VOL. 130

2013

NO. 2

SOME NOTIONS OF AMENABILITY FOR CERTAIN PRODUCTS OF BANACH ALGEBRAS

ΒY

EGHBAL GHADERI, RASOUL NASR-ISFAHANI and MEHDI NEMATI (Isfahan and Tehran)

Abstract. For two Banach algebras \mathcal{A} and \mathcal{B} , an interesting product $\mathcal{A} \times_{\theta} \mathcal{B}$, called the θ -Lau product, was recently introduced and studied for some nonzero characters θ on \mathcal{B} . Here, we characterize some notions of amenability as approximate amenability, essential amenability, *n*-weak amenability and cyclic amenability between \mathcal{A} and \mathcal{B} and their θ -Lau product.

1. Introduction. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \sigma(\mathcal{B})$, the spectrum of \mathcal{B} of all nonzero characters on \mathcal{B} . Then the θ -Lau product of \mathcal{A} and \mathcal{B} , denoted by $\mathcal{A} \times_{\theta} \mathcal{B}$, is defined as the space $\mathcal{A} \times \mathcal{B}$ equipped with the multiplication

$$(a,b)(a',b') = (aa' + \theta(b)a' + \theta(b')a,bb'),$$

and the norm

$$||(a,b)|| = ||a|| + ||b||,$$

for all $a, a' \in \mathcal{A}$ and $b, b' \in \mathcal{B}$. The θ -Lau product $\mathcal{A} \times_{\theta} \mathcal{B}$ is a Banach algebra.

This product was first introduced by Lau [L1] for Lau algebras; recall that a *Lau algebra* is a Banach algebra which is the predual of a von Neumann algebra for which the identity of the dual is a multiplicative linear functional. The study of this large class of Banach algebras originated with a paper published in 1983 by Lau [L1] in which he referred to them as "F-algebras"; see also Lau [L2]. Later on, in his useful monograph Pier [Pi] introduced the name "Lau algebra". Examples of Lau algebras include the group algebra and the measure algebra of a locally compact group or hypergroup (see Lau [L1]), and also the Fourier algebra and

²⁰¹⁰ Mathematics Subject Classification: Primary 46H05, 46H25; Secondary 43A07, 43A10, 43A20.

Key words and phrases: amenability, Banach algebra, approximate amenability, (approximate) essential amenability, (approximate) *n*-weak amenability, (approximate) cyclic amenability.

the Fourier–Stieltjes algebra of a topological group (see Lau and Ludwig [LL]).

The algebraic and topological properties of the Banach algebra $\mathcal{A} \times_{\theta} \mathcal{B}$ were recently studied by Monfared [M]. If we allow $\theta = 0$, we obtain the usual direct product of Banach algebras. Since direct products often exhibit different properties, we exclude the case $\theta = 0$. In $\mathcal{A} \times_{\theta} \mathcal{B}$ we identify $\mathcal{A} \times \{0\}$ with \mathcal{A} , and $\{0\} \times \mathcal{B}$ with \mathcal{B} . Hence, \mathcal{A} is a closed two-sided ideal while \mathcal{B} is a closed subalgebra of $\mathcal{A} \times_{\theta} \mathcal{B}$; moreover, $(\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A}$ is isometrically isomorphic to \mathcal{B} .

We note that if \mathcal{B} is the Banach algebra \mathbb{C} of all complex numbers and θ is the identity map on \mathbb{C} , then $\mathcal{A} \times_{\theta} \mathcal{B}$ is the unitization \mathcal{A}^{\sharp} of \mathcal{A} .

Furthermore, the dual $(\mathcal{A} \times_{\theta} \mathcal{B})^{(1)}$ of $\mathcal{A} \times_{\theta} \mathcal{B}$ can be identified with $\mathcal{A}^{(1)} \times \mathcal{B}^{(1)}$ in the natural way

$$\langle (a^{(1)}, b^{(1)}), (a, b) \rangle = \langle a^{(1)}, a \rangle + \langle b^{(1)}, b \rangle,$$

for all $a \in \mathcal{A}$, $b \in \mathcal{B}$, $a^{(1)} \in \mathcal{A}^{(1)}$ and $b^{(1)} \in \mathcal{B}^{(1)}$. The dual norm on $\mathcal{A}^{(1)} \times \mathcal{B}^{(1)}$ is of course the maximum norm $||(a^{(1)}, b^{(1)})|| = \max\{||a^{(1)}||, ||b^{(1)}||\}$. Moreover, suppose that the second duals $\mathcal{A}^{(2)}$, $\mathcal{B}^{(2)}$ and $(\mathcal{A} \times_{\theta} \mathcal{B})^{(2)}$ are equipped with their first Arens products (see [M]). Then $(\mathcal{A} \times_{\theta} \mathcal{B})^{(2)}$ is isometrically isomorphic to $\mathcal{A}^{(2)} \times_{\theta^{[2]}} \mathcal{B}^{(2)}$, where $\theta^{[2]} \in \sigma(\mathcal{B}^{(2)})$. Now, take $\mathcal{A}^{(n)} \times \mathcal{B}^{(n)}$ as the underlying space of $(\mathcal{A} \times_{\theta} \mathcal{B})^{(n)}$. By induction, the $(\mathcal{A} \times_{\theta} \mathcal{B})$ -bimodule actions on $(\mathcal{A} \times_{\theta} \mathcal{B})^{(n)}$ are as follows:

$$(a,b) \cdot (a^{(n)}, b^{(n)}) = \begin{cases} (a \cdot a^{(n)} + \theta^{[n]}(b)a^{(n)} + \theta^{[n]}(b^{(n)})a, b \cdot b^{(n)}) & \text{if } n \text{ is even,} \\ (a \cdot a^{(n)} + \theta^{[n-1]}(b)a^{(n)}, a^{(n)}(a)\theta^{[n-1]} + b \cdot b^{(n)}) & \text{if } n \text{ is odd,} \end{cases}$$

and

$$\begin{aligned} (a^{(n)}, b^{(n)}) \cdot (a, b) \\ &= \begin{cases} (a^{(n)} \cdot a + \theta^{[n]}(b)a^{(n)} + \theta^{[n]}(b^{(n)})a, b^{(n)} \cdot b) & \text{if } n \text{ is even,} \\ (a^{(n)} \cdot a + \theta^{[n-1]}(b)a^{(n)}, a^{(n)}(a)\theta^{[n-1]} + b^{(n)} \cdot b) & \text{if } n \text{ is odd,} \end{cases} \end{aligned}$$

for all $(a,b) \in \mathcal{A} \times_{\theta} \mathcal{B}$ and $(a^{(n)}, b^{(n)}) \in \mathcal{A}^{(n)} \times \mathcal{B}^{(n)}$, where $\theta^{[2k]} \in \sigma(\mathcal{B}^{(2k)})$ denotes the *k*th adjoint of θ . Also, for $(m,n), (p,q) \in (\mathcal{A} \times_{\theta} \mathcal{B})^{(2)}$ we have

$$(m,n) \Box (p,q) = (m \Box p + n(\theta)p + q(\theta)m, n \Box q)$$

(see [M, Proposition 2.12]).

On the other hand, recently several important notions of amenability have been defined and studied on Banach algebras. In this paper, we are going to investigate these concepts on $\mathcal{A} \times_{\theta} \mathcal{B}$ and their relations with \mathcal{A} and \mathcal{B} . **2.** Approximate amenability. Let \mathcal{A} be a Banach algebra and \mathcal{X} be an \mathcal{A} -bimodule. A *derivation* is a linear map $D : \mathcal{A} \to \mathcal{X}$ such that

$$D(aa') = D(a) \cdot a' + a \cdot D(a')$$

for all $a, a' \in \mathcal{A}$. For $x \in \mathcal{X}$ set $ad_x : a \mapsto a \cdot x - x \cdot a$ from \mathcal{A} into \mathcal{X} . Hence, ad_x is a derivation; these are the *inner derivations*.

A derivation $D : \mathcal{A} \to \mathcal{X}$ is approximately inner if there exists a net $(x_{\alpha})_{\alpha} \subseteq \mathcal{X}$ such that

$$D(a) = \lim_{\alpha} (a \cdot x_{\alpha} - x_{\alpha} \cdot a)$$

for each $a \in \mathcal{A}$, so that $D = \lim_{\alpha} \operatorname{ad}_{x_{\alpha}}$ in the strong operator topology.

The dual space $\mathcal{X}^{(1)}$ of a Banach \mathcal{A} -bimodule \mathcal{X} becomes a Banach \mathcal{A} -bimodule with the module actions

$$\langle a \cdot x^{(1)}, x \rangle = \langle x^{(1)}, x \cdot a \rangle, \quad \langle x^{(1)} \cdot a, x \rangle = \langle x^{(1)}, a \cdot x \rangle,$$

for all $a \in \mathcal{A}, x \in \mathcal{X}$ and $x^{(1)} \in \mathcal{X}^{(1)}$. A Banach algebra \mathcal{A} is called *amenable* if for any \mathcal{A} -bimodule \mathcal{X} , every continuous derivation $D : \mathcal{A} \to \mathcal{X}^{(1)}$ is inner. This notion was first introduced and studied by Johnson [J1] in 1972. Amenability has known hereditary properties (see [D], [J1] and [R]). In particular, $\mathcal{A} \times_{\theta} \mathcal{B}$ is amenable if and only if both \mathcal{A} and \mathcal{B} are amenable (see [M]).

The Banach algebra \mathcal{A} is called *weakly amenable* if every continuous derivation from \mathcal{A} into $\mathcal{A}^{(1)}$ is inner. The notion of weak amenability for an arbitrary Banach algebra was defined by Johnson [J2]; the study of this notion was pursued by several authors: see for example [G], [J2], [LE], [M], [NS] and [R]. Monfared [M] shows that weak amenability of \mathcal{A} and \mathcal{B} implies weak amenability of $\mathcal{A} \times_{\theta} \mathcal{B}$, but in the general case the converse is not true. However, he proves that weak amenability of $\mathcal{A} \times_{\theta} \mathcal{B}$ implies weak amenability of \mathcal{B} and cyclic amenability of \mathcal{A} .

A Banach algebra \mathcal{A} is called *approximately amenable* if any continuous derivation $D : \mathcal{A} \to \mathcal{X}^{(1)}$ is approximately inner for all Banach \mathcal{A} bimodules \mathcal{X} . Moveover, \mathcal{A} is called *approximately weakly amenable* if any continuous derivation $D : \mathcal{A} \to \mathcal{A}^{(1)}$ is approximately inner. The concepts of approximate amenability and approximate weak amenability were introduced and studied by Ghahramani and Loy [GL] (see also [GLZ]).

PROPOSITION 2.1. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \sigma(\mathcal{B})$. If $\mathcal{A} \times_{\theta} \mathcal{B}$ is approximately amenable, then \mathcal{A} and \mathcal{B} are approximately amenable.

Proof. Suppose that $\mathcal{A} \times_{\theta} \mathcal{B}$ is approximately amenable. Then it is clear that $(\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A}$ is isometrically isomorphic to \mathcal{B} , and so \mathcal{B} is approximately amenable by [GL, Corollary 2.1]. Now, we show that \mathcal{A} is also approximately amenable. Let \mathcal{X} be a Banach \mathcal{A} -bimodule and $D : \mathcal{A} \to \mathcal{X}^{(1)}$ be a derivation.

Then it is easy to show that \mathcal{X} is an $(\mathcal{A} \times_{\theta} \mathcal{B})$ -bimodule with the module actions

$$(a,b) \cdot x = a \cdot x + \theta(b)x, \quad x \cdot (a,b) = x \cdot a + \theta(b)x,$$

for all $a \in \mathcal{A}, b \in \mathcal{B}$ and $x \in \mathcal{X}$. We prove that the map

$$\tilde{D}: \mathcal{A} \times_{\theta} \mathcal{B} \to \mathcal{X}^{(1)}$$

defined by $\tilde{D}((a,b)) = D(a)$ is a derivation for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. In fact, for every (a,b) and (a',b') in $\mathcal{A} \times_{\theta} \mathcal{B}$ we have

(1)
$$\tilde{D}((a,b)(a',b')) = \tilde{D}((aa' + \theta(b')a + \theta(b)a',bb'))$$

= $D(aa') + \theta(b')D(a) + \theta(b)D(a')$
= $a \cdot D(a') + D(a) \cdot a' + \theta(b')D(a) + \theta(b)D(a').$

On the other hand,

(2)
$$(a,b) \cdot \tilde{D}((a',b')) = (a,b) \cdot D(a') = a \cdot D(a') + \theta(b)D(a'),$$

(3)
$$\tilde{D}((a,b)) \cdot (a',b') = D(a) \cdot (a',b') = D(a) \cdot a' + \theta(b')D(a),$$

for each $a, a' \in \mathcal{A}$ and $b, b' \in \mathcal{B}$. Adding (2) to (3) and comparing with (1), we conclude that \tilde{D} is a derivation. From the approximate amenability of $A \times_{\theta} \mathcal{B}$, it follows that $\tilde{D} = \lim_{\alpha} \operatorname{ad}_{x_{\alpha}^{(1)}}$ for some net $(x_{\alpha}^{(1)})_{\alpha} \subseteq \mathcal{X}^{(1)}$ in the strong operator topology. We claim that $D = \lim_{\alpha} \operatorname{ad}_{x_{\alpha}^{(1)}}$ in the strong operator topology; indeed,

$$D(a) = \tilde{D}((a,0)) = \lim_{\alpha} ((a,0) \cdot x_{\alpha}^{(1)} - x_{\alpha}^{(1)} \cdot (a,0)) = \lim_{\alpha} (a \cdot x_{\alpha}^{(1)} - x_{\alpha}^{(1)} \cdot a)$$

for all $a \in \mathcal{A}$, as required.

We do not know if the converse of Proposition 2.1 is valid; here, we prove the converse under an extra assumption.

PROPOSITION 2.2. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \sigma(\mathcal{B})$. If \mathcal{A} is amenable and \mathcal{B} is approximately amenable, then $\mathcal{A} \times_{\theta} \mathcal{B}$ is approximately amenable.

Proof. Since \mathcal{A} is amenable and $(\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A}$ is approximately amenable, $\mathcal{A} \times_{\theta} \mathcal{B}$ is approximately amenable. So, the result follows from the fact that \mathcal{A} is a closed two-sided ideal of $\mathcal{A} \times_{\theta} \mathcal{B}$ and that $(\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A}$ is isometrically isomorphic to \mathcal{B} (see [GL], Corollary 2.1).

3. Essential amenability. An \mathcal{A} -bimodule \mathcal{X} is called *neo-unital* if $\mathcal{X} = \mathcal{A} \cdot \mathcal{X} \cdot \mathcal{A}$, where

$$\mathcal{A} \cdot \mathcal{X} \cdot \mathcal{A} = \{ a \cdot x \cdot b : a, b \in \mathcal{A}, x \in \mathcal{X} \}.$$

Recall from [GL] that a Banach algebra \mathcal{A} is called *essentially amenable* if for any neo-unital \mathcal{A} -bimodule \mathcal{X} , every continuous derivation $D : \mathcal{A} \to \mathcal{X}^{(1)}$ is inner. Moreover, a Banach algebra \mathcal{A} is called *approximately essentially amenable* if every continuous derivation $D : \mathcal{A} \to \mathcal{X}^{(1)}$ is approximately inner for any neo-unital \mathcal{A} -bimodule \mathcal{X} . The concepts of essential amenability and approximate essential amenability of Banach algebras were introduced and studied by Ghahramani and Loy [GL].

Note that if \mathcal{X} is a Banach \mathcal{A} -bimodule such that $\mathcal{X} = \mathcal{A} \cdot \mathcal{X} \cdot \mathcal{A}$, then \mathcal{X} is a $(\mathcal{A} \times_{\theta} \mathcal{B})$ -bimodule with $\mathcal{X} = (\mathcal{A} \times_{\theta} \mathcal{B}) \cdot \mathcal{X} \cdot (\mathcal{A} \times_{\theta} \mathcal{B})$ with the module actions

 $(a,b) \cdot x = a \cdot x + \theta(b)x, \quad x \cdot (a,b) = x \cdot a + \theta(b)x,$

for all $a \in \mathcal{A}, b \in \mathcal{B}$ and $x \in \mathcal{X}$. Now, we investigate these notions on $\mathcal{A} \times_{\theta} \mathcal{B}$.

PROPOSITION 3.1. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \sigma(\mathcal{B})$. If $\mathcal{A} \times_{\theta} \mathcal{B}$ is essentially amenable, then \mathcal{A} and \mathcal{B} are essentially amenable.

Proof. The result follows by an argument similar to Proposition 2.1.

The next result proves the converse of Proposition 3.1 under the assumption that \mathcal{A} is amenable. We do not know if it is true for all Banach algebras \mathcal{A} .

PROPOSITION 3.2. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \sigma(\mathcal{B})$. Moreover, suppose that \mathcal{A} is an amenable Banach algebra and \mathcal{B} is an essentially amenable Banach algebra. Then $\mathcal{A} \times_{\theta} \mathcal{B}$ is essentially amenable.

Proof. We know that \mathcal{A} is a closed ideal of $\mathcal{A} \times_{\theta} \mathcal{B}$ and $(\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A}$ is isometrically isomorphic to \mathcal{B} . Since \mathcal{A} is amenable and $(\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A}$ is essentially amenable, a standard argument as in [Pa, p. 42] shows that $\mathcal{A} \times_{\theta} \mathcal{B}$ is essentially amenable.

PROPOSITION 3.3. Let \mathcal{A} be an essentially amenable Banach algebra and I be a closed two-sided ideal of \mathcal{A} with a bounded approximate identity. Then I is amenable.

Proof. Suppose that \mathcal{X} is a neo-unital Banach *I*-bimodule and $D: I \to \mathcal{X}^{(1)}$ is a continuous derivation. Then \mathcal{X} is a neo-unital Banach \mathcal{A} -bimodule and D has an extension $\tilde{D}: \mathcal{A} \to \mathcal{X}^{(1)}$ by [R, Proposition 2.1.6]. Since \mathcal{A} is essentially amenable, \tilde{D} is inner and so D is inner. Thus I is essentially amenable. Since I is a Banach algebra with a bounded approximate identity, it follows from [R, Proposition 2.1.5] that I is amenable.

THEOREM 3.4. Let \mathcal{A} and \mathcal{B} be two Banach algebras for which there is a continuous epimorphism from \mathcal{A} onto \mathcal{B} . Then approximate essential amenability of \mathcal{A} implies approximate essential amenability of \mathcal{B} . *Proof.* Suppose that \mathcal{A} is approximately essentially amenable and that \mathcal{X} is a neo-unital Banach \mathcal{B} -bimodule. Then \mathcal{X} is a neo-unital Banach \mathcal{A} -bimodule via the module actions defined by

$$a \cdot x = \Phi(a) \cdot x, \quad x \cdot a = x \cdot \Phi(a),$$

for all $a \in \mathcal{A}$ and $x \in \mathcal{X}$. If $D : \mathcal{B} \to \mathcal{X}^{(1)}$ is a derivation, then it is clear that the map $D \circ \Phi : \mathcal{A} \to \mathcal{X}$ is a derivation, where $\Phi : \mathcal{A} \to \mathcal{B}$ is a continuous epimorphism. Therefore, there exists a net $(x_{\alpha}^{(1)})_{\alpha} \subseteq \mathcal{X}^{(1)}$ such that for each $a \in \mathcal{A}$ we have

$$(D \circ \Phi)(a) = \lim_{\alpha} (a \cdot x_{\alpha}^{(1)} - x_{\alpha}^{(1)} \cdot a) = \lim_{\alpha} (\Phi(a) \cdot x_{\alpha}^{(1)} - x_{\alpha}^{(1)} \cdot \Phi(a)).$$

Since Φ is epimorphism, we have $D(b) = \lim_{\alpha} (b \cdot x_{\alpha}^{(1)} - x_{\alpha}^{(1)} \cdot b)$ for every $b \in \mathcal{B}$. So, \mathcal{B} is approximately essentially amenable.

THEOREM 3.5. Let \mathcal{A} and \mathcal{B} be two Banach algebras and $\theta \in \sigma(\mathcal{B})$. If $\mathcal{A} \times_{\theta} \mathcal{B}$ is approximately essentially amenable, then \mathcal{A} and \mathcal{B} are approximately essentially amenable.

Proof. Approximate essential amenability of \mathcal{B} follows from Theorem 3.4. Now, suppose that the \mathcal{A} -bimodule \mathcal{X} is neo-unital. Then via the module actions defined by

$$x \cdot (a, b) = x \cdot a + \theta(b)x, \quad (a, b) \cdot x = a \cdot x + \theta(b)x,$$

it is clear that $(\mathcal{A} \times_{\theta} \mathcal{B})$ -bimodule \mathcal{X} is neo-unital for all $a \in \mathcal{A}, b \in \mathcal{B}$ and $x \in \mathcal{X}$. If $D : \mathcal{A} \to \mathcal{X}^{(1)}$ is a continuous derivation, then we can extend it to $\tilde{D} : \mathcal{A} \times_{\theta} \mathcal{B} \to \mathcal{X}^{(1)}$ via

$$D((a,b)) = D(a)$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Clearly, \tilde{D} is a derivation. Thus, there exists $(x_{\alpha}^{(1)})_{\alpha} \subseteq \mathcal{X}^{(1)}$ such that

$$\tilde{D}((a,b)) = \lim_{\alpha} \operatorname{ad}_{x_{\alpha}^{(1)}}(a,b) = \lim_{\alpha} ((a,b) \cdot x_{\alpha}^{(1)} - x_{\alpha}^{(1)} \cdot (a,b))$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Therefore,

$$D(a) = \tilde{D}((a,0)) = \lim_{\alpha} ((a,0) \cdot x_{\alpha}^{(1)} - x_{\alpha}^{(1)} \cdot (a,0))$$
$$= \lim_{\alpha} (a \cdot x_{\alpha}^{(1)} - x_{\alpha}^{(1)} \cdot a)$$

for all $a \in \mathcal{A}$. So, \mathcal{A} is approximately essentially amenable.

4. *n***-Weak amenability.** For $n \in \mathbb{N}$, the concept of *n*-weak amenability was initiated and intensively developed by Dales, Ghahramani and Grønbæk [DGG].

A Banach algebra \mathcal{A} is said to be *n*-weakly amenable if every continuous derivation from \mathcal{A} into $\mathcal{A}^{(n)}$ is inner. Trivially, 1-weak amenability is nothing other than weak amenability, which was first introduced and intensively studied by Bade, Curtis and Dales [BCD] for commutative Banach algebras, and then by Johnson [J3] for a general Banach algebra.

THEOREM 4.1. Let \mathcal{A} and \mathcal{B} be two Banach algebras, $\theta \in \sigma(\mathcal{B})$ and $n \in \mathbb{N}$.

- (i) If $\mathcal{A} \times_{\theta} \mathcal{B}$ is (2n)-weakly amenable, then \mathcal{A} is (2n)-weakly amenable.
- (ii) If \mathcal{A} and \mathcal{B} are (2n+1)-weakly amenable, then $\mathcal{A} \times_{\theta} \mathcal{B}$ is (2n+1)-weakly amenable.

Proof. (i) Let $\mathcal{A} \times_{\theta} \mathcal{B}$ be (2*n*)-weakly amenable. We show that \mathcal{A} is (2*n*)-weakly amenable. If $D: \mathcal{A} \to \mathcal{A}^{(2n)}$ is a continuous derivation, then we can extend this derivation to $\tilde{D}: \mathcal{A} \times_{\theta} \mathcal{B} \to \mathcal{A}^{(2n)} \times_{\theta^{[2n]}} \mathcal{B}^{(2n)}$ via

$$\tilde{D}((a,b)) = (d(a),0),$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Clearly, \tilde{D} is a derivation on $\mathcal{A} \times_{\theta} \mathcal{B}$. Thus, there exists $(a^{(2n)}, b^{(2n)}) \in \mathcal{A}^{(2n)} \times_{\theta^{[2n]}} \mathcal{B}^{(2n)}$ such that

$$\tilde{D}((a,b)) = (a,b) \cdot (a^{(2n)}, b^{(2n)}) - (a^{(2n)}, b^{(2n)}) \cdot (a,b)$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Therefore, $D(a) = a \cdot a^{(2n)} - a^{(2n)} \cdot a$ and $b \cdot b^{(2n)} = b^{(2n)} \cdot b$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. So, \mathcal{A} is (2n)-weakly amenable.

(ii) Suppose that $D : \mathcal{A} \times_{\theta} \mathcal{B} \to \mathcal{A}^{(2n+1)} \times \mathcal{B}^{(2n+1)}$ is a continuous derivation. Moreover, suppose that $\iota : \mathcal{A} \to \mathcal{A} \times_{\theta} \mathcal{B}$ is the natural embedding,

$$i^{(2n+1)}: \mathcal{A}^{(2n+1)} \times \mathcal{B}^{(2n+1)} \to \mathcal{A}^{(2n+1)}$$

is the (2n+1)-th adjoint of i, and $\pi : \mathcal{A} \times_{\theta} \mathcal{B} \to (\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A}$ is the quotient map. Then

$$i^{(2n+1)} \circ D \circ i : \mathcal{A} \to \mathcal{A}^{(2n+1)}$$

is a continuous derivation. So, there exists $a^{(2n+1)} \in \mathcal{A}^{(2n+1)}$ such that

$$(i^{(2n+1)} \circ D)(a) = \operatorname{ad}_{a^{(2n+1)}}(a)$$

for all $a \in \mathcal{A}$. We can extend $a^{(2n+1)}$ to an element of $\mathcal{A}^{(2n+1)} \times \mathcal{B}^{(2n+1)}$. Thus, if we put

$$D_{a^{(2n+1)}} := D - \mathrm{ad}_{a^{(2n+1)}},$$

then $(i^{(2n+1)} \circ D) = 0$ on \mathcal{A} .

Now, for any
$$a, a' \in \mathcal{A}$$
 and $(a^{(2n)}, b^{(2n)}) \in \mathcal{A}^{(2n)} \times_{\theta^{[2n]}} \mathcal{B}^{(2n)}$,
 $\langle D(aa'), (a^{(2n)}, b^{(2n)}) \rangle = \langle D(a), (a', 0) \cdot (a^{(2n)}, b^{(2n)}) \rangle$
 $+ \langle D(a'), (a^{(2n)}, b^{(2n)}) \cdot (a, 0) \rangle$
 $= \langle D(a), i^{(2n)}((a', 0) \cdot (a^{(2n)}, b^{(2n)})) \rangle$
 $+ \langle D(a'), i^{(2n)}((a^{(2n)}, b^{(2n)}) \cdot (a, 0)) \rangle$
 $= \langle (i^{(2n+1)} \circ D)(a), (a', 0) \cdot (a^{(2n)}, b^{(2n)}) \rangle$
 $+ \langle (i^{(2n+1)} \circ D)(a'), (a^{(2n)}, b^{(2n)}) \cdot (a, 0) \rangle$
 $= 0,$

where $\theta^{[2n]} \in \sigma(\mathcal{B}^{(2n)})$. Thus, D = 0 on $\mathcal{A}^2 := \mathcal{A}\mathcal{A}$. By the (2n + 1)-weak amenability of \mathcal{A} and Proposition 2.8.63(i) of [D], we have D = 0 on \mathcal{A} since $\overline{\mathcal{A}^2} = \mathcal{A}$.

 \rangle

On the other hand, if $\mathcal{X}_{\mathcal{A}}$ is the closed linear subspace of $\mathcal{A}^{(2n)} \times_{\theta^{[2n]}} \mathcal{B}^{(2n)}$ spanned by

$$\mathcal{A}(\mathcal{A}^{(2n)}\times_{\theta^{[2n]}}\mathcal{B}^{(2n)})\cup(\mathcal{A}^{(2n)}\times_{\theta^{[2n]}}\mathcal{B}^{(2n)})\mathcal{A},$$

then for all $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$ and $a' \in \mathcal{A}$ we have

$$\begin{aligned} 0 &= D((a,b)(a',0)) = D((a,b)) \cdot (a',0), \\ 0 &= D((a',0)(a,b)) = (a',0) \cdot D((a,b)). \end{aligned}$$

Moreover, for all $a, a' \in \mathcal{A}, b \in \mathcal{B}$ and $(a^{(2n)}, b^{(2n)}) \in \mathcal{A}^{(2n)} \times_{\theta^{[2n]}} \mathcal{B}^{(2n)}$,

$$\begin{split} \langle D((a,b)), (a^{(2n)}, b^{(2n)})(a',0) \rangle &= \langle (a',0) \cdot D((a,b)), (a^{(2n)}, b^{(2n)}) \rangle = 0, \\ \langle D((a,b)), (a',0)(a^{(2n)}, b^{(2n)}) \rangle &= \langle D((a,b)) \cdot (a',0), (a^{(2n)}, b^{(2n)}) \rangle = 0. \end{split}$$

So, $D(\mathcal{A} \times_{\theta} \mathcal{B}) \subseteq \mathcal{X}_{\mathcal{A}}^{\perp}$. Hence, $D(\mathcal{A} \times_{\theta} \mathcal{B}) \subseteq ((\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A})^{(n)}$. Clearly, $\mathcal{X}_{\mathcal{A}}$ is a closed $(\mathcal{A} \times_{\theta} \mathcal{B})$ -submodule of $\mathcal{A}^{(2n)} \times_{\theta^{[2n]}} \mathcal{B}^{(2n)}$ and $(\mathcal{A}^{(2n)} \times_{\theta^{[2n]}} \mathcal{B}^{(2n)})/\mathcal{X}_{\mathcal{A}}$ is an $((\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A})$ -bimodule. Now, we define a map

$$D_{\mathcal{A}}: (\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A} \to ((\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A})^{(n)}$$

via $D_{\mathcal{A}}((a, b) + \mathcal{A}) = D((a, b))$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Then $D_{\mathcal{A}}$ is continuous derivation. But $(\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A}$ is isometrically isomorphic to \mathcal{B} , and \mathcal{B} is (2n + 1)-weakly amenable. Thus, there exists $f^{(n)} \in ((\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A})^{(n)}$ such that $D_{\mathcal{A}} = \operatorname{ad}_{f^{(n)}}$. It follows that $\mathcal{A} \times_{\theta} \mathcal{B}$ is (2n + 1)-weakly amenable.

REMARK. Let \mathcal{A} and \mathcal{B} be two Banach algebras, $\theta \in \sigma(\mathcal{B})$ and $n \in \mathbb{N}$. An argument similar to the proof of Theorem 4.1 shows that:

- (i) If $\mathcal{A} \times_{\theta} \mathcal{B}$ is approximately (2*n*)-weakly amenable, then \mathcal{A} is approximately (2*n*)-weakly amenable.
- (ii) If \mathcal{A} and \mathcal{B} are approximately (2n+1)-weakly amenable, then $\mathcal{A} \times_{\theta} \mathcal{B}$ is approximately (2n+1)-weakly amenable.

5. Cyclic amenability. Recall that a derivation $D : \mathcal{A} \to \mathcal{A}^{(1)}$ is called *cyclic* if $\langle D(a), b \rangle + \langle D(b), a \rangle = 0$ for all $a, b \in \mathcal{A}$; the Banach algebra \mathcal{A} is called *cyclic amenable* (resp. *approximately cyclic amenable*) if every cyclic continuous derivation $D : \mathcal{A} \to \mathcal{A}^{(1)}$ is inner (resp. approximately inner).

THEOREM 5.1. Let \mathcal{A} and \mathcal{B} be two Banach algebras with $\overline{\mathcal{A}^2} = \mathcal{A}$ and let $\theta \in \sigma(\mathcal{B})$. Then $\mathcal{A} \times_{\theta} \mathcal{B}$ is cyclic amenable (resp. approximately cyclic amenable) if and only if \mathcal{A} and \mathcal{B} are cyclic amenable (resp. approximately cyclic amenable).

Proof. We give a proof for cyclic amenability; the proof for approximate cyclic amenability is similar.

To this end, suppose that $D: \mathcal{A} \to \mathcal{A}^{(1)}$ is a cyclic derivation. Then we can extend it to a derivation $\tilde{D}: \mathcal{A} \times_{\theta} \mathcal{B} \to \mathcal{A}^{(1)} \times \mathcal{B}^{(1)}$ defined via

$$\tilde{D}((a,b)) = (D(a),0)$$

for all $a \in \mathcal{A}$ and \mathcal{B} . On the other hand, it is clear that \tilde{D} is a cyclic derivation on $\mathcal{A} \times_{\theta} \mathcal{B}$. Therefore, there exists $(a^{(1)}, b^{(1)}) \in \mathcal{A}^{(1)} \times \mathcal{B}^{(1)}$ such that for each $a \in \mathcal{A}$ and $b \in \mathcal{B}$,

$$\tilde{D}((a,b)) = (a,b) \cdot (a^{(1)},b^{(1)}) - (a^{(1)},b^{(1)}) \cdot (a,b)$$
$$= (a \cdot a^{(1)} - a^{(1)} \cdot a, b \cdot b^{(1)} - b^{(1)} \cdot b).$$

But, on the other hand, $\tilde{D}((a,b)) = (D(a),0)$ for each $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Therefore, $D(a) = a \cdot a^{(1)} - a^{(1)} \cdot a$ and $b \cdot b^{(1)} - b^{(1)} \cdot b = 0$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$; i.e. \mathcal{A} is cyclic amenable. Cyclic amenability of \mathcal{B} is proved similarly.

Conversely, if \mathcal{A} and \mathcal{B} are cyclic amenable and $D : \mathcal{A} \times_{\theta} \mathcal{B} \to \mathcal{A}^{(1)} \times \mathcal{B}^{(1)}$ is a cyclic derivation, then there are two functions $\alpha : \mathcal{A} \times_{\theta} \mathcal{B} \to \mathcal{A}^{(1)}$ and $\beta : \mathcal{A} \times_{\theta} \mathcal{B} \to \mathcal{B}^{(1)}$ are such that

$$D((a,b)) = (\alpha((a,b)), \beta((a,b)))$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Now, we define $D_1 : \mathcal{A} \to \mathcal{A}^{(1)}$ via $D_1(a) = \alpha((a, 0))$ for all $a \in \mathcal{A}$ and $D_2 : \mathcal{B} \to \mathcal{B}^{(1)}$ via $D_2(b) = \beta((0, b))$ for all $b \in \mathcal{B}$. Thus, for every $a, a' \in \mathcal{A}$ we have

$$\begin{aligned} \langle D_1(a), a' \rangle + \langle D_1(a'), a \rangle &= \langle (D_1(a), 0), (a', 0) \rangle + \langle (D_1(a'), 0), (a, 0) \rangle \\ &= \langle (\alpha((a, 0)), \beta((a, 0))), (a', 0) \rangle \\ &+ \langle (\alpha((a', 0)), \beta((a', 0)), (a, 0) \rangle \\ &= \langle D((a, 0)), (a', 0) \rangle + \langle D((a', 0)), (a, 0) \rangle = 0. \end{aligned}$$

So, D_1 is a cyclic derivation. Thus, there exists $a^{(1)} \in \mathcal{A}^{(1)}$ such that

$$D_1(a) = a \cdot a^{(1)} - a^{(1)} \cdot a$$

for all $a \in \mathcal{A}$. Similarly, D_2 is a cyclic derivation. Therefore, there exists $b^{(1)} \in \mathcal{B}^{(1)}$ such that

$$D_2(b) = b \cdot b^{(1)} - b^{(1)} \cdot b$$

for all $b \in \mathcal{B}$. It follows from the assumption that for each $(a^{(1)}, b^{(1)}) \in \mathcal{A}^{(1)} \times \mathcal{B}^{(1)}$ we have

$$D((a,b)) = (a,b) \cdot (a^{(1)}, b^{(1)}) - (a^{(1)}, b^{(1)}) \cdot (a,b)$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. So, D is an inner derivation; i.e. $\mathcal{A} \times_{\theta} \mathcal{B}$ is cyclic amenable.

Acknowledgements. The authors would like to thank the referee for his useful comments and suggestions. They acknowledge that this research was partially carried out at the IPM – Isfahan Branch.

The research of R. Nasr-Isfahani was in part supported by a grant from IPM (No. 91430417).

The research of M. Nemati was in part supported by a grant from IPM (No. 91470050).

REFERENCES

- [BCD] W. G. Bade, P. C. Curtis, and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), 359–377.
- [D] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford Univ. Press, Oxford, 2000.
- [DGG] H. G. Dales, F. Ghahramani, and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19–54.
- [GL] F. Ghahramani and R. J. Loy, Generalized notions of amenability, J. Funct. Anal. 208 (2004), 229–260.
- [GLZ] F. Ghahramani, R. J. Loy and Y. Zhang, Generalized notions of amenability, II, J. Funct. Anal. 254 (2008), 1776–1810.
- [G] N. Grønbæk, Weak and cyclic amenability for non-commutative Banach algebras, Proc. Edinburgh Math. Soc. 35 (1992), 315–328.
- [J1] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- [J2] B. E. Johnson, Derivations from $L^1(G)$ into $L^1(G)$ and $L^{\infty}(G)$, in: Lecture Notes in Math. 1359, Springer, 1988, 191–198.
- [J3] B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), 281–284.
- [LE] J. Laali and M. Ettefagh, Weak amenability of general measure algebras, Colloq. Math. 111 (2008), 1–9.
- [L1] A. T. Lau, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161–175.
- [L2] A. T. Lau, Uniformly continuous functionals on Banach algebras, Colloq. Math. 51 (1987), 195–205.
- [LL] A. T. Lau and J. Ludwig, Fourier-Stieltjes algebra of a topological group, Adv. Math. 229 (2012), 2000–2023.
- [M] M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (2007), 277–294.

- [NS] R. Nasr-Isfahani and S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Studia Math. 202 (2011), 205–225.
- [Pa] A. L. T. Paterson, Amenability, Mathematical Surveys and Monographs, Amer. Math. Soc. 29, Providence, RI, 1988.
- [Pi] J. P. Pier, Amenable Banach Algebras, Pitman Res. Notes Math. Ser. 172, Longman, Harlow, 1988.
- [R] V. Runde, *Lectures on Amenability*, Springer, New York, 2002.

Eghbal Ghaderi, Rasoul Nasr-Isfahani, Mehdi Nemati Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156-83111, Iran and School of Mathematics Institute for Research in Fundamental Sciences (IPM) E-mail: ghaderi@math.iut.ac.ir isfahani@cc.iut.ac.ir m.nemati@cc.iut.ac.ir

> Received 6 January 2012; revised 28 June 2012

(5608)