
COLLOQU IUM MATHEMAT ICUM
VOL. 117 2009 NO. 2

MAPPINGS OF DEGREE 5, PART I

BY

M. MACIEJEWSKI and A. PRÓSZYŃSKI (Bydgoszcz)

Abstract. The class of linear (resp. quadratic) mappings over a commutative ring is
determined by a set of equation-type relations. For the class of homogeneous polynomial
mappings of degree m ≥ 3 it is so over a field, and over a ring there exists a smallest
equationally definable class of mappings containing the preceding one. It is proved that
generating relations determining that class can be chosen to be strong relations (that
is, of the same form over all commutative rings) iff m ≤ 5. These relations are already
found for m ≤ 4. The purpose of the present paper is to find the first of two parts
of generating relations (namely, all the 3-covering relations) satisfied by homogeneous
polynomial mappings of degree 5. Moreover, we find some strong (m−2)-relations for any
degree m ≥ 4.

1. Preliminaries. Let R be a commutative ring with 1, and let X,Y
be R-modules. A mapping f : X → Y is called a homogeneous polynomial
mapping of degree m if it is obtained from a form of degree m between X
and Y in the sense of N. Roby [7]. Note that such a form is an ordinary
form (in n variables) if X = Rn and Y = R. Any homogeneous polynomial
mapping f : X → Y of degree m is an m-application, that is, it satisfies the
following conditions:

(A1) f(rx) = rmf(x) for r ∈ R, x ∈ X,
(A2) ∆mf : Xm → Y is a (symmetric) m-linear mapping over R,

where ∆nf : Xn → Y (n = 0, 1, 2, . . .) is defined by the formula

(∆nf)(x1, . . . , xn) =
∑

H⊂[1,n]

(−1)n−|H|f
(∑

i∈H

xi

)
and [1, n] = {1, . . . , n} (see, for example, [1]). If m > 0 then f(0) = 0 and
hence ∆nf can be defined inductively as follows: ∆1f = f and

(∗) (∆n+1f)(x0, . . . , xn) = (∆nf)(x0 + x1, x2, . . . , xn)
− (∆nf)(x0, x2, . . . , xn)− (∆nf)(x1, x2, . . . , xn).
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Moreover, (∆nf)(x1, , . . . , xn) = 0 if xi = 0 for some i and ∆nf is, evidently,
symmetric. It is proved in [3] that anym-application which is a homogeneous
polynomial mapping of degreem is also regular. This means that () = ∆m−1f
satisfies the following regularity condition:

(A) (rx, sy,−)− r(x, sy,−)− s(rx, y,−) + rs(x, y,−) = 0
for r, s ∈ R, x, y ∈ X

where − stands for the remaining m− 3 variables. The condition has some
interesting consequences, listed in the following

Theorem 1 ([3, Proposition 2.5]). If f is a regular m-application on X
then for any ri, r, s ∈ R, xi, x ∈ X the mapping () = ∆m−1f satisfies the
following equalities:

(1) (r1x1, . . . , rm−1xm−1)
=
∑m−1

i=1 r1 . . . r̂i . . . rm−1(x1, . . . , xi−1, rixi, xi+1, . . . , xm−1)
− (m− 2)r1 . . . rm−1(x1, . . . , xm−1),

(2)
∑m−1

i=1 (x1, . . . , xi−1, rxi, xi+1, . . . , xm−1)
− (r2 + (m− 2)r)(x1, . . . , xm−1) = 0,

(3) (rsx,−) = r(sx,−) + s2(rx,−)− rs2(x,−),
(4) (r2x,−) = (r + r2)(rx,−)− r3(x,−),
(5) (r − r2)(sx,−) = (s− s2)(rx,−) + (rs2 − r2s)(x,−).

The functor of regular m-applications on X is represented by ∆m(X),
defined as the R-module generated by elements δm(x), x ∈ X, with relations
meaning that δm : X → ∆m(X) is a regular m-application (that is, f = δ

m

satisfies (A1), (A2) and (A)). Thus any regular m-application f on X has a
unique expression in the form f = f̃ ◦ δm where f̃ is an R-homomorphism.

In order to find all equations satisfied by homogeneous polynomial map-
pings of degree m, we consider the mth divided power Γm(X) of X (see, for
example, [7]), and the following homomorphism:

h
m = h

m(X) : ∆m(X)→ Γm(X), h
m(δm(x)) = x(m).

Finding generators of Ker(hm) allows us to describe generating equations,
called covering relations for the functor Homm

R of homogeneous polynomial
mappings of degree m (see [2]).

Let {x1, . . . , xk} be the standard basis of the module Rk, k = 1, 2, . . . .
Define

Γm,k = Γm,k(R) = R
{
x

(i1)
1 · · ·x(ik)

k ;
∑

ij = m, ij ≥ 1
}
⊂ Γm(Rk),

∆m,k = ∆m,k(R) = R{(r1x1, . . . , rkxk); r1, . . . , rk ∈ R} ⊂ ∆m(Rk),

h
m,k = h

m|
∆

m,k
(R)

: ∆m,k(R)→ Γm,k(R),
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h
m,k(r1x1, . . . , rkxk) =

∑
(i)

(r1x1)(i1) . . . (rkxk)(ik)

=
∑
(i)

ri1
1 . . . rik

k x
(i1)
1 . . . x

(ik)
k

where () = ∆kδ
m and (i) runs over all sequences of positive integers i1, . . . , ik

satisfying i1 + · · ·+ ik = m. Since ((i1, . . . , ik)) := x
(i1)
1 . . . x

(ik)
k form a basis

of Γm,k(R), we can also consider the “coordinate homomorphisms”

Πi1,...,ik : ∆m,k(R)→ R, Πi1,...,ik(r1x1, . . . , rkxk) = ri1
1 . . . rik

k .

Since ∆m is a functor, we can substitute any elements for the base elements
x1, . . . , xk, obtaining an R-homomorphism on ∆m(Rk). In particular, any
permutation of x1, . . . , xk gives us an automorphism of ∆m(Rk), or, conse-
quently, of ∆m,k(R). Another example is the substitution of x1 for xk, which
gives us a homomorphism ∆m,k(R) → ∆m,k−1(R), as follows from (∗) (this
is used in the proof of Theorem 2 below).

Any system of covering relations of the functor Homm
R is composed of

partial systems of so-called k-covering relations (for any k ≥ 1), and these
relations arise from generators of Ker(hm,k). In order to obtain relations from
generators, it suffices to change the meaning of the symbols (r1x1, . . . , rkxk)
as follows: () means now ∆kf instead of ∆kδ

m and x1, . . . , xk become arbi-
trary elements of the domain of f .

It follows from [2] that hm,k is an isomorphism for k = 1 and k ≥ m−1. In
other words, (A1), (A2) and (A) form for any such k a system of k-covering
relations of the functor Homm

R . That system is strong, meaning that it is
of the same form over any base ring R. The only other strong k-covering
systems exist for (m, k) = (4, 2), (5, 3) and (5, 2) (see [2, Main Theorem
6.2]). Such a system is found for (4, 2) in [4], and for (5, 3) it is described in
the present paper. The last case will be considered in the second part of the
paper (in preparation).

Our goal requires investigating Ker(h5,3) or, more generally, Ker(hm,m−2).
We assume that m ≥ 4, so m− 2 ≥ 2. If we denote hm,m−2 by h then

h(r1x1, . . . , rm−2xm−2)

=
m−2∑
i=1

r1 . . . ri−1r
3
i ri+1 . . . rm−2x

(1)
1 . . . x

(1)
i−1x

(3)
i x

(1)
i+1 . . . x

(1)
m−2

+
∑

1≤i<j≤m−2

r1 . . . r
2
i . . . r

2
j . . . rm−2x

(1)
1 . . . x

(2)
i . . . x

(2)
j . . . x

(1)
m−2.
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2. Some useful elements of ∆m,m−2(R). For any r ∈ R, consider the
following elements of ∆m,m−2(R):

〈r〉 := (rx1, x2, . . . , xm−2) + (x1, rx2, . . . , xm−2) + · · ·+ (x1, x2, . . . , rxm−2),
[r] := (rx1, x1, x2, . . . , xm−2) + (x1, rx2, x2, . . . , xm−2) + · · ·

+ (x1, x2, . . . , rxm−2, xm−2)− r2((x1, x1, x2, . . . , xm−2)
+ (x1, x2, x2, . . . , xm−2) + · · ·+ (x1, x2, . . . , xm−2, xm−2))

− 3(r − r2)(x1, x2, . . . , xm−2)

= 〈r + 1〉 − 〈r〉 − 〈1〉 − r2(〈2〉 − 2〈1〉)− 3(r − r2)(x1, x2, . . . , xm−2).

Observe that h(x1, . . . , xm−2) = σ3 + σ2 where

σ3 =
m−2∑
i=1

x
(1)
1 . . . x

(1)
i−1x

(3)
i x

(1)
i+1 . . . x

(1)
m−2,

σ2 =
∑

1≤i<j≤m−2

x
(1)
1 . . . x

(1)
i−1x

(2)
i x

(1)
i+1 . . . x

(1)
j−1x

(2)
j x

(1)
j+1 . . . x

(1)
m−2.

The proof of the following fact is a straightforward calculation.

Lemma 1. The following equalities hold for any r ∈ R:
(1) h(〈r〉) = (r3 + (m− 3)r)σ3 + (2r2 + (m− 4)r)σ2,
(2) h([r]) = (r − r2)σ2,

and (2) means that

(3) Π1,...,3,...,1([r]) = 0, Π1,...,2,...,2,...,1([r]) = r − r2,

where the positions of 3 and 2 can be chosen arbitrarily.

Let P : ∆m,m−2(R)→ R denote any homomorphism of the type Π1,...,3,...,1

−Π1,...,2,...,2,...,1. The above lemma yields

Corollary 1. P ([r]) = r2 − r for any r ∈ R.
The following fact generalizes Proposition 2.2 of [4].

Theorem 2. The submodule [R] = R{[r]; r ∈ R} of ∆m,m−2(R) is iso-
morphic under P to the ideal I(R) = (r2− r; r ∈ R). The inverse homomor-
phism splits P , therefore ∆m,m−2(R) = Ker(P )⊕ [R].

Proof. By the above corollary, P gives an epimorphism of [R] on I(R).
We must check that P is mono on [R]. Assume that

∑
i ai[ri] ∈ Ker(P )

for some ai, ri ∈ R. This means that
∑

i ai(r2
i − ri) = 0, and we define

s =
∑

i air
2
i =

∑
i airi. Consider the element

u =
∑

i

ai(rix1, x2, . . . , xm−1) ∈ ∆m,m−1(R)
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where {x1, . . . , xm−1} is the standard basis of Rm−1. Since hm,m−1 is mono
(see Section 1) and

h
m,m−1(u) =

∑
i

ai(r2
i x

(2)
1 x2 . . . xk + rix1x

(2)
2 . . . xk + rix1x2 . . . x

(2)
m−1)

= s(x(2)
1 x2 . . . xk + x1x

(2)
2 . . . xk + x1x2 . . . x

(2)
m−1)

= h
m,m−1(s(x1, . . . , xm−1))

it follows that u = s(x1, . . . , xm−1). Returning to ∆m,m−2(R) by the substi-
tution xm−1 = x1 we obtain∑

i

ai(rix1, x1, . . . , xm−2) = s(x1, x1, . . . , xm−2).

Symmetric considerations give us also∑
i

ai(x1, . . . , rixj , xj , . . . , xm−2) = s(x1, . . . , xj , xj , . . . , xm−2)

for j = 2, . . . ,m− 2, and therefore∑
i

ai[ri] =
∑

i

ai(rix1, x1, . . . , xm−2) + · · ·+
∑

i

ai(x1, . . . , rixm−2, xm−2)

−
∑

i

air
2
i (x1, x1, . . . , xm−2)− · · · −

∑
i

air
2
i (x1, . . . , xm−2, xm−2)

− 3
∑

i

ai(ri − r2
i )(x1, . . . , xm−2)

= s(x1, x1, . . . , xm−2) + · · ·+ s(x1, . . . , xm−2, xm−2)
− s(x1, x1, . . . , xm−2)− · · · − s(x1, . . . , xm−2, xm−2) = 0.

Corollary 2. For any r, s ∈ R we have

(1) [r + s] = [r] + [s] + rs[2],
(2) [rs] = r[s] + s2[r],
(3) (r2 − r)[s] = (s2 − s)[r],
(4) 2[r] = (r2 − r)[2], [2r] = (2r2 − r)[2],
(5) [r] = [1− r], [0] = [1] = 0, [2] = [−1],
(6) if r2 − r = 2s then [r] = s[2],
(7) if s is invertible then [s−1] = −s−3[s].

For any r ∈ R, let us introduce the following element of ∆m,m−2(R):

S(r) := 〈r〉 − (r3 + (m− 3)r)(x1, x2, . . . , xm−2) + (1− r)[r]
= (rx1, x2, . . . , xm−2)+(x1, rx2, . . . , xm−2)+· · ·+(x1, x2, . . . , rxm−2)

− (r3 + (m− 3)r)(x1, x2, . . . , xm−2) + (1− r)[r].
It follows immediately from Lemma 1 that
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Corollary 3. S(r) ∈ Ker(h).

For m = 4 the element

S(r) = (rx1, x2) + (x1, rx2)− (r3 + r)(x1, x2) + (1− r)[r]
is zero ([4, Lemma 3.2]). In contrast, for m = 5 the element

S(r) = (rx1, x2, x3) + (x1, rx2, x3) + (x1, x2, rx3)− (r3 + 2r)(x1, x2, x3)
+ (1− r)[r]

is, in general, non-zero, because the corresponding relation is not satisfied
by the following regular 5-application f : Z3 → Z2 defined in [5, p. 178]:

f(rx1 + sx2 + tx3) = r
s(s+ 1)

2
t(t+ 1)

2
+ s

r(r + 1)
2

t(t+ 1)
2

+ t
r(r + 1)

2
s(s+ 1)

2

+ rst

(
1 +

r(r + 1)
2

+
s(s+ 1)

2
+
t(t+ 1)

2

)
mod 2.

In fact, (rx1, sx2, tx3) = f(rx1 + sx2 + tx3) gives us (x1, x2, x3) = 1 and
(−x1, x2, x3) = (x1,−x2, x3) = (x1, x2,−x3) = 0, hence

f̃(S(−1)) = (−x1, x2, x3) + (x1,−x2, x3) + (x1, x2,−x3) + (x1, x2, x3) = 1.

Finally, let us introduce the element

C1(r, s) := (rx, sy,−)− r(x, sy,−)− s(rx, y,−) + rs(x, y,−)

of ∆m,m−2(R), which satisfies the following:

Lemma 2.

h(C1(r, s)) = (r − r2)(s− s2)((2, 2, 1, . . . , 1))

= (r − r2)(s− s2)x(2)
1 x

(2)
2 x

(1)
3 . . . x

(1)
m−2.

Proof. Observe that Πi1,i2,...,ik(C1(r, s)) is zero if i1 = 1 or i2 = 1. In the
remaining case, Π2,2,1...,1(C1(r, s)) = (r − r2)(s− s2).

3. The submodule ∆1. Let us consider the submodule

∆1 = ∆1(R) := R{(rx1, x2, . . . , xm−2); r ∈ R} ⊂ ∆m,m−2(R).

Observe that h(rx1, x2, . . . , xm−2) =
∑

(i) r
i1x

(i1)
1 . . . x

(im−2)
m−2 ; then the

conditions ij ≥ 1 and i1 + · · · + im−2 = m give i1 = 1, 2 or 3. Hence we
have only three different coordinate homomorphisms on ∆1. Let Π1,Π2,Π3 :
∆1 → R denote these homomorphisms, that is, compositions of the homo-
morphism h|∆1

with suitable projections:

Πi(rx1, x2, . . . , xm−2) = ri, i = 1, 2, 3.
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In the previous notation we have, for example,

Π1 = Π1,...,1,3|∆1
, Π2 = Π2,2,1,...,1|∆1

, Π3 = Π3,1,...,1|∆1
.

Define Π = Π1, P = Π1 − Π2, Q = Π1 − Π3 and observe that the definition
of P is compatible with the previous notation. Then

Ker(h|∆1) = Ker(Π1) ∩Ker(Π2) ∩Ker(Π3) = Ker(Π) ∩Ker(P ) ∩Ker(Q).

In what follows, we will write x1 = x, and abbreviate (rx1, x2, . . . , xm−2) to
(rx,−), and (rx1, sx1, x2 . . . , xm−2) to (rx, sx,−). Then we have Π, P,Q :
∆1 → R,

Π(rx,−) = r, P (rx,−) = r − r2, Q(rx,−) = r − r3.

Since (rx, sx,−) = ((r + s)x,−)− (rx,−)− (sx,−) we also have

Corollary 4.
(1) Π(rx, sx,−) = 0,
(2) P (rx, sx,−) = −2rs,
(3) Q(rx, sx,−) = −3(r2s+ rs2).

4. Computation of Ker(Q). Consider first the homomorphism Q :
∆1 → R, Q(rx,−) = r−r3. The goal of this section is to prove the following
generalization of [4, Theorem 3.1], using, in fact, the methods of the original
proof.

Theorem 3. The submodule Ker(Q) is generated by elements of the fol-
lowing two types:

(1) (rsx,−)− r(sx,−)− s3(rx,−), r, s ∈ R,
(2) 3(rx,−) + (1− r)(rx, x,−), r ∈ R.

It is easy to compute that the above elements belong to Ker(Q). Con-
versely, observe that Q(Q(u)x,−) = Q(u) − Q(u)3 = (1 − Q(u)2)Q(u) for
u ∈ ∆1. If we define T (u) = (1 − Q(u)2)u − (Q(u)x,−) then the above
gives us T (u) ∈ Ker(Q). Since also T (u) = u for u ∈ Ker(Q) it follows that
Ker(Q) = {T (u); u ∈ ∆1}.

Let ∼ and ≡ denote the congruence relations modulo the elements of the
type (1) and of both types of Theorem 3, respectively. We must prove that
T (u) ≡ 0 for any u ∈ ∆1. First we need some lemmas.

Lemma 3. Q(u)v ∼ Q(v)u for u, v ∈ ∆1.

Proof. Since Q is linear, it suffices to assume that u = (rx,−), v =
(sx,−). Then
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Q(u)v −Q(v)u = (r − r3)(sx,−)− (s− s3)(rx,−)

= (r(sx,−) + s3(rx,−))− (s(rx,−) + r3(sx,−))
∼ (rsx,−)− (srx,−) = 0.

Lemma 4. For any elements r ∈ R and u, v ∈ ∆1 we have

(1) T (ru) ∼ r3T (u),
(2) T (u+ v) ∼ T (u) + T (v).

Proof. (1) Using Lemma 3 we compute that

T (ru)− r3T (u)

= (1− r2Q(u)2)ru− (rQ(u)x,−)− r3(1−Q(u)2)u+ r3(Q(u)x,−)

= ru− r3Q(u)2u− r3u+ r3Q(u)2u− (rQ(u)x,−) + r3(Q(u)x,−)

∼ (r − r3)u−Q(u)(rx,−) = Q(rx,−)u−Q(u)(rx,−) ∼ 0.

(2) First observe that

T (u) + T (v)− T (u+ v)

= ((1−Q(u)2)u− (Q(u)x,−)) + ((1−Q(v)2)v − (Q(v)x,−))

− (1−Q(u+ v)2)(u+ v)− (Q(u+ v)x,−)

= (1−Q(u)2)u+ (1−Q(v)2)v − (1−Q(u)2 −Q(v)2 − 2Q(u)Q(v))(u+ v)
+ (Q(u+ v)x,−)− (Q(u)x,−)− (Q(v)x,−)

= Q(v)2u+Q(u)2v + 2Q(u)Q(v)(u+ v) + (Q(u)x,Q(v)x,−).

Because of (A), Lemma 3 and Corollary 4 we get

(Q(u)x,Q(v)x,−)

= Q(u)(x,Q(v)x,−) +Q(v)(Q(u)x, x,−)−Q(u)Q(v)(x, x,−)
∼ Q(x,Q(v)x,−)u+Q(Q(u)x, x,−)v −Q(u)Q(x, x,−)v

= − 3(Q(v)2 +Q(v))u− 3(Q(u)2 +Q(u))v + 6Q(u)v

∼ − 3(Q(v) + 1)Q(u)v − 3Q(u)2v + 3Q(u)v
= − 3Q(u)(Q(u) +Q(v))v.

On the other hand, we have

Q(v)2u+Q(u)2v + 2Q(u)Q(v)(u+ v)

∼ Q(u)Q(v)v +Q(u)2v + 2Q(u)2v + 2Q(u)Q(v)v = 3Q(u)(Q(u) +Q(v))v

by Lemma 3. This completes the proof.

Lemma 5. For any r ∈ R we have

(a) (x,−) ∼ 0,
(b) (r2x,−) ∼ (r + r3)(rx,−),
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(c) (r3x,−) ∼ (r2 + r4 + r6)(rx,−),
(d) (−x,−) ≡ 0,
(e) (−rx,−) ≡ −(rx,−),
(f) (rx,−rx,−) ≡ 0,
(g) (rx,−r3x,−) ≡ −r4(1− r)(rx, x,−),
(h) ((r − r3)x,−) ≡ (1− r2 − r4 − r6)(rx,−)− r4(1− r)(rx, x,−).

Proof. (a) Put r = s = 1 in element (1) of Theorem 3.
(b) (r2x,−) = (r · rx,−) ∼ r(rx,−) + r3(rx,−) = (r + r3)(rx,−).
(c) We have (r3x,−) = (r2 ·rx,−) ∼ r2(rx,−)+r3(r2x,−) ∼ r2(rx,−)+

r3(r + r3)(rx,−) = (r2 + r4 + r6)(rx,−).
(d) It follows from (a) that (−x, x,−) ∼ −(−x,−). Then putting r = −1

in (2) we obtain (−x,−) ≡ 0.
(e) Putting s = −1 in (1) we get (−rx,−) ∼ r(−x,−) − (rx,−) ≡

−(rx,−) by (d).
(f) (rx,−rx,−) = ((r − r)x,−) − (rx,−) − (−rx,−) ≡ −(rx,−) +

(rx,−) = 0 by (e).
(g) Using Theorem 1(3),(4) and (f) we compute that

(rx,−r3x,−) = (rx, r2 · (−r)x,−)

= r4(rx,−rx,−)− r(rx, r2x,−) + r5(rx, x,−)

≡ −r(rx, (−r)2x,−) + r5(rx, x,−)

= −r((r2 − r)(rx,−rx,−) + r3(rx, x,−)) + r5(rx, x,−)

= −r4(1− r)(rx, x,−).

(h) Using (e), (g) and (c) we get

((r − r3)x,−) = (rx,−) + (−r3x,−) + (rx,−r3x,−)

≡ (rx,−)− (r3x,−)− r4(1− r)(rx, x,−)

≡ (1− r2 − r4 − r6)(rx,−)− r4(1− r)(rx, x,−).

Proof of Theorem 3. Because of Lemma 4, it suffices to check that T (rx,−)
≡ 0 for r ∈ R. Using Lemma 5(h) we compute that

T (rx,−) = (1− (r − r3)2)(rx,−)− ((r − r3)x,−)

≡ (1− r2 + 2r4 − r6)(rx,−)− (1− r2 − r4 − r6)(rx,−)

+ r4(1− r)(rx, x,−) = 3r4(rx,−) + r4(1− r)(rx, x,−) ≡ 0

by (2). This completes the proof.
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5. Submodules Ker(Q) ∩Ker(P ) and Ker(h) ∩∆1. Recall that

Ker(h) ∩∆1 =
3⋂

i=1

Ker(Πi) = Ker(Π) ∩Ker(P ) ∩Ker(Q).

Observe that, for any r, s ∈ R,
Π((rsx,−)− r(sx,−)− s3(rx,−)) = −rs3,

Π(3(rx,−) + (1− r)(rx, x,−)) = 3r,

by Corollary 4. Then, using the element (x,−) ∈ Ker(Q), we can exchange
the generators of Ker(Q) from Theorem 2 in the following way:

Corollary 5. Ker(Q) is generated by the elements

(1′) C2(r, s) := (rsx,−)− r(sx,−)− s3(rx,−) + rs3(x,−), r, s ∈ R,
(2′) C3(r) := 3(rx,−)− 3r(x,−) + (1− r)(rx, x,−), r ∈ R,
(3′) (x,−).

The profit we get is the following: C2(r, s), C3(r) ∈ Ker(Q)∩Ker(Π) and
Π(x,−) = 1.

Corollary 6.
(1) Ker(Q) = (Ker(Q) ∩Ker(Π))⊕R(x,−),
(2) Ker(Q) ∩ Ker(Π) is generated by the elements C2(r, s), C3(r) for

r, s ∈ R.

It is easy to compute that

P (C2(r, s)) = (r − r2)(s2 − s3), P (C3(r)) = r − r2,

hence for any r, s ∈ R the elements C2(r, s)−(s2−s3)C3(r) belong to Ker(P ),
and consequently to Ker(h).

Corollary 7. Ker(Q) is generated by the following elements:

(1) B2(r, s) := C2(r, s)− (s2 − s3)C3(r), r, s ∈ R,
(2) C3(r), r ∈ R,
(3) (x,−)

and B2(r, s) ∈ Ker(h) ∩∆1. In other words,

Ker(Q) = B2 + C3 +R(x,−)

where

B2 = R{B2(r, s); r, s ∈ R} ⊂ Ker(h) ∩∆1, C3 = R{C3(r); r ∈ R}.

It follows from the above that B2(r, s) and C3(r) generate Ker(Q) ∩
Ker(Π). We will show that the elementsB2(r, s) and (x,−) generate Ker(Q)∩
Ker(P ), and the elements B2(r, s) generate Ker(h) ∩ ∆1, that is, Ker(h) ∩
∆1 = B2. First we prove some auxiliary facts.
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Lemma 6. For any r, s ∈ R, we have

(1) 2(rx, sx,−) = 2rs(x, x,−) + (rs2 + r2s− 2rs)(x, x, x,−),
(2) C3(2) = (x, x,−)− (x, x, x,−),
(3) (−rx,−) + (rx,−) = r2C3(2),
(4) C2(r,−1) = (r2 − r)C3(2).

Proof. (1) Theorem 1(5), for r = 2, gives us

2(sx, x,−) = (s2 − s)(2x, x,−) + (4s− 2s2)(x, x,−).

Hence using (A) we obtain

2(rx, sx,−) = 2(r(x, sx,−) + s(rx, x,−)− rs(x, x,−))

= r((s2 − s)(2x, x,−) + (4s− 2s2)(x, x,−))

+ s((r2 − r)(2x, x,−) + (4r − 2r2)(x, x,−))− 2rs(x, x,−)

= (rs2 + r2s− 2rs)(2x, x,−) + (6rs− 2rs2 − 2r2s)(x, x,−)

= (rs2 + r2s− 2rs)(x, x, x,−) + (2rs2 + 2r2s− 4rs)(x, x,−)

+ (6rs− 2rs2 − 2r2s)(x, x,−)

= (rs2 + r2s− 2rs)(x, x, x,−) + 2rs(x, x,−).

(2) We have C3(2) = 3(2x,−) − 3 · 2(x,−) − (2x, x,−) = 3(x, x,−) −
(2(x, x,−) + (x, x, x,−)) = (x, x,−)− (x, x, x,−).

(3) Using (A), (A2), (1) and (2) we compute that

(−rx,−) + (rx,−) = − (−rx, rx,−) = (rx, rx,−) + (−rx, rx, rx,−)

= 2r(rx, x,−)− r2(x, x,−)− r3(x, x, x,−)

= 2r2(x, x,−) + (r3 − r2)(x, x, x,−)− r2(x, x,−)

− r3(x, x, x,−)

= r2((x, x,−)− (x, x, x,−)) = r2C3(2).

(4) Since C2(r,−1) = (−rx,−) − r(−x,−) + (rx,−) − r(x,−) we can
apply (3) to write it as r2C3(2)− rC3(2).

Proposition 1. For any r, s ∈ R we have

(1) C3(r + s) = C3(r) + C3(s) + rsC3(2),
(2) C3(rs)− rC3(s)− s2C3(r) = 3B2(r, s)− (s2 − s3)B2(r,−1).

Proof. (1) Observe that

C3(r + s)− C3(r)− C3(s)
= 3((r + s)x,−)− 3(r + s)(x,−) + (1− (r + s))((r + s)x, x,−)
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− 3(rx,−) + 3r(x,−)− (1− r)(rx, x,−)

− 3(sx,−) + 3s(x,−)− (1− s)(sx, x,−)

= 3(rx, sx,−) + (1− (r + s))((rx, x,−) + (sx, x,−) + (rx, sx, x,−))

− (1− r)(rx, x,−)− (1− s)(sx, x,−)

= 3(rx, sx,−)− r(sx, x,−)− s(rx, x,−) + (1− r − s)(rx, sx, x,−).

Using (A2), Lemma 6 and (A) we find that the above is equal to

2(rx, sx,−) + ((rx, sx,−)− r(sx, x,−)− s(rx, x,−))

+ (rs− r2s− rs2)(x, x, x,−)

= 2rs(x, x,−) + (rs2 + r2s− 2rs)(x, x, x,−)− rs(x, x,−)

+ (rs− r2s− rs2)(x, x, x,−)
= rs(x, x,−)− rs(x, x, x,−) = rsC3(2).

(2) Observe that

C3(rs)− rC3(s)− s3C3(r)− 3C2(r, s)

= 3(rsx,−)− 3rs(x,−) + (1− rs)(rsx, x,−)
− r(3(sx,−)− 3s(x,−) + (1− s)(sx, x,−))

− s3(3(rx,−)− 3r(x,−) + (1− r)(rx, x,−))

− 3((rsx,−)− r(sx,−)− s3(rx,−) + rs3(x,−))

= (1− rs)(rsx, x,−)− r(1− s)(sx, x,−)− (1− r)s3(rx, x,−).

By Theorem 1(3), (5), the above is equal to

(1− rs)(r(sx, x,−) + s2(rx, x−)− rs2(x, x,−)) + (rs− r)(sx, x,−)

+ (rs3 − s3)(rx, x,−)

= s(r − r2)(sx, x,−) + (s2 − s3)(rx, x,−)− (1− rs)rs2(x, x,−)

= s((s− s2)(rx, x,−) + (rs2 − r2s)(x, x,−)) + (s2 − s3)(rx, x,−)

+ (r2s3 − rs2)(x, x,−)

= 2(s2 − s3)(rx, x,−)− (s2 − s3)(r + r2)(x, x,−).

Using Lemma 6(1) and (2) we deduce that the last element is equal to

(s2 − s3)(2r(x, x,−) + (r2 − r)(x, x, x,−))− (s2 − s3)(r + r2)(x, x,−)

= (s2 − s3)(r − r2)((x, x,−)− (x, x, x,−)) = (s2 − s3)(r − r2)C3(2).

Finally, the above and Lemma 6(4) give us



MAPPINGS OF DEGREE 5, PART I 235

C3(rs)− rC3(s)− s2C3(r)

= 3C2(r, s)− (s2 − s3)C3(r)− (s2 − s3)(r2 − r)C3(2)

= 3(C2(r, s)− (s2 − s3)C3(r))− (s2 − s3)(C2(r,−1)− 2C3(r))

= 3B2(r, s)− (s2 − s3)B2(r,−1).

We combine the above fact with the following one, which is the main
result of [6]:

Theorem 4. Let C(R) be the R-module generated by the elements c(r),
r ∈ R, with relations

(1) c(r + s) = c(r) + c(s) + rsc(2), r, s ∈ R,
(2) c(rs) = rc(s) + s2c(r), r, s ∈ R.

Then there exists an R-isomorphism p : C(R) → I(R) such that p(c(r)) =
r − r2 for r ∈ R.

This gives us a key result of our investigation, similar to Theorem 2.

Corollary 8. The homomorphism induced by P ,

P : ∆1/B2 → R, P ((rx,−) +B2) = r − r2,

is a monomorphism on the submodule C3 generated by the elements C3(r)
+B2, r ∈ R, and therefore C3 ∩Ker(P ) ⊂ B2.

Proof. Since B2 = R{B2(r, s); r, s ∈ R} ⊂ Ker(P ) the induced homo-
morphism P does exist. By Proposition 1, the elements C3(r) + B2 satisfy
relations (1) and (2) of Theorem 4. Hence there exists a homomorphism
i : C(R)→ C3 such that i(c(r)) = C3(r) +B2. Then P |C3

◦ i = p. Since i is
epi and p is mono, it follows that P |C3

is mono.

We now prove the main result of this section.

Theorem 5. The following equalities hold true:

(1) Ker(Q) ∩Ker(P ) = B2 ⊕R(x,−),
(2) Ker(h) ∩∆1 = B2,

where B2 is the submodule generated by the elements B2(r, s), r, s ∈ R. In
particular ,

(3) Ker(Q) ∩Ker(P ) = (Ker(h) ∩∆1)⊕R(x,−).

Proof. If v ∈ Ker(Q) ∩ Ker(P ) then, by Corollary 7, we can write v =
b+

∑
i aiC3(ri) + r(x,−) where b ∈ B2 and ai, ri, r ∈ R. Since v, b, (x,−) ∈

Ker(P ) it follows that
∑

i aiC3(ri) is in Ker(P ), and hence belongs to B2

by Corollary 8. Hence v ∈ B2 + R(x,−). If, moreover, v ∈ Ker(h), then
v = b + r(x,−) where b ∈ B2 and r ∈ R; but 0 = Π(v) = r, so v = b ∈ B2.
The same argument for v = 0 shows that B2 and R(x,−) form a direct
sum.
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6. The case of degree 4. The above result lets us give a short proof of
the main theorem of [4]. This section can also be regarded as an introduction
to the much more complicated case of degree 5.

Let m = 4 and let {x, y} be the standard basis of R2. Then the homo-
morphism h : ∆4,2(R)→ Γ 4,2(R) is defined by the formula

h(rx, sy) = r3s((3, 1)) + r2s2((2, 2)) + rs3((1, 3))

where ((i, j)) = x(i)y(j). The notation Π = Π1,3, P = Π1,3 − Π2,2, Q =
Π1,3−Π3,1 is compatible with other similar notations in the paper. Moreover,

Π(rx, sy) = rs3, P (rx, sy) = rs3 − r2s2, Q(rx, sy) = rs3 − r3s

and

Ker(h) = Ker(Π3,1) ∩Ker(Π1,3) ∩Ker(Π2,2)
= Ker(Π) ∩Ker(P ) ∩Ker(Q).

For any r, s ∈ R, we have the following elements:

C1(r, s) = (rx, sy)− r(x, sy)− s(rx, y) + rs(x, y),

C2(r, s) = (rsx, y)− r(sx, y)− s3(rx, y) + rs3(x, y),
C3(r) = 3(rx, y)− 3r(x, y) + (1− r)(rx, x, y),

[r] = (rx, x, y) + (x, ry, y)− r2((x, x, y) + (x, y, y))− 3(r − r2)(x, y).

Recall that
h(C1(r, s)) = (r − r2)(s− s2)((2, 2))

for r, s ∈ R by Lemma 2. Moreover,

h([r]) = (r − r2)σ2 = (r − r2)((2, 2))

by Lemma 1(2) and hence Π([r]) = Q([r]) = 0 and P ([r]) = r2 − r.

Lemma 7. h(C3(r)) = (r2 − r)((2, 2)) for r ∈ R.

Proof. Since C3(r) ∈ Ker(Q) ∩ Ker(Π) = Ker(Π1,3) ∩ Ker(Π3,1), and
P (C3(r)) = r − r2, it follows that Π2,2(C3(r)) = r2 − r.

The above and Corollary 7 give us

Corollary 9. For any r, s ∈ R the elements

(1) C1(r, s) + (s− s2)C3(r)
= (rx, sy)− r(x, sy)− s(rx, y) + rs(x, y) + (s− s2)C3(r),

(2) C2(r, s)− (s2 − s3)C3(r)
= (rsx, y)− r(sx, y)− s3(rx, y) + rs3(x, y)− (s2 − s3)C3(r),

(3) C3(r) + [r]

belong to Ker(h).
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We prove that the submodule K generated by the above elements is
equal to Ker(h). Recall that ∆1 = R{(rx, y); r ∈ R}; by symmetry we
define ∆2 = R{(x, ry); r ∈ R}. Note that (as pointed out in Section 2)

S(r) = (rx, y) + (x, ry)− (r3 + r)(x, y) + (1− r)[r] = 0.

Lemma 8.

∆4,2(R) = ∆1 + ∆2 +K + [R] = ∆1 +K + [R],
Ker(Q) ⊂ K + [R] +R(x, y).

Proof. Using elements (1) and (3) of Corollary 9 we find that any gener-
ator (rx, sy) of ∆4,2(R) can be written modulo K as a linear combination of
(rx, y), (x, sy), (x, y) and [r]. Moreover, (x, sy) ∈ ∆1 + [R] because S(s) = 0.
This proves the required presentations of ∆4,2(R). Let now v ∈ Ker(Q). Then
v = v1 + k+ r where v1 ∈ ∆1, k ∈ K, r ∈ [R]. Since k, r ∈ Ker(Q) it follows
that v1 ∈ Ker(Q)∩∆1. Then Corollary 7 shows that v1 ∈ K +C3 +R(x, y).
Using (3) of Corollary 9 we conclude that v1, and consequently v, belongs
to K + [R] +R(x, y).

Theorem 6 ([4, Corollary 4.3]). Ker(h) = K, that is, Ker(h) is gener-
ated by the elements

(1) C1(r, s) + (s− s2)C3(r),
(2) C2(r, s)− (s2 − s3)C3(r),
(3) C3(r) + [r],

where r, s ∈ R, or , equivalently , by the following elements of [4]:

(1′) C1(r, s)− (s− s2)[r],
(2′) C2(r, s) + (s2 − s3)[r],
(3′) C3(r) + [r].

Proof. As we know, K ⊂ Ker(h). We prove that Ker(h) ⊂ K. Let v ∈
Ker(h). Then obviously v ∈ Ker(Q), and therefore Lemma 8 gives us v =
k + r + r(x, y) where k ∈ K, r ∈ [R] and r ∈ R. Since Π(v) = Π(r) = 0 and
Π(x, y) = 1 we obtain r = 0, and hence v = k + r. Moreover, the equalities
P (v) = P (k) = 0 give us r ∈ Ker(P ) ∩ [R]. Observe that P is of the type
Π1,...3,...1 − Π1,...,2,...,2...,1, therefore P |[R] is mono by Theorem 2, and hence
Ker(P ) ∩ [R] = 0. This gives r = 0, and consequently v = k ∈ K.

7. The case of degree 5. Let m = 5 and let {x, y, z} be the standard
basis of R3. The homomorphism h : ∆5,3(R) → Γ 5,3(R) is defined by the
formula

h(rx, sy, tz) = r3st((3, 1, 1)) + rs3t((1, 3, 1)) + rst3((1, 1, 3))

+ r2s2t((2, 2, 1)) + r2st2((2, 1, 2)) + rs2t2((1, 2, 2))



238 M. MACIEJEWSKI AND A. PRÓSZYŃSKI

where ((i, j, k)) = x(i)y(j)z(k). Let us also define

Π = Π1,1,3, P = Π1,1,3 −Π2,2,1,

P1 = Π1,2,2 −Π2,2,1, P2 = Π2,1,2 −Π2,2,1,

Q1 = Π1,1,3 −Π3,1,1, Q2 = Π1,1,3 −Π1,3,1.

Thus

Ker(h) =
⋂

i+j+k=5
i,j,k≥1

Ker(Πi,j,k)

= Ker(Π) ∩Ker(P ) ∩Ker(P1) ∩Ker(P2) ∩Ker(Q1) ∩Ker(Q2)

and

Π(rx, sy, tz) = rst3, P (rx, sy, tz) = rst3 − r2s2t,

P1(rx, sy, tz) = rs2t2 − r2s2t, P2(rx, sy, tz) = r2st2 − r2s2t,

Q1(rx, sy, tz) = rst3 − r3st, Q2(rx, sy, tz) = rst3 − rs3t.

For any r, s, t ∈ R define the elements

B(r, s, t) = (rx, sy, tz)− r(x, sy, tz)− s(rx, y, tz)− t(rx, sy, z)
+ rs(x, y, tz) + rt(x, sy, z) + st(rx, y, z)− rst(x, y, z),

C ′1(r, s) = (x, ry, sz)− r(x, y, sz)− s(x, ry, z) + rs(x, y, z).

We also have the elements

C3(r) = 3(rx, y, z)− 3r(x, y, z) + (1− r)(rx, x, y, z).

Lemma 9.
(1) B(r, s, t) ∈ Ker(h).
(2) The expression B(r, s, t) is additive with respect to r, s and t.

Proof. (1) By symmetry, it suffices to observe that

Π3,1,1(B(r, s, t)) = r3st− r(st)− s(r3t)− t(r3s)

+ (rs)t+ (rt)s+ (st)r3 − rst = 0,

Π2,2,1(B(r, s, t)) = r2s2t− r(s2t)− s(r2t)− t(r2s2)

+ (rs)t+ (rt)s2 + (st)r2 − rst = 0.

(2) It is easy to check that

B(r + r′, s, t)−B(r, s, t)−B(r′, s, t)
= (rx, r′x, sy, tz)− s(rx, r′x, y, tz)− t(rx, r′x, sy, z) + st(rx, r′x, y, z),

and this is zero by the regularity condition (A). The rest follows by symme-
try.
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Lemma 10.

h(C ′1(r, s)) = (r − r2)(s− s2)((1, 2, 2)), r, s ∈ R,
h(C3(r)) = (r2 − r)(((2, 1, 2)) + ((2, 2, 1))), r ∈ R.

Proof. The first equality follows from a symmetric version of Lemma 2.
Recall that, in the notation of Section 5, we have Q(C3(r)) = Π(C3(r)) = 0
and P (C3(r)) = r − r2. This means that

Π1,1,3(C3(r)) = Π1,3,1(C3(r)) = Π1,2,2(C3(r)) = Π3,1,1(C3(r)) = 0,

Π2,1,2(C3(r)) = Π2,2,1(C3(r)) = r2 − r.

Hence h(C3(r)) = (r2 − r)(((2, 1, 2)) + ((2, 2, 1))).

Recall that for any r ∈ R we have an element

[r] = (rx, x, y, z) + (x, ry, y, z) + (x, y, rz, z)

− r2((x, x, y, z) + (x, y, y, z) + (x, y, z, z))− 3(r − r2)(x, y, z).

Since

h([r]) = (r − r2)σ2 = (r − r2)(((1, 2, 2)) + ((2, 1, 2)) + ((2, 2, 1)))

it follows that
h(C3(r) + [r]) = (r − r2)((1, 2, 2)).

Consequently, we have

Corollary 10. C ′1(r, s)− (s− s2)(C3(r) + [r]) ∈ Ker(h) for r, s ∈ R.

Let us introduce the following notation:

C2,3
1 (r, s) = C ′1(r, s) = (x, ry, sz)− r(x, y, sz)− s(x, ry, z) + rs(x, y, z),

C1,3
1 (r, s) = (rx, y, sz)− r(x, y, sz)− s(rx, y, z) + rs(x, y, z),

C1,2
1 (r, s) = C1(r, s) = (rx, sy, z)− r(x, sy, z)− s(rx, y, z) + rs(x, y, z),

C1
2 (r, s) = C2(r, s) = (rsx, y, z)− r(sx, y, z)− s3(rx, y, z) + rs3(x, y, z),

C2
2 (r, s) = (x, rsy, z)− r(x, sy, z)− s3(x, ry, z) + rs3(x, y, z),

C3
2 (r, s) = (x, y, rsz)− r(x, y, sz)− s3(x, y, rz) + rs3(x, y, z),

C1
3 (r) = C3(r) = 3(rx, y, z)− 3r(x, y, z) + (1− r)(rx, x, y, z),

C2
3 (r) = 3(x, ry, z)− 3r(x, y, z) + (1− r)(x, ry, y, z),

C3
3 (r) = 3(x, y, rz)− 3r(x, y, z) + (1− r)(x, y, rz, z),

for r, s, t ∈ R. We will prove the following

Theorem 7. Ker(h) = K where K is the submodule generated by the
following elements:
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(1) B(r, s, t),
(2) B2,3

1 (r, s) = C2,3
1 (r, s)− (s− s2)(C1

3 (r) + [r]),
(3) B1,3

1 (r, s) = C1,3
1 (r, s)− (s− s2)(C2

3 (r) + [r]),
(4) B1,2

1 (r, s) = C1,2
1 (r, s)− (s− s2)(C3

3 (r) + [r]),
(5) B1

2(r, s) = C1
2 (r, s)− (s2 − s3)C1

3 (r),
(6) B2

2(r, s) = C2
2 (r, s)− (s2 − s3)C2

3 (r),
(7) S(r) = (rx, y, z)+(x, ry, z)+(x, y, rz)−(r3 +2r)(x, y, z)+(1−r)[r],

where r, s, t ∈ R.
Recall that ∆1 = R{(rx, y, z); r ∈ R}. By symmetry we define ∆2 =

R{(x, ry, z); r ∈ R}, ∆3 = R{(x, y, rz); r ∈ R}.
Lemma 11.

∆5,3(R) = ∆1 + ∆2 + ∆3 +K + [R] = ∆1 + ∆2 +K + [R].

Proof. Consider a generator (rx, sy, tz) of ∆5,3(R). Using B(r, s, t) we
can write that element modulo K as a linear combination of elements of the
types (rx, sy, z), (rx, y, tz), (x, sy, tz). Using (2), (3) and (4) of Theorem 7
we can write these elements modulo K as linear combinations of elements of
the types (rx, y, z), (x, sy, z), (x, y, tz), Ci

3(r) and [r]. Since Ci
3(r) ∈ ∆i, this

gives the first equality. Then the second follows from (7).

Let
K0 = Ker(P1) ∩Ker(P2) ∩Ker(Q1) ∩Ker(Q2).

Then Ker(h) = K0 ∩Ker(P ) ∩Ker(Π).

Lemma 12. K0 ∩ (∆1 + ∆2) = K0 ∩∆1 +K0 ∩∆2.

Proof. First observe that P2|∆1
= Q2|∆1

= 0, P1|∆2
= Q1|∆2

= 0. Let
v ∈ K0 ∩ (∆1 + ∆2) and v = v1 + v2 where v1 ∈ ∆1, v2 ∈ ∆2. Since
P1(v) = 0 = P1(v2) we also have P1(v1) = 0, and P2(v) = 0 = P2(v1) gives
us P2(v2) = 0. Similar considerations show that Q1(v1) = Q2(v2) = 0, hence
v1, v2 ∈ K0, and finally v ∈ K0 ∩ ∆1 + K0 ∩ ∆2. The inverse inclusion is
evident.

Observe that all the generators of K belong to Ker(h), and consequently
K ⊂ Ker(h) ⊂ K0. Moreover,

Lemma 13. [R] ⊂ K0.

Proof. By Lemma 1 (2) we have

Π1,2,2([r]) = Π2,1,2([r]) = Π2,2,1([r]) = r − r2,

Π1,1,3([r]) = Π1,3,1([r]) = Π3,1,1([r]) = 0,

and hence P1([r]) = P2([r]) = Q1([r]) = Q1([r]) = 0.

Proposition 2. K0 ⊂ K + [R] +R(x, y, z).
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Proof. Let v ∈ K0. Then Lemma 11 gives v = v1 + v2 + k + r where
v1 ∈ ∆1, v2 ∈ ∆2, k ∈ K, r ∈ [R]. Since v, k, r ∈ K0 we get v1 + v2 ∈ K0,
and hence v1, v2 ∈ K0 by Lemma 12. Therefore vi ∈ ∆i ∩K0, i = 1, 2.

First consider ∆1 ∩ K0. We have P2|∆1
= Q2|∆1

= 0 and, in the pre-
vious notation (Section 3), P1|∆1

= P , Q1|∆1
= Q. Hence ∆1 ∩ K0 is

the submodule Ker(P ) ∩ Ker(Q) considered in Section 3, and then Theo-
rem 5(1) shows that ∆1 ∩ K0 = B2 ⊕ R(x, y, z) ⊂ K + R(x, y, z). There-
fore v1 ∈ K + R(x, y, z) and, by symmetry, v2 ∈ K + R(x, y, z). Hence
v ∈ K + [R] +R(x, y, z).

Proof of Theorem 7. It suffices to prove that Ker(h) ⊂ K. Let v ∈
Ker(h). Then v ∈ K0, and, by Proposition 2, v = k + r + r(x, y, z) where
k ∈ K ⊂ Ker(h), r ∈ [R] and r ∈ R. Since Π(v) = Π(k) = Π(r) = 0 and
Π(x, y, z) = 1 it follows that r = 0. Then r ∈ Ker(h)∩[R] ⊂ Ker(P )∩[R]. The
homomorphism P is of the type Π1,...,3,...,1−Π1,...,2,...,2,...,1, and so Theorem 2
shows that the restriction P |[R] is mono. This means that Ker(P )∩ [R] = 0,
therefore r = 0. Finally, v = k ∈ K.

Theorem 7 gives us, according to [2] (or Section 1), the main result of
the paper. Observe that the symmetric versions of the following relations
can obviously be omitted.

Theorem 8. The following relations constitute a complete 3-covering
system for the functor Hom5

R : (A1), (A2), (A) and

B(r, s, t) := (rx, sy, tz)− r(x, sy, tz)− s(rx, y, tz)− t(rx, sy, z)(B)
+ rs(x, y, tz) + rt(x, sy, z) + st(x, sy, tz)− rst(x, y, z)

= 0,
B1(r, s) := (x, ry, sz)− r(x, y, sz)− s(x, ry, z) + rs(x, y, z)(B1)

− (s− s2)(C3(r) + [r]) = 0,

B2(r, s) := (rsx, y, z)− r(sx, y, z)− s3(rx, y, z) + rs3(x, y, z)(B2)

− (s2 − s3)C3(r) = 0,

S(r) := (rx, y, z) + (x, ry, z) + (x, y, rz)− (r3 + 2r)(x, y, z)(S)
+ (1− r)[r] = 0

where r, s, t ∈ R, x, y, z are arbitrary elements from the domain of a 5-
application and

C3(r) = 3(rx, y, z)− 3r(x, y, z) + (1− r)(rx, x, y, z),
[r] = (rx, x, y, z) + (x, ry, y, z) + (x, y, rz, z)

− r2((x, x, y, z) + (x, y, y, z) + (x, y, z, z))− 3(r − r2)(x, y, z).
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