VOL. 130

2013

NO. 2

OPERATOR ENTROPY INEQUALITIES

ΒY

M. S. MOSLEHIAN (Mashhad) F. MIRZAPOUR (Zanjan) and A. MORASSAEI (Zanjan)

Abstract. We investigate a notion of relative operator entropy, which develops the theory started by J. I. Fujii and E. Kamei [Math. Japonica 34 (1989), 341–348]. For two finite sequences $\mathbf{A} = (A_1, \ldots, A_n)$ and $\mathbf{B} = (B_1, \ldots, B_n)$ of positive operators acting on a Hilbert space, a real number q and an operator monotone function f we extend the concept of entropy by setting

$$S_q^f(\mathbf{A} | \mathbf{B}) := \sum_{j=1}^n A_j^{1/2} (A_j^{-1/2} B_j A_j^{-1/2})^q f(A_j^{-1/2} B_j A_j^{-1/2}) A_j^{1/2},$$

and then give upper and lower bounds for $S_q^f(\mathbf{A} | \mathbf{B})$ as an extension of an inequality due to T. Furuta [Linear Algebra Appl. 381 (2004), 219–235] under certain conditions. As an application, some inequalities concerning the classical Shannon entropy are deduced.

1. Introduction and preliminaries. Throughout the paper, let $\mathbb{B}(\mathscr{H})$ denote the algebra of all bounded linear operators acting on a complex Hilbert space $(\mathscr{H}, \langle \cdot, \cdot \rangle)$ and I is the identity operator. When dim $\mathscr{H} = n$, we identify $\mathbb{B}(\mathscr{H})$ with the full matrix algebra $\mathcal{M}_n(\mathbb{C})$ of $n \times n$ matrices with complex entries and denote its identity by I_n . A self-adjoint operator $A \in \mathbb{B}(\mathscr{H})$ is called *positive*, written $A \ge 0$, if $\langle Ax, x \rangle \ge 0$ for all $x \in \mathscr{H}$. An operator A is said to be *strictly positive* (denoted by A > 0) if it is positive and invertible. For self-adjoint operators $A, B \in \mathbb{B}(\mathscr{H})$, we write $A \le B$ if $B - A \ge 0$.

Let f be a continuous real valued function defined on an interval J. The function f is called *operator decreasing* if $B \leq A$ implies $f(A) \leq f(B)$ for all $A, B \in \mathbb{B}(\mathscr{H})$ with spectra in J. The function f is said to be *operator concave* on J if

 $\lambda f(A) + (1 - \lambda)f(B) \le f(\lambda A + (1 - \lambda)B)$

for all self-adjoint $A, B \in \mathbb{B}(\mathscr{H})$ with spectra in J and all $\lambda \in [0, 1]$.

²⁰¹⁰ Mathematics Subject Classification: Primary 47A63; Secondary 15A42, 46L05, 47A30.

Key words and phrases: f-divergence functional, Jensen inequality, operator entropy, entropy inequality, operator concavity, perspective function, positive linear map.

In 1850 Clausius [Ann. Physik (2) 79 (1850), 368–397, 500–524] introduced the notion of entropy in thermodynamics. Since then several extensions and reformulations have been developed in various disciplines (cf. [ME, LR, L, NU]). The so-called entropy inequalities have been investigated by several authors (see [BLP, BS, F2] and references therein).

A relative operator entropy of strictly positive operators A, B was introduced in noncommutative information theory by Fujii and Kamei [FK] by

$$S(A \mid B) = A^{1/2} \log(A^{-1/2} B A^{-1/2}) A^{1/2}.$$

When A is positive, one may set $S(A | B) := \lim_{\epsilon \to +0} S(A + \epsilon I | B)$ if the limit exists in the strong operator topology. In the same paper, it is shown that $S(A | B) \leq 0$ if $A \geq B$. There is an analogous notion called the perspective function (see [E, CK]) If $f : [0, \infty) \to \mathbb{R}$ is an operator convex function, then the *perspective function* g associated to f is defined by

$$g(B,A) = A^{1/2} f(A^{-1/2} B A^{-1/2}) A^{1/2}$$

for any self-adjoint operator B and any strictly positive operator A.

One can consider a more general case. Let $\tilde{B} = (B_1, \ldots, B_n)$ and $\tilde{A} = (A_1, \ldots, A_n)$ be *n*-tuples of self-adjoint and strictly positive operators, respectively. Then the noncommutative *f*-divergence functional Θ is defined by

$$\Theta(\widetilde{B},\widetilde{A}) = \sum_{i=1}^{n} A_i^{1/2} f(A_i^{-1/2} B_i A_i^{-1/2}) A_i^{1/2}.$$

Next, recall that $X \not\models_q Y$ is defined by $X^{1/2}(X^{-1/2}YX^{-1/2})^qX^{1/2}$ for any real q and any strictly positive operators X and Y. For $p \in [0, 1]$, the operator $X \not\models_p Y$ coincides with the well-known p-power mean of X, Y.

Furuta [F1] defined a parametric extension of the operator entropy by

$$S_p(A \mid B) = A^{1/2} (A^{-1/2} B A^{-1/2})^p \log(A^{-1/2} B A^{-1/2}) A^{1/2},$$

where $p \in [0, 1]$ and A, B are strictly positive operators on a Hilbert space \mathscr{H} , and proved some operator entropy inequalities: if $\{A_1, \ldots, A_n\}$ and $\{B_1, \ldots, B_n\}$ are two sequences of strictly positive operators on a Hilbert space \mathscr{H} such that $\sum_{j=1}^n A_j \not\models_p B_j \leq I$, then

(1.1)
$$\log \left[\sum_{j=1}^{n} (A_j \natural_{p+1} B_j) + t_0 \left(I - \sum_{j=1}^{n} A_j \natural_p B_j \right) \right] - (\log t_0) \left(I - \sum_{j=1}^{n} A_j \natural_p B_j \right)$$

$$\geq \sum_{j=1}^{n} S_{p}(A_{j} | B_{j})$$

$$\geq -\log \left[\sum_{j=1}^{n} (A_{j} \natural_{p-1} B_{j}) + t_{0} \left(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j} \right) \right] + (\log t_{0}) \left(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j} \right)$$

for any fixed real number $t_0 > 0$.

The object of this paper is to state an operator entropy inequality parallel to the main result of [F1] and refine some known operator entropy inequalities.

2. Operator entropy inequality. The following notion is basic in our work.

DEFINITION 2.1. Assume that $\mathbf{A} = (A_1, \ldots, A_n)$ and $\mathbf{B} = (B_1, \ldots, B_n)$ are finite sequences of strictly positive operators on a Hilbert space \mathscr{H} . For $q \in \mathbb{R}$ and an operator monotone function $f : (0, \infty) \to [0, \infty)$ the generalized operator Shannon entropy is defined by

$$S_q^f(\mathbf{A} \mid \mathbf{B}) := \sum_{j=1}^n S_q^f(A_j \mid B_j),$$

where

$$S_q^f(A_j | B_j) = A_j^{1/2} (A_j^{-1/2} B_j A_j^{-1/2})^q f(A_j^{-1/2} B_j A_j^{-1/2}) A_j^{1/2}.$$

We recall that for q = 0, $f(t) = \log t$ and A, B > 0, we get the relative operator entropy $S_0^f(A | B) = A^{1/2} \log(A^{-1/2}BA^{-1/2})A^{1/2} = S(A | B)$. It is interesting to point out that $S_q(A | B) = -S_{1-q}(B | A)$ for any real q, in particular, $S_1(A | B) = -S(B | A)$. In fact, since $Xf(X^*X) = f(XX^*)X$ for every $X \in \mathbb{B}(\mathscr{H})$ and every continuous function f on $[0, ||X||^2]$, considering $X = B^{1/2}A^{-1/2}$ and $f(t) = \log t$ we get

$$\begin{split} S_q(A \mid B) &= A^{1/2} (A^{-1/2} B A^{-1/2})^q \log(A^{-1/2} B A^{-1/2}) A^{1/2} \\ &= B^{1/2} B^{-1/2} A^{1/2} (A^{-1/2} B A^{-1/2})^q \log(A^{-1/2} B A^{-1/2}) A^{1/2} B^{-1/2} B^{1/2} \\ &= B^{1/2} X^{*-1} (X^* X)^q \log(X^* X) X^{-1} B^{1/2} \\ &= B^{1/2} X^{-1*} (X^{-1} X^{-1*})^{-q} \log(X^* X) X^{-1} B^{1/2} \\ &= B^{1/2} (X^{-1*} X^{-1})^{1-q} (X^{-1*} X^{-1})^{-1} X^{-1*} \log(X^* X) X^{-1} B^{1/2} \\ &= B^{1/2} (X^{-1*} X^{-1})^{1-q} \log(X^* X) X^{-1} B^{1/2} \\ &= B^{1/2} (X^{-1*} X^{-1})^{1-q} \log(X^*) X X^{-1} B^{1/2} \\ &= -B^{1/2} (X^{-1*} X^{-1})^{1-q} \log(X^{-1*} X^{-1}) B^{1/2} \\ &= -B^{1/2} (X^{*-1} X^{-1})^{1-q} \log(X^{*-1} X^{-1}) B^{1/2} \\ &= -B^{1/2} (X^{*$$

We need the following useful lemma.

LEMMA 2.2 ([F1, Proposition 3.1]). If f is a continuous real function on an interval J, then the following conditions are equivalent:

- (i) f is operator concave.
- (ii) $f(C^*XC + t_0(I C^*C)) \ge C^*f(X)C + f(t_0)(I C^*C))$ for any operator C with $||C|| \le 1$ and any self-adjoint operator X with $\operatorname{sp}(X) \subseteq J$, and for any fixed $t_0 \in J$.
- (iii) $f(\sum_{j=1}^{n} C_{j}^{*}X_{j}C_{j} + t_{0}(I \sum_{j=1}^{n} C_{j}^{*}C_{j})) \geq \sum_{j=1}^{n} C_{j}^{*}f(X_{j})C_{j} + f(t_{0})(I \sum_{j=1}^{n} C_{j}^{*}C_{j}))$ for any operators C_{j} with $\sum_{j=1}^{n} C_{j}^{*}C_{j} \leq I$ and self-adjoint operators X_{j} with $\operatorname{sp}(X_{j}) \subseteq J$ for $j = 1, \ldots, n$, and for any fixed $t_{0} \in J$.

For other equivalent conditions the reader may consult [FMPS, M] and references therein. Using an idea of [F1] we prove the following result.

THEOREM 2.3. Assume that f, **A** and **B** are as in Definition 2.1. Let $\sum_{j=1}^{n} A_j = \sum_{j=1}^{n} B_j = I$ and let f be operator concave. Then

$$f\Big[\sum_{j=1}^{n} (A_j \natural_{p+1} B_j) + t_0 \Big(I - \sum_{j=1}^{n} A_j \natural_p B_j\Big)\Big] - f(t_0) \Big(I - \sum_{j=1}^{n} A_j \natural_p B_j\Big) \ge S_p^f(\mathbf{A} \mid \mathbf{B})$$

for all $p \in [0, 1]$ and for any fixed $t_0 > 0$, and

$$-f\left[\sum_{j=1}^{n} (A_j \natural_{p-1} B_j) + t_0 \left(I - \sum_{j=1}^{n} A_j \natural_p B_j\right)\right] + f(t_0) \left(I - \sum_{j=1}^{n} A_j \natural_p B_j\right) \le S_p^f(\mathbf{A} \mid \mathbf{B})$$

for all $p \in [2,3]$ and for any fixed $t_0 > 0$.

Proof. Since $\sum_{j=1}^{n} A_j \natural_q B_j \leq (\sum_{j=1}^{n} A_j) \natural_q (\sum_{j=1}^{n} B_j)$ (see [FMPS, Theorem 5.7]) for every $q \in [0, 1]$, and $\sum_{j=1}^{n} A_j = \sum_{j=1}^{n} B_j = I$, we have

$$\sum_{j=1}^{n} A_j \natural_p B_j \le I.$$

Fix a positive real number t_0 . Since f is operator concave, we get

$$\begin{split} f\Big[\sum_{j=1}^{n} (A_{j} \natural_{p+1} B_{j}) + t_{0} \Big(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j}\Big)\Big] \\ = f\Big[\sum_{j=1}^{n} ((A_{j}^{-1/2} B_{j} A_{j}^{-1/2})^{p/2} A_{j}^{1/2})^{*} (A_{j}^{-1/2} B_{j} A_{j}^{-1/2}) ((A_{j}^{-1/2} B_{j} A_{j}^{-1/2})^{p/2} A_{j}^{1/2}) \\ &+ t_{0} \Big(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j}\Big)\Big] \end{split}$$

$$\geq \sum_{j=1}^{n} A_{j}^{1/2} (A_{j}^{-1/2} B_{j} A_{j}^{-1/2})^{p/2} f(A_{j}^{-1/2} B_{j} A_{j}^{-1/2}) (A_{j}^{-1/2} B_{j} A_{j}^{-1/2})^{p/2} A_{j}^{1/2} + f(t_{0}) \left(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j}\right) \quad \text{(by Lemma 2.2(iii))}$$
$$= \sum_{j=1}^{n} A_{j}^{1/2} (A_{j}^{-1/2} B_{j} A_{j}^{-1/2})^{p} f(A_{j}^{-1/2} B_{j} A_{j}^{-1/2}) A_{j}^{1/2} + f(t_{0}) \left(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j}\right)$$
$$= \sum_{j=1}^{n} S_{p}^{f} (A_{j} \mid B_{j}) + f(t_{0}) \left(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j}\right),$$
whence

wnence

$$f\Big[\sum_{j=1}^{n} (A_{j} \natural_{p+1} B_{j}) + t_{0} \Big(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j}\Big)\Big]$$

$$\geq \sum_{j=1}^{n} S_{p}^{f}(A_{j} | B_{j}) + f(t_{0}) \Big(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j}\Big).$$

Following a similar argument, we obtain

$$f\Big[\sum_{j=1}^{n} (A_{j} \natural_{p-1} B_{j}) + t_{0} \Big(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j}\Big)\Big]$$

$$\geq \sum_{j=1}^{n} S_{p-2}^{f} (A_{j} | B_{j}) + f(t_{0}) \Big(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j}\Big).$$

Thus

$$-f\left[\sum_{j=1}^{n} (A_{j} \natural_{p-1} B_{j}) + t_{0} \left(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j}\right)\right] + f(t_{0}) \left(I - \sum_{j=1}^{n} A_{j} \natural_{p} B_{j}\right) \\ \leq -S_{p-2}^{f} (\mathbf{A} \mid \mathbf{B}).$$

Since f is a continuous nonnegative function, $X^q f(X) \ge 0$ for every $X \ge 0$ and $q \in \mathbb{R}$. Hence

$$(A_j^{-1/2}B_jA_j^{-1/2})^q f(A_j^{-1/2}B_jA_j^{-1/2}) \ge 0.$$

Consequently, $S_q^f(A_j | B_j) \ge 0$. Thus

$$S_p^f(A_j | B_j) + S_{p-2}^f(A_j | B_j) \ge 0 \quad (j = 1, ..., n),$$

whence $-S_{p-2}^{f}(\mathbf{A} \mid \mathbf{B}) \leq S_{p}^{f}(\mathbf{A} \mid \mathbf{B})$, which yields the required result.

REMARK 2.4. By taking $f(t) = \log t$ in Theorem 2.3, we get (1.1).

COROLLARY 2.5. Let $\mathbf{A} = (A_1, \ldots, A_n)$ and $\mathbf{B} = (B_1, \ldots, B_n)$ be two sequences of strictly positive operators on a Hilbert space $\mathscr H$ such that $\sum_{j=1}^{n} A_j = \sum_{j=1}^{n} B_j = I$. If $f : (0, \infty) \to [0, \infty)$ is a function which is both operator monotone and operator concave, then

(i) $f(\sum_{j=1}^{n} B_j A_j^{-1} B_j) \ge S_1^f(\mathbf{A} | \mathbf{B}),$ (ii) $f(I) \ge S_0^f(\mathbf{A} | \mathbf{B}).$

Proof. (i) Setting p = 1 in Theorem 2.3 and applying $\sum_{j=1}^{n} A_j \natural_1 B_j = \sum_{j=1}^{n} B_j = I$, we obtain

$$f\left(\sum_{j=1}^{n} B_j A_j^{-1} B_j\right) = f\left(\sum_{j=1}^{n} A_j \natural_2 B_j\right) \ge S_1^f(\mathbf{A} \mid \mathbf{B}).$$

(ii) Putting p = 0 in Theorem 2.3 and using $\sum_{j=1}^{n} A_j \natural_0 B_j = \sum_{j=1}^{n} A_j = I$, we get

$$f(I) = f\left(\sum_{j=1}^{n} B_j\right) = f\left(\sum_{j=1}^{n} A_j \natural_1 B_j\right) \ge S_0^f(\mathbf{A} \mid \mathbf{B}). \bullet$$

Next we extend the operator entropy to n strictly positive operators $A_1, \ldots, A_n \in \mathbb{B}(\mathcal{H})$ and refine the operator entropy inequality.

COROLLARY 2.6. Let $A_1, \ldots, A_n \in \mathbb{B}(\mathscr{H})$ be a sequence of strictly positive operators on a Hilbert space \mathscr{H} such that $\sum_{j=1}^n A_j = I$. Then

(2.1)
$$\log\left(\sum_{j=1}^{n} A_{j}^{-1}\right) \ge (\log n)I - \frac{1}{n}\sum_{j=1}^{n} \log A_{j}.$$

Proof. Taking $\mathbf{A} = (A_1, \dots, A_n)$ and $\mathbf{B} = \left(\frac{1}{n}I, \dots, \frac{1}{n}I\right)$ and $f(t) = \log t$ in Corollary 2.5 (i), we get

$$-2(\log n)I + \log\left(\sum_{j=1}^{n} A_{j}^{-1}\right) = \log\left(\frac{1}{n^{2}}\sum_{j=1}^{n} A_{j}^{-1}\right) \ge S_{1}^{\log}(\mathbf{A} \mid \mathbf{B})$$
$$= \sum_{j=1}^{n} \frac{1}{n} A_{j}^{-1/2} \log\left(\frac{1}{n} A_{j}^{-1}\right) A_{j}^{1/2} = \sum_{j=1}^{n} \frac{1}{n} \log\left(\frac{1}{n} A_{j}^{-1}\right)$$
$$= -\sum_{j=1}^{n} \frac{1}{n} ((\log n)I + \log A_{j}) = -(\log n)I - \frac{1}{n} \sum_{j=1}^{n} \log A_{j},$$

which yields (2.1).

COROLLARY 2.7 (Operator entropy inequality). Assume that $A_1, \ldots, A_n \in \mathbb{B}(\mathscr{H})$ are positive invertible operators satisfying $\sum_{j=1}^n A_j = I$. Then

$$-\sum_{j=1}^n A_j \log A_j \le (\log n)I.$$

Proof. Letting $\mathbf{A} = (A_1, \ldots, A_n)$, $\mathbf{B} = \left(\frac{1}{n}I, \ldots, \frac{1}{n}I\right)$ and $f(t) = \log t$ in Corollary 2.5(ii), we get

$$0 = \log I \ge S_0^{\log}(\mathbf{A} \mid \mathbf{B})$$

= $\sum_{j=1}^n A_j^{1/2} \log\left(\frac{1}{n}A_j^{-1}\right) A_j^{1/2} = \sum_{j=1}^n A_j^{1/2} (-(\log n)I - \log A_j) A_j^{1/2}$
= $-(\log n) \sum_{j=1}^n A_j - \sum_{j=1}^n A_j^{1/2} (\log A_j) A_j^{1/2}$.

REMARK 2.8. Let $\mathbf{a} = (a_1, \ldots, a_n)$ and $\mathbf{b} = (b_1, \ldots, b_n)$ be *n*-tuples of positive numbers such that $\sum_{j=1}^n a_j = \sum_{j=1}^n b_j = 1$. Put $A_i = [a_i]_{1\times 1} \in \mathcal{M}_1(\mathbb{C})$ and $B_i = [b_i]_{1\times 1} \in \mathcal{M}_1(\mathbb{C})$. It follows from Corollary 2.5(ii) that $0 \ge \sum_{j=1}^n a_j \log(b_j/a_j)$, which is an entropy inequality related to the Kullback– Leibler relative entropy or information divergence $S(p,q) = \sum_{j=1}^n p_j \log(p_j/q_j)$ with the convention $x \log x = 0$ if x = 0, and $x \log y = +\infty$ if y = 0 and $x \neq 0$ (cf. [KL]).

THEOREM 2.9. Let $p \in [0,1]$ and let A, B be strictly positive operators on a Hilbert space \mathscr{H} such that $A \not\models_{p-2} B \leq I$ and $B^2 \leq A^2$. If $f : (0,\infty) \rightarrow [0,\infty)$ is both operator monotone and operator concave, then

$$f(A \natural_{p+1} B + t_0(I - A \natural_p B)) - f(t_0)(I - A \natural_p B)$$

$$\geq S_p^f(A \mid B) \geq -f(A \natural_{p-1} B + t_0(I - A \natural_p B)) + f(t_0)(I - A \natural_p B)$$

for any fixed real number $t_0 > 0$.

Proof. It follows from
$$A
arrow _{p-2} B \leq I$$
 that
 $A^{1/2} (A^{-1/2} B A^{-1/2})^{p-2} A^{1/2} \leq I,$
 $(A^{-1/2} B A^{-1/2})^{p-2} \leq A^{-1},$
 $(A^{-1/2} B A^{-1/2})^p \leq (A^{-1/2} B A^{-1/2}) A^{-1} (A^{-1/2} B A^{-1/2}),$
 $A^{1/2} (A^{-1/2} B A^{-1/2})^p A^{1/2} \leq B A^{-2} B.$

Since $B^2 \leq A^2$ and the map $t \mapsto -1/t$ is operator monotone, we have $A^{1/2}(A^{-1/2}BA^{-1/2})^p A^{1/2} \leq I$, so that $A \natural_p B \leq I$. Now the same reasoning as in the proof of Theorem 2.3 (with n = 1 and using Lemma 2.2(ii)) yields the desired inequalities.

Recall that a map $\Phi : \mathbb{B}(\mathscr{H}) \to \mathbb{B}(\mathscr{H})$, where \mathscr{H} and \mathscr{H} are Hilbert spaces, is called *positive* if $\Phi(A) \geq 0$ whenever $A \geq 0$, and it is said to be *normalized* if it preserves the identity. The paper [MMM, Lemma 5.2] includes the following refinement of the Jensen inequality for Hilbert space operators: Let $\mu = (\mu_1, \ldots, \mu_m)$ and $\lambda = (\lambda_1, \ldots, \lambda_n)$ be probability vectors. By a (discrete) weight function (with respect to μ and λ) we mean a mapping $\omega: \{(i,j): 1 \leq i \leq m, 1 \leq j \leq n\} \to [0,\infty)$ such that $\sum_{i=1}^{m} \omega(i,j)\mu_i = 1$ $(j = 1,\ldots,n)$ and $\sum_{j=1}^{n} \omega(i,j)\lambda_j = 1$ $(i = 1,\ldots,m)$. If f is a real-valued operator concave function on an interval J, A_1, \ldots, A_n are self-adjoint operators with spectra in J and $\Phi: \mathbb{B}(\mathscr{H}) \to \mathbb{B}(\mathscr{H})$ is a normalized positive map, then

(2.2)
$$f\left(\sum_{j=1}^{n}\lambda_{j}\Phi(A_{j})\right) \geq \sum_{i=1}^{m}\mu_{i}f\left(\sum_{j=1}^{n}\omega(i,j)\lambda_{j}\Phi(A_{j})\right) \geq \sum_{j=1}^{n}\lambda_{j}\Phi(f(A_{j})).$$

A matrix $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{C})$ is said to be *doubly stochastic* if $a_{ij} \ge 0$ (i, j = 1, ..., n) and $\sum_{i=1}^n a_{ij} = \sum_{j=1}^n a_{ij} = 1$. Now we introduce a refinement of the operator Jensen inequality.

THEOREM 2.10. Suppose that f is a real-valued operator concave function on an interval J and A_1, \ldots, A_n are self-adjoint operators with spectra in J. Assume that $B = [b_{ij}]$ and $C = [c_{ij}]$ are $n \times n$ doubly stochastic matrices, ω_1 and ω_2 are weight functions with respect to the same probability vector, and $\Phi : \mathbb{B}(\mathscr{H}) \to \mathbb{B}(\mathscr{H})$ is a normalized positive map. If the operator-valued functions F_{ω_1,ω_2} and $F_{B,C}$ are defined by

$$F_{\omega_1,\omega_2}(t) := \sum_{i=1}^m \mu_i f\left(\sum_{j=1}^n [(1-t)\omega_1(i,j) + t\omega_2(i,j)]\lambda_j \Phi(A_j)\right) \quad (0 \le t \le 1)$$

and

(2.3)
$$F_{B,C}(t) := \frac{1}{n} \sum_{i=1}^{n} f\left(\sum_{j=1}^{n} [(1-t)b_{ij} + tc_{ij}] \varPhi(A_j)\right) \quad (0 \le t \le 1),$$

then

(i)

(2.4)
$$f\left(\sum_{j=1}^{n} \lambda_j \Phi(A_j)\right) \ge F_{\omega_1,\omega_2}(t) \ge \sum_{j=1}^{n} \lambda_j \Phi(f(A_j)) \quad (0 \le t \le 1).$$

In particular,

$$f\left(\frac{1}{n}\sum_{j=1}^{n}\Phi(A_{j})\right) \ge F_{B,C}(t) \ge \frac{1}{n}\sum_{j=1}^{n}\Phi(f(A_{j})) \quad (0 \le t \le 1).$$

(ii) For any $i = 1, \ldots, n$, the maps

$$t \mapsto f\left(\sum_{j=1}^{n} [(1-t)\omega_1(i,j) + t\omega_2(i,j)]\lambda_j \Phi(A_j)\right) \quad (0 \le t \le 1),$$

as well as the function F_{ω_1,ω_2} , are operator concave. In particular, $F_{B,C}$ is concave on [0,1].

Proof. (i) Since for every t in [0, 1], the map

$$(i,j) \mapsto (1-t)\omega_1(i,j) + t\omega_2(i,j) \quad (1 \le i \le m, 1 \le j \le n)$$

is a weight function, (2.4) follows from (2.2). By taking m = n, $\lambda_j = \mu_i = 1/n$, $\omega_1(i,j) = nb_{ij}$, $\omega_2(i,j) = nc_{ij}$ in $F_{\omega_1,\omega_2}(t)$, we obtain the second part.

(ii) Let $\eta_1, \eta_2 \ge 0$ with $\eta_1 + \eta_2 = 1$ and let $t_1, t_2 \in [0, 1]$. For every *i* with $1 \le i \le m$, we have

$$\begin{split} f\Big(\sum_{j=1}^{n} [(1 - \eta_{1}t_{1} - \eta_{2}t_{2})\omega_{1}(i,j) + (\eta_{1}t_{1} + \eta_{2}t_{2})\omega_{2}(i,j)]\lambda_{j}\Phi(A_{j})\Big) \\ &= f\Big(\eta_{1}\sum_{j=1}^{n} [(1 - t_{1})\omega_{1}(i,j) + t_{1}\omega_{2}(i,j)]\lambda_{j}\Phi(A_{j})\Big) \\ &+ \eta_{2}\sum_{j=1}^{n} [(1 - t_{2})\omega_{1}(i,j) + t_{2}\omega_{2}(i,j)]\lambda_{j}\Phi(A_{j})\Big) \\ &\geq \eta_{1}f\Big(\sum_{j=1}^{n} [(1 - t_{1})\omega_{1}(i,j) + t_{1}\omega_{2}(i,j)]\lambda_{j}\Phi(A_{j})\Big) \\ &+ \eta_{2}f\Big(\sum_{j=1}^{n} [(1 - t_{2})\omega_{1}(i,j) + t_{2}\omega_{2}(i,j)]\lambda_{j}\Phi(A_{j})\Big) \quad \text{(by concavity of } f) \end{split}$$

which implies (ii). The concavity of $F_{B,C}$ over [0,1] is clear.

By taking $f(t) = -t \log t$ and $\Phi(t) = t$ in (2.3) and by using Theorem 2.10, we obtain the following result:

COROLLARY 2.11 (Refinement of an operator entropy inequality). Assume that A_1, \ldots, A_n are positive self-adjoint invertible operators with spectra in an interval J and $\sum_{j=1}^n A_j = I$. If $B = [b_{ij}]$ and $C = [c_{ij}]$ are $n \times n$ doubly stochastic matrices, then

$$(\log n)I \ge \sum_{i=1}^{n} \left[-\left(\sum_{j=1}^{n} [(1-t)b_{ij} + tc_{ij}]A_j\right) \log\left(\sum_{j=1}^{n} [(1-t)b_{ij} + tc_{ij}]A_j\right) \right]$$
$$\ge -\sum_{j=1}^{n} A_j \log A_j \quad (0 \le t \le 1).$$

Acknowledgements. The authors would like to sincerely thank the anonymous referee for several useful comments improving the paper. The first author was supported by a grant from Ferdowsi University of Mashhad (No. MP90242MOS). The third author would like to thank the Tusi Mathematical Research Group (TMRG).

REFERENCES

[BLP]	N. Bebiano, R. Lemos and J. da Providência, <i>Inequalities for quantum relative</i>	
[BS]	V. P. Belavkin and P. Staszewski, C [*] -algebraic ge	neralization of relative entropy
[CK]	I. Csiszár and J. Körner, Information Theory: (Memory less Systems, Acadomic Pross, New Yor)	1982), 51–58. Coding Theorems for Discrete k 1981
[E]	E. G. Effros, A matrix convexity approach to some celebrated quantum inequal- ities, Proc. Nat. Acad. Sci. USA 106 (2009), 1006–1008.	
[FK]	J. I. Fujii and E. Kamei, <i>Relative operator entropy in noncommutative infor-</i> mation theory, Math. Japonica 34 (1989), 341–348.	
[F1]	T. Furuta, Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators, Linear Algebra Appl. 381 (2004), 219–235.	
[F2]	T. Furuta, Reverse inequalities involving two relative operator entropies and two relative entropies, Linear Algebra Appl. 403 (2005), 24–30.	
[FMPS]	T. Furuta, J. Mićić Hot, J. E. Pečarić and Y. Seo, <i>Mond–Pečarić Method in Operator Inequalities</i> , Element, Zagreb, 2005.	
[KL]	S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statist. 22 (1951), 79–86.	
[LR]	E. H. Lieb and M. B. Ruskai, Proof of the strong subadditivity of quantum- mechanical entropy, J. Math. Phys. 14 (1973), 1938–1941.	
[L]	G. Lindblad, <i>Entropy</i> , <i>information and quantum measurements</i> , Comm. Math. Phys. 33 (1973), 305–322.	
[ME]	N. F. G. Martin and J. W. England, <i>Mathematical Theory of Entropy</i> , Cambridge Univ. Press, 2011 (reprint of the 1981 hardback edition).	
[MMM]	F. Mirzapour, M. S. Moslehian and A. Morassaei, <i>Operator Bellman type in-equalities</i> , Quaest. Math., to appear.	
[M]	M. S. Moslehian, Operator extensions of Hua's inequality, Linear Algebra Appl. 430 (2009), 1131–1139.	
[NU]	M. Nakamura and H. Umegaki, A note on the entropy for operator algebra, Proc. Japan Acad. 37 (1961), 149–154.	
M. S. Mo	slehian	F. Mirzapour, A. Morassaei
Department of Pure Mathematics		Department of Mathematics
Center of Excellence in Analysis on Algebraic Structures Faculty of Scient		Faculty of Sciences
Ferdowsi	University of Mashhad	University of Zanjan
P.U. BOX	1109 01775 Juan	P.U. Box 45195-313 Zanian Jaan
wasimad	91/10, 11an	Zanjan, Iran

E-mail: moslehian@um.ac.ir

moslehian@member.ams.org

E-mail: f.mirza@znu.ac.ir morassaei@znu.ac.ir

Received 7 May 2012; revised 10 August 2012

(5682)