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SELECTION PRINCIPLES AND
UPPER SEMICONTINUOUS FUNCTIONS

BY

MASAMI SAKAI (Yokohama)

Abstract. In connection with a conjecture of Scheepers, Bukovský introduced prop-
erties wQN∗ and SSP∗ and asked whether wQN∗ implies SSP∗. We prove it in this paper.
We also give characterizations of properties S1(Γ,Ω) and Sfin(Γ,Ω) in terms of upper
semicontinuous functions.

1. Introduction. In this paper all topological spaces are assumed to
be infinite. We denote by I the closed unit interval [0, 1]. The symbol 0 is
the constant function with the value 0. For real-valued functions fn (n ∈ ω)
on a set X, the symbol fn → 0 means that the sequence {fn}n∈ω converges
pointwise to 0 (i.e. for every x ∈ X the sequence {fn(x)}n∈ω converges to 0).
A real-valued function f on a space X is said to be upper semicontinuous
[4] if for every real number r, the set {x ∈ X : f(x) < r} is open in X.

Definition 1.1 ([5]). A family {An}n∈ω of subsets of a setX is a γ-cover
of X if every point x ∈ X is contained in An for all but finitely many n ∈ ω
and An 6= X for every n ∈ ω. A space X has property S1(Γ,Γ) if for every
sequence {Un}n∈ω of open γ-covers of X, there are Un ∈ Un (n ∈ ω) such
that {Un}n∈ω is a γ-cover of X.

Definition 1.2. A sequence {fn}n∈ω of real-valued functions on a set
X converges quasi-normally to 0 [1] if there is a sequence {εn}n∈ω of pos-
itive real numbers converging to 0 such that for each x ∈ X, |fn(x)| < εn
for all but finitely many n ∈ ω. A space X has property wQN [3] if when-
ever {fn}n∈ω is a sequence of real-valued continuous functions on X such
that fn → 0, the sequence contains a subsequence which converges quasi-
normally to 0. A space X has property SSP (the sequence selection property)
[6] if whenever {fn,m}n,m∈ω is a family of real-valued continuous functions
on X such that for each n ∈ ω, fn,m → 0 (m → ∞), there is a function
ϕ ∈ ωω with fn,ϕ(n) → 0.
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Uniform convergence implies quasi-normal convergence, and quasi-nor-
mal convergence implies pointwise convergence. It is known that properties
wQN and SSP are equivalent (for instance see [2, Theorem 1]). Scheepers [7]
proved that property S1(Γ,Γ) implies property wQN, and conjectured that
for perfectly normal spaces, properties wQN and S1(Γ,Γ) are equivalent. In
connection with this conjecture, Bukovský introduced properties SSP∗ and
wQN∗ below as modifications of SSP and wQN.

Definition 1.3 ([2]). A space X has property wQN∗ if whenever
{fn}n∈ω is a sequence of upper semicontinuous functions from X into I
such that fn → 0, the sequence contains a subsequence which converges
quasi-normally to 0. A space X has property SSP∗ if whenever {fn,m}n,m∈ω

is a family of upper semicontinuous functions from X into I such that for
each n∈ω, fn,m → 0 (m→∞), there is a function ϕ∈ωω with fn,ϕ(n)→ 0.

Bukovský proved:

Theorem 1.4 ([2]).

(1) Property SSP∗ implies property wQN∗,
(2) Property S1(Γ,Γ) is equivalent to property SSP∗.

But it was open whether wQN∗ implies SSP∗ [2, Problem 2]. In the
next section we show that this is indeed the case. In the third section we
give characterizations of properties S1(Γ,Ω) and Sfin(Γ,Ω) in terms of upper
semicontinuous functions.

2. Properties S1(Γ,Γ), SSP∗ and wQN∗

Lemma 2.1. Let {fm}m∈ω be a sequence of real-valued functions on a set
X which converges quasi-normally to 0. Let {δn}n∈ω be a sequence of posi-
tive real numbers converging to 0. Then there is a subsequence {fmn}n∈ω ⊂
{fm}m∈ω such that for every x ∈ X, |fmn(x)| < δn for all but finitely many
n ∈ ω.

Proof. Since {fm}m∈ω converges quasi-normally to 0, there is a sequence
{εm}m∈ω of positive real numbers converging to 0 such that for every x ∈ X,
|fm(x)| < εm for all but finitely many m ∈ ω. For each n ∈ ω take mn ∈ ω
with εmn < δn. Then for every x ∈ X, |fmn(x)| < εmn < δn for all but
finitely many n ∈ ω.

We denote by USCp(X, I) the space of all upper semicontinuous functions
from a space X into I with the topology of pointwise convergence.

Theorem 2.2. Property wQN∗ implies property S1(Γ,Γ).

Proof. For each n ∈ ω, let Un = {Un,m : m ∈ ω} be an open γ-cover
of X. For each n,m ∈ ω, we put Vn,m = U0,m ∩ · · · ∩ Un,m, and let Vn =
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{Vn,m : m ∈ ω}. Each Vn is an open γ-cover of X. We define fm : X → [0, 1]
as follows:

fm(x) =


1 if x ∈ X \ V0,m,
1/(k + 2) if x ∈ Vk,m \ Vk+1,m (k ∈ ω),
0 otherwise.

Then fm ∈ USCp(X, I). Note that fm(x) < 1/(n+ 1) if and only if x ∈ Vn,m.
Since each Vn is a γ-cover of X, fm → 0. By property wQN∗, the se-
quence {fm}m∈ω has a subsequence converging quasi-normally to 0. Apply-
ing Lemma 2.1 to this quasi-normal subsequence and {δn = 1/(n+ 1)}n∈ω,
we obtain a subsequence {fmn}n∈ω ⊂ {fm}m∈ω such that for each x ∈ X,
fmn(x) < δn = 1/(n+ 1) for all but finitely many n ∈ ω. This shows that
{Vn,mn}n∈ω (hence {Un,mn}n∈ω) is a γ-cover of X.

Combining Theorems 2.2 and 1.4, we obtain the following (so Problems 1
and 3 in [2] coincide):

Corollary 2.3. Properties S1(Γ,Γ), SSP∗ and wQN∗ are all equivalent.

3. Properties S1(Γ,Ω) and Sfin(Γ,Ω)

Definition 3.1 ([5]). A family A of subsets of a set X is an ω-cover
of X if every finite subset of X is contained in some member of A and X
is not a member of A. A space X has property S1(Γ,Ω) (resp. Sfin(Γ,Ω)) if
for every sequence {Un}n∈ω of open γ-covers of X, there are Un ∈ Un (resp.
finite subfamilies Vn ⊂ Un) (n ∈ ω) such that {Un}n∈ω (resp.

⋃
n∈ω Vn) is

an ω-cover of X.

Obviously the following implications hold:

S1(Γ,Γ)⇒ S1(Γ,Ω)⇒ Sfin(Γ,Ω).

The following is easy to show, so we omit the proof.

Lemma 3.2. If U is an ω-cover of a set X, then every finite subset of
X is contained in infinitely many members of U .

We denote by [X]<ω the set of all finite subsets of a set X.

Theorem 3.3. The following properties of a space X are equivalent.

(1) Sfin(Γ,Ω),
(2) If {fn,m}n,m∈ω ⊂ USCp(X, I) and for each n ∈ ω, fn,m → 0

(m→∞), then there is ϕ ∈ ωω with 0 ∈ {fn,m : n ∈ ω, m ≤ ϕ(n)}
in USCp(X, I),

(3) If {fm}m∈ω ⊂ USCp(X, I) and fm → 0, then there is a sequence
{εm}m∈ω ⊂ (0, 1) converging to 0 such that for every F ∈ [X]<ω

there is m ∈ ω with max{fm(x) : x ∈ F} < εm.
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Proof. (1)⇒(2). Assume {fn,m}n,m∈ω ⊂ USCp(X, I) and for each n ∈ ω,
fn,m → 0 (m → ∞). For each n,m ∈ ω, let Un,m = {x ∈ X : fn,m(x) <
1/(n+ 1)}. Since each fn,m is upper semicontinuous, Un,m is open in X.
Let Un = {Un,m : m ∈ ω}. If there are infinitely many n ∈ ω with X ∈ Un,
then we can take a sequence {fnj ,mj}j∈ω which converges uniformly to 0.
Therefore we may assume X /∈ Un for every n ∈ ω. Hence each Un is an
open γ-cover of X. Using property Sfin(Γ,Ω), we can take ϕ ∈ ωω such
that U = {Un,m : n ∈ ω, m ≤ ϕ(n)} is an ω-cover of X. Let F ∈ [X]<ω

and let ε > 0. By Lemma 3.2, F is contained in infinitely many mem-
bers of U , hence there are n,m ∈ ω such that F ⊂ Un,m, m ≤ ϕ(n) and
1/(n+ 1) < ε. Then for every x ∈ F , fn,m(x) < 1/(n+ 1) < ε. This shows
0 ∈ {fn,m : n ∈ ω, m ≤ ϕ(n)}.

(2)⇒(3). Assume that {fm}m∈ω ⊂ USCp(X, I) and fm → 0. For each
n,m ∈ ω, let gn,m = min{1, (n + 1)fm}. Then gn,m ∈ USCp(X, I) and
gn,m → 0 (m → ∞). We take ϕ ∈ ωω with 0 ∈ {gn,m : n ∈ ω, m ≤ ϕ(n)}.
We may assume that ϕ is strictly increasing. We define a sequence {εm}m∈ω

⊂ (0, 1) as follows:

εm =
{ 1/2 if m ≤ ϕ(0),

1/(n+ 2) if ϕ(n) < m ≤ ϕ(n+ 1) (n ∈ ω).

Note that {εm}m∈ω is decreasing and εϕ(n) = 1/(n+ 1) (n ≥ 1). Let
F ∈ [X]<ω. Take gn,m such that m ≤ ϕ(n) and max{gn,m(x) : x ∈ F} < 1.
Then max{fm(x) : x ∈ F} < 1/(n+ 1) = εϕ(n) ≤ εm.

(3)⇒(1). This can be proved by similar arguments to the proof of The-
orem 2.2. For each n ∈ ω, let Un = {Un,m : m ∈ ω} be an open γ-
cover of X. For each n,m ∈ ω, we put Vn,m = U0,m ∩ · · · ∩ Un,m and
let Vn = {Vn,m : m ∈ ω}. Each Vn is an open γ-cover of X. We define
fm : X → [0, 1] as follows:

fm(x) =


1 if x ∈ X \ V0,m,

1/(k + 2) if x ∈ Vk,m \ Vk+1,m (k ∈ ω),

0 otherwise.

Then fm ∈ USCp(X, I) and fm → 0. We take a sequence {εm}m∈ω ⊂ (0, 1)
converging to 0 such that for every F ∈ [X]<ω there is m ∈ ω with
max{fm(x) : x ∈ F} < εm. Note that 1/(n+ 2) < εm ≤ 1/(n+ 1) im-
plies f−1

m ([0, εm)) = Vn,m. For each n ∈ ω, let

V ′n = {Vn,m : m ∈ ω, 1/(n+ 2) < εm ≤ 1/(n+ 1)}.

Since {εm}m∈ω converges to 0, each V ′n is a finite subfamily of Vn. We
observe that

⋃
n∈ω V ′n is an ω-cover of X. Let F ∈ [X]<ω. Then there is
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m ∈ ω with max{fm(x) : x ∈ F} < εm. Take n ∈ ω with 1/(n+ 2)
< εm ≤ 1/(n+ 1). Then F ⊂ Vn,m ∈ V ′n. Consequently,

⋃
n∈ω{Un,m :

m ∈ ω, 1/(n+ 2) < εm ≤ 1/(n+ 1)} is an ω-cover of X.

Theorem 3.4. The following properties of a space X are equivalent.

(1) S1(Γ,Ω).
(2) If {fn,m}n,m∈ω ⊂ USCp(X, I) and for each n ∈ ω, fn,m → 0

(m → ∞), then there is ϕ ∈ ωω with 0 ∈ {fn,ϕ(n) : n ∈ ω} in
USCp(X, I).

(3) If {fm}m∈ω ⊂ USCp(X, I), fm → 0 and {εm}m∈ω ⊂ (0, 1) is a
convergent sequence to 0, then there is ϕ ∈ ωω such that for every
F ∈ [X]<ω there is m ∈ ω with max{fϕ(m)(x) : x ∈ F} < εm.

Proof. (1)⇒(2). Assume {fn,m}n,m∈ω ⊂ USCp(X, I) and for each n ∈ ω,
fn,m → 0 (m → ∞). For each n,m ∈ ω, let Un,m = {x ∈ X : fn,m(x) <
1/(n+ 1)}. Since each fn,m is upper semicontinuous, Un,m is open in X.
Let Un = {Un,m : m ∈ ω}. By the same argument as in the proof of
Theorem 3.3, we may assume that each Un is an open γ-cover of X. Us-
ing property S1(Γ,Ω), we take ϕ ∈ ωω such that U = {Un,ϕ(n) : n ∈ ω}
is an ω-cover of X. Let F ∈ [X]<ω and let ε > 0. By Lemma 3.2,
there is n ∈ ω such that F ⊂ Un,ϕ(n) and 1/(n+ 1) < ε. This shows
0 ∈ {fn,ϕ(n) : n ∈ ω}.

(2)⇒(3). Assume {fm}m∈ω ⊂ USCp(X, I), fm → 0 and let {εm}m∈ω

⊂ (0, 1) be a convergent sequence to 0. For each n,m ∈ ω, let gn,m =
min{1, (1/εn)fm}. Then gn,m ∈ USCp(X, I) and gn,m → 0 (m → ∞). We
take ϕ ∈ ωω with 0 ∈ {gn,ϕ(n) : n ∈ ω}. Let F ∈ [X]<ω. Take gm,ϕ(m) with
max{gm,ϕ(m)(x) : x ∈ F} < 1. Then max{fϕ(m)(x) : x ∈ F} < εm.

(3)⇒(1). This can also be proved by similar arguments to the proof
of Theorem 2.2. For each n ∈ ω, let Un = {Un,m : m ∈ ω} be an open
γ-cover of X. For each n,m ∈ ω, we put Vn,m = U0,m ∩ · · · ∩ Un,m and
let Vn = {Vn,m : m ∈ ω}. Each Vn is an open γ-cover of X. We define
fm : X → [0, 1] as follows:

fm(x) =


1 if x ∈ X \ V0,m,
1/(k + 2) if x ∈ Vk,m \ Vk+1,m (k ∈ ω),
0 otherwise.

Then fm ∈ USCp(X, I) and fm → 0. For the sequences {fm}m∈ω and
{ε0 = 1/2, εm = 1/(m+ 1)}m≥1, there is ϕ ∈ ωω such that for every
F ∈ [X]<ω there is m ∈ ω with max{fϕ(m)(x) : x ∈ F} < εm. Note that
the condition max{fϕ(m)(x) : x ∈ F} < εm implies F ⊂ Vm,ϕ(m). Therefore
{Vn,ϕ(n) : n ∈ ω} (hence {Un,ϕ(n) : n ∈ ω}) is an ω-cover of X.
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