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Semigroups of I-type arose in the study of Sklyanin algebras [11, 12, 5,
13], a class of algebras related to an elliptic curve which allow a presentation
by a set of non-commuting generators x1, . . . , xn with

(
n
2

)
quadratic relations

xixj = xkxl. Such relations (with extra conditions) define a semigroup of
I-type. The corresponding semigroup ring has nice homological properties
(see [3, Theorem 1.4]). Semigroups of I-type and their quotient groups, also
called groups of I-type, are investigated in [3, 4].

Cycle sets [6] were introduced to study set-theoretic solutions [2] of the
quantum Yang–Baxter equation. A cycle set is a set X with a binary op-
eration · such that the left multiplication y 7→ x · y is bijective and the
equation

(1) (x · y) · (x · z) = (y · x) · (y · z)

holds for all x, y, z ∈ X. The relation (1) occurred earlier in Bosbach’s
investigations on the positive cone of a lattice-ordered group [1]. Here, (1)
arises for x · y := 1∨ x−1y. In algebraic logic, the equation appears if x · y is
regarded as an implication x→ y (see [14]). For relationships between cycle
sets and other mathematical structures, see [10, 7, 8, 9] and the literature
cited there.

Theorem 1 of [9] states that groups of I-type are equivalent to cycle sets.
However, the result was doubted by the reviewer (1) since our proof was not
complete. In the present note, we prove the missing equation by a simple
geometric argument, and show its equivalence to an important property of
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any group GX of I-type, namely, that the natural map GX → S(X) into the
symmetric group on the generators of GX is a group homomorphism.

Let X be a finite set. A group of I-type is given by a second, not neces-
sarily commutative, group structure GX := (Z(X), ◦) on the free abelian
group Z(X), such that the neutral elements of both groups coincide, and

(2) {x ◦ a | x ∈ X} = {x+ a | x ∈ X}

for all a ∈ Z(X). If we restrict Z(X) to the free abelian monoid N(X), the
monoid (N(X), ◦) is called a semigroup of I-type.

Thus every element a ∈ Z(X) gives rise to a permutation σ(a) of X such
that

(3) σ(a)(x) ◦ a = x+ a

for all x ∈ X. So we have a map

(4) σ : GX → S(X).

In particular, this gives a binary operation on X via

(5) x · y := σ(x)(y).

Now we can state our equivalence result.

Theorem. Every group (Z(X), ◦) of I-type defines a cycle set (X, ·), and
up to isomorphism, this correspondence is bijective.

Proof. Let (Z(X), ◦) be a group of I-type. We regard Z(X) as the set of
vertices of an infinite quiver Q(X) with set of arrows X × Z(X), such that
the arrow (x, a) ∈ X ×Z(X) starts at a and ends at x+ a. The map (4) can
thus be regarded as a colouring of the edges

(6) c : X × Z(X) → X

with c(x, a) := σ(a)(x). For any path

a
e0→ a1 → · · · → an

en→ b

in Q(X), this implies that

(7) b = c(en) ◦ · · · ◦ c(e0) ◦ a.

From (3) and (5), we get the equation

(8) (x · y) ◦ x = (y · x) ◦ y = x+ y

for x, y ∈ X. On the other hand, (2) implies that for different x, y ∈ X, the
equation

(9) p ◦ x = q ◦ y



ADDENDUM 297

has a unique solution (p, q) ∈ X × X. By (8), this solution is (p, q) =
(x · y, y · x). For any a ∈ Z(X), we thus have a mesh

(10)

a
y

��?
??

?
x

�����
��

y ◦ a
y·x����

�
x ◦ a

x·y ��?
??

?

(x+ y) ◦ a

in the quiver Q(X). Now let x, y, z ∈ X with y 6= z be given. Then x·y 6= x·z,
and (10) gives a mesh

x
x·z

��?
??

??
?

x·y
����

��
�

x+ z

(x·z)·(x·y)����
��

�
x+ y

(x·y)·(x·z) ��?
??

??

x+ y + z

in Q(X). Hence x+y+z = ((x·y)·(x·z))◦(x·y)◦x = ((x·y)·(x·z))◦(x+y).
By (3), we have σ(x+ y)(z) ◦ (x+ y) = z + (x+ y). So we get

(11) σ(x+ y)(z) = (x · y) · (x · z) = σ(x · y)σ(x)(z)

for z 6= y, hence for all z ∈ X. By symmetry, this yields (1). So we have
associated a cycle set to any group of I-type. The bijectivity of this corre-
spondence was proved in [9].

Let us briefly sketch how the converse is proved. For a given cycle set
X, there is a natural extension to a cycle set structure on the free abelian
group Z(X) (see [6, Proposition 6]) such that (1) can be replaced by

(12) (a+ b) · c = (a · b) · (a · c)
for all a, b, c ∈ Z(X). Furthermore, the extended cycle set satisfies

(13) x · (y + z) = (x · y) + (x · z)
for all x, y, z ∈ X. The operation · on Z(X) defines a permutation σ(a) on
X via (5) for all a ∈ Z(X) which relates Z(X) to a group of I-type by (3).

Remark. In [9], the proof of (1) for a group of I-type makes use of (13)
without further comment in a chain of equations which all follow from (8).
This creates the impression that (8) might imply (13) too. However, the
above proof strongly suggests that (13) cannot be proved without the finite-
ness assumption on X.

Note that for a group GX of I-type, it is not even clear in advance
whether the map (4) is a group homomorphism, i.e. whether

(14) (x ◦ y) · z = x · (y · z)
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for x, y, z ∈ X. Let us show that (13) and (14) are equivalent by mere use
of (8).

First, we transform (14) into ((x ◦ y) · z) ◦ x ◦ y = (x · (y · z)) ◦ x ◦ y, that
is, (x ◦ y) + z = (x+ y · z) ◦ y. Replacing x by y · x, we get

((y · x) ◦ y) + z = ((y · x) + (y · z)) ◦ y.
The left-hand side of this equation is y+ x+ z = (y · (x+ z)) ◦ y. Thus (14)
becomes equivalent to y · (x+ z) = (y · x) + (y · z), that is, (13).
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