\theta}^{[2 n]} \mathcal{B}^{(2 n)}\right) \cup\left(\mathcal{A}^{(2 n)} \times_{\theta}{ }^{[2 n]} \mathcal{B}^{(2 n)}\right) \mathcal{A},
$$

then for all $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$ and $a^{\prime} \in \mathcal{A}$ we have

$$
\begin{aligned}
& 0=D\left((a, b)\left(a^{\prime}, 0\right)\right)=D((a, b)) \cdot\left(a^{\prime}, 0\right), \\
& 0=D\left(\left(a^{\prime}, 0\right)(a, b)\right)=\left(a^{\prime}, 0\right) \cdot D((a, b)) .
\end{aligned}
$$

Moreover, for all $a, a^{\prime} \in \mathcal{A}, b \in \mathcal{B}$ and $\left(a^{(2 n)}, b^{(2 n)}\right) \in \mathcal{A}^{(2 n)} \times_{\theta^{[2 n]}} \mathcal{B}^{(2 n)}$,

$$
\begin{aligned}
& \left\langle D((a, b)),\left(a^{(2 n)}, b^{(2 n)}\right)\left(a^{\prime}, 0\right)\right\rangle=\left\langle\left(a^{\prime}, 0\right) \cdot D((a, b)),\left(a^{(2 n)}, b^{(2 n)}\right)\right\rangle=0, \\
& \left\langle D((a, b)),\left(a^{\prime}, 0\right)\left(a^{(2 n)}, b^{(2 n)}\right)\right\rangle=\left\langle D((a, b)) \cdot\left(a^{\prime}, 0\right),\left(a^{(2 n)}, b^{(2 n)}\right)\right\rangle=0 .
\end{aligned}
$$

So, $D\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) \subseteq \mathcal{X}_{\mathcal{A}}^{\perp}$. Hence, $D\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) \subseteq\left(\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) / \mathcal{A}\right)^{(n)}$. Clearly, $\mathcal{X}_{\mathcal{A}}$ is a closed $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)$-submodule of $\mathcal{A}^{(2 n)} \times_{\theta[2 n]} \mathcal{B}^{(2 n)}$ and $\left(\mathcal{A}^{(2 n)} \times_{\theta}^{[2 n]} \mathcal{B}^{(2 n)}\right) / \mathcal{X}_{\mathcal{A}}$ is an $\left(\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) / \mathcal{A}\right)$-bimodule. Now, we define a map

$$
D_{\mathcal{A}}:\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) / \mathcal{A} \rightarrow\left(\left(\mathcal{A} \times_{\theta} \mathcal{B}\right) / \mathcal{A}\right)^{(n)}
$$

via $D_{\mathcal{A}}((a, b)+\mathcal{A})=D((a, b))$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Then $D_{\mathcal{A}}$ is continuous derivation. $\operatorname{But}\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) / \mathcal{A}$ is isometrically isomorphic to \mathcal{B}, and \mathcal{B} is $(2 n+1)$-weakly amenable. Thus, there exists $f^{(n)} \in\left(\left(\mathcal{A} \times_{\theta} \mathcal{B}\right) / \mathcal{A}\right)^{(n)}$ such that $D_{\mathcal{A}}=\operatorname{ad}_{f^{(n)}}$. It follows that $\mathcal{A} \times_{\theta} \mathcal{B}$ is $(2 n+1)$-weakly amenable.

Remark. Let \mathcal{A} and \mathcal{B} be two Banach algebras, $\theta \in \sigma(\mathcal{B})$ and $n \in \mathbb{N}$. An argument similar to the proof of Theorem 4.1 shows that:
(i) If $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is approximately ($2 n$)-weakly amenable, then \mathcal{A} is approximately ($2 n$)-weakly amenable.
(ii) If \mathcal{A} and \mathcal{B} are approximately $(2 n+1)$-weakly amenable, then $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is approximately $(2 n+1)$-weakly amenable.
5. Cyclic amenability. Recall that a derivation $D: \mathcal{A} \rightarrow \mathcal{A}^{(1)}$ is called cyclic if $\langle D(a), b\rangle+\langle D(b), a\rangle=0$ for all $a, b \in \mathcal{A}$; the Banach algebra \mathcal{A} is called cyclic amenable (resp. approximately cyclic amenable) if every cyclic continuous derivation $D: \mathcal{A} \rightarrow \mathcal{A}^{(1)}$ is inner (resp. approximately inner).

Theorem 5.1. Let \mathcal{A} and \mathcal{B} be two Banach algebras with $\overline{\mathcal{A}^{2}}=\mathcal{A}$ and let $\theta \in \sigma(\mathcal{B})$. Then $\mathcal{A} \times_{\theta} \mathcal{B}$ is cyclic amenable (resp. approximately cyclic amenable) if and only if \mathcal{A} and \mathcal{B} are cyclic amenable (resp. approximately cyclic amenable).

Proof. We give a proof for cyclic amenability; the proof for approximate cyclic amenability is similar.

To this end, suppose that $D: \mathcal{A} \rightarrow \mathcal{A}^{(1)}$ is a cyclic derivation. Then we can extend it to a derivation $\tilde{D}: \mathcal{A} \times_{\theta} \mathcal{B} \rightarrow \mathcal{A}^{(1)} \times \mathcal{B}^{(1)}$ defined via

$$
\tilde{D}((a, b))=(D(a), 0)
$$

for all $a \in \mathcal{A}$ and \mathcal{B}. On the other hand, it is clear that \tilde{D} is a cyclic derivation on $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. Therefore, there exists $\left(a^{(1)}, b^{(1)}\right) \in \mathcal{A}^{(1)} \times \mathcal{B}^{(1)}$ such that for each $a \in \mathcal{A}$ and $b \in \mathcal{B}$,

$$
\begin{aligned}
\tilde{D}((a, b)) & =(a, b) \cdot\left(a^{(1)}, b^{(1)}\right)-\left(a^{(1)}, b^{(1)}\right) \cdot(a, b) \\
& =\left(a \cdot a^{(1)}-a^{(1)} \cdot a, b \cdot b^{(1)}-b^{(1)} \cdot b\right) .
\end{aligned}
$$

But, on the other hand, $\tilde{D}((a, b))=(D(a), 0)$ for each $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Therefore, $D(a)=a \cdot a^{(1)}-a^{(1)} \cdot a$ and $b \cdot b^{(1)}-b^{(1)} \cdot b=0$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$; i.e. \mathcal{A} is cyclic amenable. Cyclic amenability of \mathcal{B} is proved similarly.

Conversely, if \mathcal{A} and \mathcal{B} are cyclic amenable and $D: \mathcal{A} \times{ }_{\theta} \mathcal{B} \rightarrow \mathcal{A}^{(1)} \times \mathcal{B}^{(1)}$ is a cyclic derivation, then there are two functions $\alpha: \mathcal{A} \times{ }_{\theta} \mathcal{B} \rightarrow \mathcal{A}^{(1)}$ and $\beta: \mathcal{A} \times{ }_{\theta} \mathcal{B} \rightarrow \mathcal{B}^{(1)}$ are such that

$$
D((a, b))=(\alpha((a, b)), \beta((a, b)))
$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Now, we define $D_{1}: \mathcal{A} \rightarrow \mathcal{A}^{(1)}$ via $D_{1}(a)=\alpha((a, 0))$ for all $a \in \mathcal{A}$ and $D_{2}: \mathcal{B} \rightarrow \mathcal{B}^{(1)}$ via $D_{2}(b)=\beta((0, b))$ for all $b \in \mathcal{B}$. Thus, for every $a, a^{\prime} \in \mathcal{A}$ we have

$$
\begin{aligned}
\left\langle D_{1}(a), a^{\prime}\right\rangle+\left\langle D_{1}\left(a^{\prime}\right), a\right\rangle= & \left\langle\left(D_{1}(a), 0\right),\left(a^{\prime}, 0\right)\right\rangle+\left\langle\left(D_{1}\left(a^{\prime}\right), 0\right),(a, 0)\right\rangle \\
= & \left\langle(\alpha((a, 0)), \beta((a, 0))),\left(a^{\prime}, 0\right)\right\rangle \\
& +\left\langle\left(\alpha\left(\left(a^{\prime}, 0\right)\right), \beta\left(\left(a^{\prime}, 0\right)\right),(a, 0)\right\rangle\right. \\
= & \left\langle D((a, 0)),\left(a^{\prime}, 0\right)\right\rangle+\left\langle D\left(\left(a^{\prime}, 0\right)\right),(a, 0)\right\rangle=0 .
\end{aligned}
$$

So, D_{1} is a cyclic derivation. Thus, there exists $a^{(1)} \in \mathcal{A}^{(1)}$ such that

$$
D_{1}(a)=a \cdot a^{(1)}-a^{(1)} \cdot a
$$

for all $a \in \mathcal{A}$. Similarly, D_{2} is a cyclic derivation. Therefore, there exists $b^{(1)} \in \mathcal{B}^{(1)}$ such that

$$
D_{2}(b)=b \cdot b^{(1)}-b^{(1)} \cdot b
$$

for all $b \in \mathcal{B}$. It follows from the assumption that for each $\left(a^{(1)}, b^{(1)}\right) \in$ $\mathcal{A}^{(1)} \times \mathcal{B}^{(1)}$ we have

$$
D((a, b))=(a, b) \cdot\left(a^{(1)}, b^{(1)}\right)-\left(a^{(1)}, b^{(1)}\right) \cdot(a, b)
$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. So, D is an inner derivation; i.e. $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is cyclic amenable.

Acknowledgements. The authors would like to thank the referee for his useful comments and suggestions. They acknowledge that this research was partially carried out at the IPM - Isfahan Branch.

The research of R. Nasr-Isfahani was in part supported by a grant from IPM (No. 91430417).

The research of M. Nemati was in part supported by a grant from IPM (No. 91470050).

REFERENCES

[BCD] W. G. Bade, P. C. Curtis, and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), 359-377.
[D] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford Univ. Press, Oxford, 2000.
[DGG] H. G. Dales, F. Ghahramani, and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19-54.
[GL] F. Ghahramani and R. J. Loy, Generalized notions of amenability, J. Funct. Anal. 208 (2004), 229-260.
[GLZ] F. Ghahramani, R. J. Loy and Y. Zhang, Generalized notions of amenability, II, J. Funct. Anal. 254 (2008), 1776-1810.
[G] N. Grønbæk, Weak and cyclic amenability for non-commutative Banach algebras, Proc. Edinburgh Math. Soc. 35 (1992), 315-328.
[J1] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
[J2] B. E. Johnson, Derivations from $L^{1}(G)$ into $L^{1}(G)$ and $L^{\infty}(G)$, in: Lecture Notes in Math. 1359, Springer, 1988, 191-198.
[J3] B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), 281-284.
[LE] J. Laali and M. Ettefagh, Weak amenability of general measure algebras, Colloq. Math. 111 (2008), 1-9.
[L1] A. T. Lau, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161-175.
[L2] A. T. Lau, Uniformly continuous functionals on Banach algebras, Colloq. Math. 51 (1987), 195-205.
[LL] A. T. Lau and J. Ludwig, Fourier-Stieltjes algebra of a topological group, Adv. Math. 229 (2012), 2000-2023.
[M] M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (2007), 277-294.
[NS] R. Nasr-Isfahani and S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Studia Math. 202 (2011), 205-225.
[Pa] A. L. T. Paterson, Amenability, Mathematical Surveys and Monographs, Amer. Math. Soc. 29, Providence, RI, 1988.
[Pi] J. P. Pier, Amenable Banach Algebras, Pitman Res. Notes Math. Ser. 172, Longman, Harlow, 1988.
[R] V. Runde, Lectures on Amenability, Springer, New York, 2002.
Eghbal Ghaderi, Rasoul Nasr-Isfahani, Mehdi Nemati
Department of Mathematical Sciences
Isfahan University of Technology
Isfahan 84156-83111, Iran
and
School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
E-mail: ghaderi@math.iut.ac.ir
isfahani@cc.iut.ac.ir
m.nemati@cc.iut.ac.ir

[^0]: 2010 Mathematics Subject Classification: Primary 46H05, 46H25; Secondary 43A07, 43A10, 43A20.
 Key words and phrases: amenability, Banach algebra, approximate amenability, (approximate) essential amenability, (approximate) n-weak amenability, (approximate) cyclic amenability.

