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VARIETIES OF MODULES OVER TUBULAR ALGEBRAS

BY

CHRISTOF GEISS (México, D.F.) and JAN SCHRÖER (Leeds)

Abstract. We classify the irreducible components of varieties of modules over tubular
algebras. Our results are stated in terms of root combinatorics. They can be applied to
understand the varieties of modules over the preprojective algebras of Dynkin type A5

and D4.

1. Introduction and main results. Let k be an algebraically closed
field, and let A be a finitely generated k-algebra. We denote by modA(d)
the affine variety of A-modules with dimension vector d. One fundamental
problem is the classification of irreducible components of modA(d) and their
canonical decomposition. For A a tubular algebra we give a purely combi-
natorial answer to this problem in terms of roots and the Ringel bilinear
form 〈−,−〉, similar to Schofield’s work on representations of quivers [18].
See also [1] and [2] for previous work on this problem.

For irreducible components Ci ⊆ modA(di), 1 ≤ i ≤ t, we consider all
modules of dimension vector d = d1 + . . . + dt which are isomorphic to
M1 ⊕ . . .⊕Mt with the Mi in Ci, and we denote this set by C1 ⊕ . . .⊕ Ct.
The closure C1 ⊕ . . .⊕ Ct is called the direct sum of the Ci and is again
irreducible; however, it is not always an irreducible component. The subset of
indecomposable modules in modA(d) is denoted by indA(d). An irreducible
component C of modA(d) is called indecomposable if C ∩ indA(d) is dense
in C. Each irreducible component C of a variety of modules is a direct
sum of indecomposable components and the direct summands are uniquely
determined up to reordering (see [6]). This direct sum is called the canonical
decomposition of C.

Now let A = kQ/I be a tubular algebra, and let φ be the Coxeter matrix
of A. See [17] for all unexplained notation. For a dimension vector d define

rk(d) = min{i ≥ 1 | dφi = d)},

ql(d) = gcd
{( rk(d)∑

i=1

dφi
)
q

∣∣∣ q ∈ Q0

}
,
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iso(d) =
1

ql(d)

( rk(d)∑

i=1

dφi
)
.

Since A is tubular, we have φi = 1 for some i ≥ 1. Thus rk(d) is well defined.

Let 〈−,−〉 : Zn×Zn → Z be the Ringel form of A, and let q(d) = 〈d,d〉
be the associated quadratic form. A dimension vector is indivisible if the
greatest common divisor of its entries is 1. We call a dimension vector d a
Schur root if one of the following holds:

(i) q(d) = 0 and d is indivisible;

(ii) q(d) = 1 and ql(d) < rk(d).

In the first case, one calls d an isotropic Schur root. Our first result gives
a classification of all indecomposable irreducible components of varieties of
modules over tubular algebras.

Theorem 1.1. Let A be a tubular algebra. The map d 7→ indA(d) defines
a bijection between the Schur roots of A and the indecomposable irreducible
components of varieties of A-modules.

For a Schur root d of a tubular algebra A let C(d) be the corresponding
indecomposable irreducible component of modA(d).

Given irreducible components C1 ⊆ modA(d1) and C2 ⊆ modA(d2)
define

homA(C1, C2) = min{dim HomA(M1,M2) |Mi ∈ Ci},
extjA(C1, C2) = min{dim ExtjA(M1,M2) |Mi ∈ Ci} for j = 1, 2.

Recall that in this situation there is a dense open subset U ⊆ C1×C2 with
dim ExtjA(M1,M2) = extjA(C1, C2) for all (M1,M2) ∈ U . If Ci ⊆ modA(di),
1 ≤ i ≤ t, are irreducible components, then C1 ⊕ . . .⊕ Ct is an irreducible
component of modA(d1 + . . . + dt) if and only if ext1

A(Ci, Cj) = 0 for all
i 6= j (see [6]).

Corollary 1.2. Any irreducible component C of modA(d) is of the
form C = C(d1)⊕ . . .⊕ C(dt) for a unique (up to permutation) family of
Schur roots d1, . . . ,dt with

∑t
i=1 di = d and ext1

A(C(di), C(dj)) = 0 for
all i 6= j. Then

dimC = dim Gl(d)− q(d) +
∑

i6=j
ext2

A(C(di), C(dj)).

Moreover , let h0,h∞ be the isotropic Schur roots corresponding to the “first”,
respectively “last”, tubular family of A. Then for any Schur roots di and
dj with ext1

A(C(di), C(dj)) = 0,

ext2
A(C(di), C(dj)) =

{ 〈di,dj〉 if 〈hs,dj〉 ≤ 0 ≤ 〈hs,di〉 for s ∈ {0,∞},
0 else.
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Thus to compute all irreducible components it is enough to classify the
indecomposable irreducible components and to know when Ext1

A vanishes
generically between them. The following theorem solves this problem.

Theorem 1.3. Let d and e be Schur roots of a tubular algebra A. Then
ext1

A(C(d), C(e)) = 0 if and only if 〈d, e〉 ≥ 0 and at least one of the
following holds:

(i) q(d) = 0 or q(e) = 0;

(ii) iso(d) 6= iso(e) and iso(d) 6= − iso(e);

(iii) 〈d, eφj〉 = 0 for all j;

(iv) 〈d, e〉 > 0;

(v) ql(d) + ql(e) ≤ rk(d) = rk(e);

(vi) 〈d, eφj〉 6= 0 for some j, iso(d) = iso(e) and 〈d, eφi〉 < 0 where
i = min{j ≥ 1 | 〈d, eφj〉 6= 0};

(vii) 〈d, eφj〉 6= 0 for some j, iso(d) = − iso(e) and 〈d, eφi〉 > 0 where
i = min{j ≥ 1 | 〈d, eφj〉 6= 0}.

Our results can be applied to understand the canonical basis of the neg-
ative part of the quantized enveloping algebras of Dynkin type A5 and D4.
The cases A2, A3 and A4 were intensively studied before (see for example [5]).
More precisely, to a Dynkin quiver Q one can associate the preprojective
algebra P (Q). Kashiwara and Saito proved that the canonical basis elements
of the negative part of the corresponding quantized enveloping algebra cor-
respond to the irreducible components of varieties of modules over P (Q). If
Q is of Dynkin type A2, A3 or A4, then P (Q) is representation finite, thus
it is easy to find the indecomposable irreducible components, which play an
important role in the theory.

In case Q is of type A5 or D4, the algebra P (Q) is representation infinite.
In this case, P (Q) has a covering which is in some sense an “iterated tubular
algebra”. This enables us to use our results on tubular algebras and classify
the indecomposable components. Moreover, we can describe all irreducible
components in terms of these irreducible components. This description is
relevant for the understanding of Lusztig cones (see for example [5] for the
case A4). In the cases A5 and D4, we prove that the irreducible components
which do not contain a dense orbit are not generically reduced.

The paper is organized as follows. In Section 2 we recall known results
on tubular algebras and their derived categories, which were described by
Happel and Ringel in [13]. In Sections 3 and 5 we prove Theorems 1.1 and
1.3, respectively. Section 4 contains the proof of Corollary 1.2. The final
Section 6 contains the above-mentioned application.

Acknowledgements. We thank the referee for carefully reading the pa-
per, suggesting improvements in the presentation and pointing out numerous
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inaccuracies. We also thank R. Marsh for several discussions concerning the
application to the nilpotent variety of type A5.

2. Tubular algebras and their derived categories. For an alge-
bra A let mod(A) be the category of finite-dimensional (right) A-modules.
For an A-module M let [M ]A = [M ] be the corresponding element in the
Grothendieck group K0(A) of mod(A). Thus [M ] is the dimension vector
of M .

Let A = kQ/I be a tubular algebra, where Q = (Q0, Q1) is a quiver
with set of vertices Q0 and set of arrows Q1, and let R be a minimal set
of relations which generate the admissible ideal I. We recall some results
on the representation theory of tubular algebras. For general information
on tubular algebras we refer to [17]. For vertices i and j of Q let rij be
the number of relations in R which start in i and end in j. Let n be the
number of vertices of Q. Thus K0(A) is isomorphic to Zn. For an arrow α
in Q let s(α) be its starting vertex and e(α) its end vertex. The Ringel form
〈−,−〉 : Zn × Zn → Z is defined by

〈d, e〉 =
∑

i∈Q0

diei −
∑

α∈Q1

ds(α)ee(α) +
∑

i,j∈Q0

rijdiej .

This is a (not necessarily symmetric) bilinear form. By q(d) = 〈d,d〉 we
denote the corresponding quadratic form.

For a dimension vector d let Gl(d) =
∏
i∈Q0

Gldi(k). This group operates
by conjugation on modA(d) and the orbits O(M) are in 1-1 correspondence
with the isomorphism classes of A-modules with dimension vector d. Define

a(d) = dim Gl(d)− q(d) =
∑

α∈Q1

ds(α)de(α) −
∑

i,j∈Q0

rijdidj.

By Krull’s principal ideal theorem it follows that each irreducible component
of modA(d) has dimension at least a(d) (see [4]).

Dimension vectors of indecomposable A-modules are called roots. If d
is a root with q(d) = 0, then one calls d an isotropic root. Since tubular
algebras have global dimension at most two, we know that

〈[M ], [N ]〉 = dim HomA(M,N)− dim Ext1
A(M,N) + dim Ext2

A(M,N)

for all A-modules M and N (see [3] and [17]). We denote by φ = −C−t
A CA

the Coxeter matrix of A, where CA is the Cartan matrix of A and C−t
A the

inverse of its transpose (see [17, 2.4]). It is known that

〈d, e〉 = dC−t
A et = −〈e,dφ〉 = 〈dφ, eφ〉.

Next, let Db(A) be the derived category of bounded complexes of finite-
dimensional A-modules. As a general reference on derived categories we
use [11]. Note that the Grothendieck group of the triangulated category
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Db(A) can be identified with K0(A). Namely, if

P : . . .→ 0→ Pn → . . .→ Pm → 0→ . . .

is a complex of A-modules, i.e. an object in Db(A), then the dimension
vector [P ] of P is by definition

∑
i∈Z(−1)i[Pi] (see [11] for details). Recall

from [13] the following description of Db(A) for a tubular algebra A of
tubular type T .

(1) Let Q∞ = Q ∪ {∞}. We have the decomposition

Db(A) =
∨

i∈Z
H[i] where H[i] =

∨

q∈Q∞

∨

λ∈P1(k)

Tλ,q[i]

and for each (q, i) ∈ Q∞ × Z we see that (Tλ,q[i])λ∈P1(k) is a tubular family
of type T , and moreover each Tλ,q[i] is a standard tube, and Tλ,q[i + 1]
contains precisely the objects X[1] for X ∈ Tλ,q[i]. Note that the primary
decomposition of Db(A) into degrees comes from the fact that A is piecewise
hereditary in the sense of [12].

(2) Let X,Y ∈ Db(A) be indecomposable with X ∈ Tλ,q[i] and Y ∈
Tµ,r[j]. If HomDb(A)(X,Y ) 6= 0 then one of the following holds:

(i) j = i, r = q, µ = λ;

(ii) j = i, r > q;

(iii) j = i+ 1, r = q, µ = λ;

(iv) j = i+ 1, r < q.

(3) We may view mod(A) as a full subcategory of Db(A), concentrated
in degrees 0 and 1, i.e. each indecomposable A-module corresponds to an
object in H[0] ∪ H[1]. If X and Y are indecomposable A-modules, then
iso([X]) = iso([Y ]) if and only if X ∈ Tλ,q[l] and Y ∈ Tµ,q[l] for some λ and
µ, and some l = 0, 1.

(4) We recall the following facts for algebras of finite global dimension.

(i) There exist globally Auslander–Reiten triangles, and for the cor-
responding translation τ we have [τX] = [X]φ.

(ii) The Ringel form extends to the derived category by

〈[X], [Y ]〉 =
∑

i∈Z
(−1)i dim HomDb(A)(X,Y [i]),

and for A-modules M and N we have

ExtiA(M,N) = HomDb(A)(M,N [i])

for i ≥ 0.

(iii) The Auslander–Reiten formula becomes

HomDb(A)(Y, τX) = DHomDb(A)(X,Y [1]).
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(5) With φm = 1 we get

iso(d) =
rk(d)

m · ql(d)

m∑

i=1

dφi,

an isotropic Schur root for any d ∈ Zn. Thus iso(d1) = iso(d2) implies
iso(d1+d2) = iso(d1). Now, ifX,Y ∈ Db(A) are indecomposable and belong
to the same Auslander–Reiten component ofDb(A) then iso([X]) = iso([Y ]),
thus iso([X]) = iso([X ⊕ Y ]).

We obtain the following direct consequences.

Lemma 2.1. Let A be a tubular algebra, and let X =
⊕

i∈IMi and Y =⊕
j∈J Nj be objects in Db(A) such that Mi ∈ T and Nj ∈ T ′ for all i, j

and some Auslander–Reiten components T and T ′ of Db(A).

If HomDb(A)(X,Y [i]) 6= 0 6= HomDb(A)(X,Y [j]), i < j, then j = i + 1
and T = T ′[i]. In particular , iso([X]) = iso([Y [i]]).

Lemma 2.2. Let A be a tubular algebra. If M and N are indecomposable
A-modules such that M and N , and also M and N [1], lie in different AR-
components of Db(A), then Ext1

A(M,N) = 0 if and only if 〈[M ], [N ]〉 ≥ 0.

Proof. If 〈[M ], [N ]〉 < 0, then Ext1
A(M,N) 6= 0 since

〈[M ], [N ]〉 = dim HomA(M,N)− dim Ext1
A(M,N) + dim Ext2

A(M,N).

Thus assume 〈[M ], [N ]〉 ≥ 0. If Ext1
A(M,N) = HomDb(A)(M,N [1]) 6= 0,

then either HomDb(A)(M,N) 6= 0 or HomDb(A)(M,N [2]) 6= 0. By Lemma 2.1
we see that in the first case M and N , and in the second case M and N [1],
lie in the same AR-component of Db(A), a contradiction.

Lemma 2.3. Let A be a tubular algebra, and let M and N be indecom-
posable A-modules. If iso([M ]) = iso([N ]) or iso([M ]) = − iso([N ]), and
〈[M ], [N ]φj〉 6= 0 for some j ≥ 1, then M and N , or M and N [1], respec-
tively , lie in the same AR-component of Db(A).

Proof. Define X =
⊕rk([M ])

i=1 τ iM and Y =
⊕rk([N ])

j=1 τ jN where τ is the

Auslander–Reiten translation in Db(A). We have iso([M ]) = iso([N ]) or
iso([M ]) = − iso([N ]). Thus the dimension vectors of X and Y are integer
multiples of the indivisible isotropic root iso([M ]). This implies 〈[X], [Y ]〉=0.
We know that

〈[X], [Y ]〉 =
2∑

i=0

(−1)i dim HomDb(A)(X,Y [i]).

Note that

〈[X], [Y ]〉 =
∑

1≤i≤rk([M ])
1≤j≤rk([N ])

〈[τ iM ], [τ jN ]〉
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and
HomDb(A)(X,Y [l]) =

⊕

1≤i≤rk([M ])
1≤j≤rk([N ])

HomDb(A)(τ
iM, τ jN [l])

for all l. Note that τ rk([M ])M=M . We have 〈[M ], [τ jN ]〉=〈[M ], [N ]φj〉 6=0.
So one of the summands in the second of the above formulas is non-zero.
Since 〈[X], [Y ]〉 = 0, there exist i, j such that 〈[τ iM ], [τ jN ]〉 < 0, thus
HomDb(A)(τ

iM, τ jN [1]) 6= 0 and we get HomDb(A)(X,Y [1]) 6= 0. This im-
plies that HomDb(A)(X,Y ) or HomDb(A)(X,Y [2]) must be non-zero. Now
we use Lemma 2.1 to conclude that M and N , or M and N [1], respectively,
lie in the same AR-component of Db(A).

3. Proof of Theorem 1.1. Let A be a tubular algebra, and let M be
an indecomposable A-module. Then Ext2

A(M,M) = 0, and thus we get

q([M ]) = dim EndA(M)− dim Ext1
A(M,M).

Also, either q([M ]) = 0 or q([M ]) = 1 (see [17]). If q([M ]) = 1, then

dimO(M) = dim Gl([M ])− dim EndA(M) = a([M ]) + 1− dim EndA(M).

Thus the following are equivalent:

(1) dimO(M) ≥ a([M ]);
(2) dimO(M) = a([M ]);
(3) EndA(M) = k;
(4) Ext1

A(M,M) = 0;
(5) O(M) is open in modA([M ]);
(6) the closure of O(M) is an irreducible component.

For (4)⇒(5) we use Voigt’s Lemma (see [20, 3.4]). Since q([M ]) = 1, we
know that O(M) = indA([M ]). Moreover, M lies in a tube of rank rk([M ])
in the Auslander–Reiten quiver of Db(A), and the quasi-length of M in
this tube is ql([M ]). Using the mesh category one easily checks that the
above conditions are equivalent to ql([M ]) < rk([M ]). For an illustration of
calculations in the mesh category we refer to [19, Proposition 3.5].

Next assume q([M ]) = 0. Let n be the greatest common divisor of the
entries of [M ], and let r be the rank of the tube of the Auslander–Reiten
quiver of Db(A) in which M is contained. Thus M has quasi-length nr
in this tube. Again by using the mesh category one gets dim EndA(M) =
dim Ext1

A(M,M) = n. Thus

dimO(M) = dim Gl([M ])− n = dim Gl([M ])− q([M ])− n = a([M ])− n.
Now there exists an affine line L in modA([M ]) which intersects almost all,
i.e. all but finitely many, orbits in indA([M ]) (see for example [8]). Thus
there is a morphism

θL : Gl([M ])× L→ modA([M ])
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which is induced by the conjugation action of Gl([M ]) on modA([M ]), and
the image Im(θL) of θL contains almost all orbits in indA([M ]). A simple
fibre dimension argument yields

dim Im(θL) = dim Gl([M ])− n+ 1 = a([M ])− n+ 1.

Furthermore, we know that Im(θL) is irreducible, since Gl([M ])× L is irre-
ducible. Now indA([M ]) is the union of Im(θL) and of finitely many orbits,
say O1, . . . ,Ot. The Oi all have dimension strictly smaller than a([M ]). For
n ≥ 2, the dimension of Im(θL) is also strictly smaller than a([M ]). Thus the
closure indA([M ]) cannot contain an irreducible component of modA([M ]).

An orbit O(N) in modA([N ]) is called maximal if it is not contained in
the closure of another orbit. Observe that the set of maximal orbits is dense
in modA([N ]).

We know that [M ] is of the form nh with h an indivisible isotropic root.
Now assume that O(M) is a maximal orbit in modA([M ]). Thus M is iso-
morphic to

⊕t
i=1Mi with Mi indecomposable and Ext1

A(Mi,Mj) = 0 for all
i 6= j. For convenience, we repeat an observation from [1, Proposition 5.4]:
We have

0 = 〈[M ], [M ]〉 =
∑

1≤i,j≤t
〈[Mi], [Mj]〉 =

t∑

i=1

〈[Mi], [M ]〉.

Because of the vanishing of Ext1
A all summands in the above equation must

be 0. Since A is a tubular algebra, isotropic roots e and f with 〈e, f〉 = 0
are integer multiples of each other. Thus [Mi] = nih for some ni with∑t

i=1 ni = n. For n = 1 we deduce that each maximal orbit must be the

orbit of an indecomposable module. Thus modA([M ]) = indA([M ]). Further-
more, indA([M ])\ Im(θL) is a finite union of orbits which all have dimension
strictly smaller than a([M ]). This implies that they must be contained in
the closure of Im(θL). Thus indA([M ]) is an irreducible component. This
finishes the proof.

4. Proof of Corollary 1.2. Consider the natural map

ϕ : Gl(d)× C(d1)× . . .× C(dt)→ modA(d).

It is easy to determine the dimensions of its fibres, and thus from Chevalley’s
theorem we get

dim Im(ϕ) = dim Gl(d) +
t∑

i=1

dimC(di)

−
( t∑

i=1

dim Gl(di) +
∑

i6=j
homA(C(di), C(dj))

)
.
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Since the di are Schur roots, we have

q(di) = dim Gl(di)− dimC(di).

This follows from the proof of Theorem 1.1. Next, note that gl.dimA = 2
implies, for any irreducible component Ci ⊆ modA(ei) and any dimension
vectors e1, e2, that

〈e1, e2〉 = homA(C1, C2)− ext1
A(C1, C2) + ext2

A(C1, C2).

For an irreducible component C ⊆ modA(d) we get

q(d) = homA(C,C)− ext1
A(C,C) + ext2

A(C,C)

=

t∑

i=1

q(di) +
∑

i6=j
homA(C(di), C(dj)) +

∑

i6=j
ext2

A(C(di), C(dj))

where the second equality holds if C = C(d1)⊕ . . .⊕ C(dt). Recall that
this implies ext1

A(C(di), C(dj)) = 0 for all i 6= j. Since in this case Im(ϕ) is
dense in C, from the above equalities we get

dimC = dim Gl(d)−
t∑

i=1

q(di)−
∑

i6=j
homA(C(di), C(dj))

= dim Gl(d)− q(d) +
∑

i6=j
ext2

A(C(di), C(dj)).

With the notation from [17, 5.2], the following hold:

M ∈ P0 ∨ T0 ⇒ proj.dimM ≤ 1,

M ∈ Q0 ∩ P∞ ⇒ proj.dimM = inj.dimM = 1,

M ∈ T∞ ∨Q∞ ⇒ inj.dimM ≤ 1.

Let X and Y be indecomposable A-modules. If Ext2
A(X,Y ) 6= 0, then

X ∈ T∞∨Q∞ and Y ∈ P0∨T0. On the other hand, if Ext1
A(X,Y ) = 0, then

HomA(X,Y ) = 0 or Ext2
A(X,Y ) = 0, since A is quasi-tilted, and thus

dim Ext2
A(X,Y ) =

{
〈[X], [Y ]〉 if 〈hi, [X]〉 ≤ 0 ≤ 〈hi, [Y ]〉 for i ∈ {0,∞},
0 else,

by the table from [17, 5.2(1)].

For Schur roots di, 1 ≤ i ≤ t, with ext1
A(C(di), C(dj)) = 0 for all i 6= j

this implies our formula for ext2
A.

5. Proof of Theorem 1.3. Let M and N be indecomposable A-mod-
ules with d = [M ] and e = [N ] Schur roots. Assume that 〈[M ], [N ]〉 ≥ 0.

If M and N , and also M and N [1], lie in different components of the
Auslander–Reiten quiver of Db(A), then Lemma 2.2 yields Ext1

A(M,N) = 0.
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This implies ext1
A(C([M ]), C([N ])) = 0. We will use this observation several

times in our proof.

Assume now that condition (i) in Theorem 1.3 holds. Thus q([M ]) = 0
or q([N ]) = 0. Recall that indA(f) contains modules from infinitely many
Auslander–Reiten components of Db(A) provided q(f) = 0. Thus we can
assume that M and N , and also M and N [1], lie in different components.
This implies ext1

A(C([M ]), C([N ])) = 0.

Thus, from now on we can assume that q([M ]) = q([N ]) = 1, and that
either M and N or M and N [1] lie in the same Auslander–Reiten component
of Db(A). Note that this implies rk([M ]) = rk([N ]).

Assume that (ii) holds. Thus we have iso([M ]) 6= iso([N ]) and iso([M ]) 6=
− iso([N ]). By Lemma 2.1 we deduce that M and N , and also M and N [1],
lie in different Auslander–Reiten components of Db(A). The same follows if
(iii) holds. Namely, since by assumption M and N , or M and N [1], lie in the
same AR-component, we can use the mesh category to get 〈[M ], [N ]φj〉 6= 0
for some j. Here we use the fact that [M ]φi = [τ iM ] for all indecomposable
A-modules M and all i. For details we refer to the explanations below; see
also Figure 1. In both cases we get a contradiction.

Now assume that (iv) holds. Since [M ] and [N ] are Schur roots, the
quasi-lengths of M , N and N [1] are strictly smaller than rk([M ]) = rk([N ]).
Using the mesh category, we get dim HomDb(A)(M,N) ≤ 1 if M and N lie
in the same AR-component, and dim HomDb(A)(M,N [2]) ≤ 1 otherwise. In
the second case, we use the Auslander–Reiten formula

HomDb(A)(M,N [2]) ' DHomDb(A)(N [1], τM).

In both cases, Lemma 2.1 and 〈[M ], [N ]〉 > 0 imply Ext1
A(M,N) = 0.

Thus, from now on we additionally assume 〈[M ], [N ]〉 = 0.

Before proceeding, we need some properties of the mesh category of a
tube. Let T be a tube of rank r in the Auslander–Reiten quiver of Db(A).
Let M(i, j), 1 ≤ i ≤ r, j ≥ 1, be the indecomposable objects in T . We have
arrows M(i, j)→M(i, j + 1) for all i and j, and M(i, j + 1)→M(i+ 1, j)
for 1 ≤ i ≤ r − 1 and j ≥ 1, and M(r, j + 1)→M(1, j) for j ≥ 1. Thus the
object M(i, j) has quasi-length j in T .

If R and S are indecomposable objects in T with 〈[R], [S]〉 = 0, then
Lemma 2.1 shows that HomDb(A)(R,S[2]) = 0. We get

〈[R], [S]〉 = dim HomDb(A)(R,S)− dim HomDb(A)(R,S[1]).

Assume now that ql([R]) < r and ql([S]) < r. We can assume R =
M(1, l) for some 1 ≤ l ≤ r − 1. We have to compute dim HomDb(A)(R,S)
and dim HomDb(A)(R,S[1]). Using the mesh category, it is easy to show that
dim HomDb(A)(R,S) = 1 if and only if S = M(j, l+i−j+1) where 1 ≤ j ≤ l
and 0 ≤ i ≤ r − l − 2 + j. Otherwise, dim HomDb(A)(R,S) = 0. Using the
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mesh category again and the Auslander–Reiten formula

HomDb(A)(R,S[1]) ' DHomDb(A)(S, τR),

we get dim HomDb(A)(R,S[1]) = 1 if and only if S = M(r− i, l−j+ i) where
0 ≤ j ≤ l − 1 and 0 ≤ i ≤ r − l − 1 + j. The picture in Figure 1 describes
the situation. Here we write i − j to mean dim HomDb(A)(R,S) = i and
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�@
@
@
@@ rr

(l, r − l + 1)

r(l, r)
1− 0 1− 1 0− 1

0− 0 0− 0 0− 0

0− 0 0− 0

Fig. 1

dim HomDb(A)(R,S[1]) = j for any module S in the marked region. Thus
〈[R], [S]〉 = i− j. Furthermore, we write (i, j) instead of M(i, j). Note that
the picture does not tell what values the Ringel form takes on the objects
sitting on the lines. For example, the above precise description shows that
the objects on the lower two sides of the 1−1 triangle also take values 1−1.

Next, assume that (v) holds. Thus ql([M ])+ql([N ]) ≤ rk([M ]) = rk([N ]).
Assume first that M and N lie in the same Auslander–Reiten compo-
nent. Thus M and N are objects in a tube of rank r = rk([M ]) and
ql([M ]) < r and ql([N ]) < r. Thus we can apply the above considerations.
Without loss of generality we can assume M = M(1, l). But the assumption
ql([M ]) + ql([N ]) ≤ r implies that N has quasi-length strictly smaller than
r − l + 1. Since we assumed before that 〈[M ], [N ]〉 = 0, we deduce that
HomDb(A)(M,N [1]) = Ext1

A(M,N) = 0. Similarly one argues in the case
when M and N [1] are in the same component.

From now on we can assume additionally ql([M ]) + ql([N ]) > rk([M ]) =
rk([N ]).

Now assume that (vi) holds. Thus 〈[M ], [N ]φj〉 6= 0 for some j. Since
iso(d) = iso(e), we know that M and N lie in the same AR-component.
Recall that all AR-components are tubes. Thus we can assume that M and
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N lie in a tube of rank r with M = M(1, l). By assumption 〈[M ], [N ]φi〉 < 0
with i = min{j ≥ 1 | 〈[M ], [N ]φj〉 6= 0}. Recall that we have also assumed
〈[M ], [N ]〉 = 0. Now we use the considerations which led to Figure 1 and
get HomDb(A)(M,N [1]) = Ext1

A(M,N) = 0.
Finally, we assume that (vii) holds. This implies that M and N [1] lie

in the same AR-component of Db(A). Having in mind that 〈[M ], N [1]〉 =
−〈[M ], [N ]〉 we can proceed as before to get again Ext1

A(M,N) = 0.
This finishes the proof of one direction of the theorem. Now we prove

the other direction.
Let d and e be Schur roots with 〈d, e〉 < 0; then Ext1

A(M,N) 6= 0 for
all M in C(d) and N in C(e). This implies ext1

A(C(d), C(e)) 6= 0. Thus
assume that 〈d, e〉 ≥ 0 and none of (i)–(vii) holds. Thus we are in the
following situation:

(1) q(d) = q(e) = 1;
(2) 〈d, e〉 = 0;
(3) ql(d) + ql(e) > rk(d) = rk(e);
(4) one of the following holds:

(a) iso(d) = iso(e), 〈d, eφj〉 6= 0 for some j, and 〈d, eφi〉 > 0 where
i = min{j ≥ 1 | 〈d, eφj〉 6= 0},

(b) iso(d) = − iso(e), 〈d, eφj〉 6= 0 for some j, and 〈d, eφi〉 < 0 where
i = min{j ≥ 1 | 〈d, eφj〉 6= 0}.

Note that conditions (1) and (4) imply that rk(d) = rk(e).
Let M and N be the (unique up to isomorphism) A-modules in indA(d)

and indA(e), respectively. By Lemma 2.3 and (4), either M and N , or M
and N [1], lie in the same Auslander–Reiten component of Db(A). Again,
let us first consider the case where M and N are in a tube of rank r, and
without loss of generality let M = M(1, l). Thus (4)(a) holds. By (3) the
quasi-length of N is at least r−l+1. Then (2) and (4)(a) imply that N must
lie in the 1− 1 triangle of Figure 1. This implies Ext1

A(M,N) 6= 0. Since d
and e are Schur roots with q(d) = q(e) = 1, the orbits O(M) and O(N) are
open. Thus Ext1

A(M,N) 6= 0 implies that ext1
A(C(d), C(e)) 6= 0. The case

when M and N [1] are in the same component yields the same result. This
finishes the proof.

6. Application. Let Λ denote the preprojective algebra for a quiver of
type A5, i.e. Λ = kQ/I where Q is the quiver

1
a1

�
a1

2
a2

�
a2

3
a3

�
a3

4
a4

�
a4

5

and the ideal I is generated by the following set of relations:

{a1a1, a1a1 − a2a2, a2a2 − a3a3, a3a3 − a4a4, a4a4}.
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Then Λ has a Galois covering F : Λ̃ → Λ with Galois group G = (Z,+)

where Λ̃ is given by the infinite quiver with relations described in Figure 2.

1(2)

a
(2)
1

!!DDDDDDDD

...
3(2)

a
(1)
2

}}zzzzzzzz a
(2)
3

!!DDDDDDDD

...
5(2)

a
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4

}}zzzzzzzz

2(1)

a
(1)
1

}}zzzzzzzz a
(1)
2

!!DDDDDDDD 4(1)

a
(1)
3

}}zzzzzzzz a
(1)
4

!!DDDDDDDD

1(1)

a
(1)
1

!!DDDDDDDD 3(1)

a
(0)
2
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(1)
3

!!DDDDDDDD 5(1)

a
(0)
4
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2(0)

a
(0)
1

}}zzzzzzzz a
(0)
2

!!DDDDDDDD 4(0)

a
(0)
3

}}zzzzzzzz a
(0)
4

!!DDDDDDDD

1(0)
...

3(0)
...

5(0)

Fig. 2. The quiver Λ̃ with relations {a(i+1)
1 a

(i)
1 , a

(i)
1 a

(i)
1 − a(i)

2 a
(i−1)
2 , a

(i)
2 a

(i)
2 − a(i+1)

3 a
(i)
3 ,

a
(i)
3 a

(i)
3 − a(i)

4 a
(i−1)
4 , a

(i)
4 a

(i)
4 | i ∈ Z}

The generator of G acts as x(i) 7→ x(i+1). See [10, Section 3] for basic

information on Galois coverings. We need several subcategories of Λ̃. Firstly,
Γ0 will be the full subcategory with objects

{1(0), 3(0), 5(0), 2(0), 4(0), 1(1), 3(1), 5(1)}
(this is tame concealed of type Ẽ7), and ∆0 with objects

{2(0), 4(0), 1(1), 3(1), 5(1), 2(1), 4(1)}
(this is tame concealed of type D̃6). Next, we have Γ with objects

{1(0), 3(0), 5(0), 2(0), 4(0), 1(1), 3(1), 5(1), 2(1), 4(1)}
and ∆ with objects

{2(0), 4(0), 1(1), 3(1), 5(1), 2(1), 4(1), 1(2), 3(2), 5(2)};
these are both tubular of type (6, 3, 2). Note that Λ̃ is the repetitive algebra

of Γ or of ∆. As a consequence the AR-quiver of Λ̃ consists only of stable
(and standard) tubes, with the exception of the tubes which contain the
projective-injective modules. These are obtained (up to translation by G)
from (co-)ray insertions at stable tubes over the tame concealed algebras Γ0

or ∆0. All indecomposable modules which do not belong to these tubes have
(up to shift by G) support in Γ or ∆(−1). Thus the push-down functor Fλ
associated to F is dense by [9, Section 2]. See also the brief discussion in [7,
Section 6], and for example [14, Section 4].
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For convenience, we display the dimension vectors of the tubes com-
ing from Γ0 and ∆0 below. For Γ0, the dimension vectors of homogeneous
modules are multiples of

h0 :=
1 2 1

3 3
1 2 1

.

The dimension vectors at the “mouth” of the non-homogeneous tubes are
described in Figure 3. Denote by T0 the family of indecomposable, non-
projective Λ̃-modules with dimension vector being a multiple of h0 or cor-
responding to the three non-homogeneous tubes described in Figure 3.
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Fig. 3. Non-homogeneous tubes in T0

For ∆0, the dimension vectors of homogeneous modules are multiples of

h∞ :=
1 1

1 2 1
1 1

.

The dimension vectors at the “mouth” of the non-homogeneous tubes are
described in Figure 4. Denote by T∞ the family of indecomposable, non-
projective Λ̃-modules with dimension vector being a multiple of h∞ or cor-
responding to the three non-homogeneous tubes described in Figure 4.

Lemma 6.1. The translation functor ?(+1) : Λ̃→ Λ̃ induces a functor for
the stable category mod(Λ̃), and we have

τΛ̃(?(+1)) ∼= ?[1]

where ?[1] is the translation functor for the triangulated category mod(Λ̃),
and τΛ̃ is the Auslander–Reiten translate which is a functor for the stable

category (since Λ̃ is selfinjective).
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Fig. 4. Non-homogeneous tubes in T∞

Proof. From our calculations above it is clear that the isomorphism holds
for simple Λ̃-modules, thus it holds for all finitely generated modules.

If X is an indecomposable homogeneous Λ̃-module of quasi-length 1,
then it has (up to translation by G) support in Γ or ∆(−1). In the first case

[X]
Λ̃

= ah0 + bh∞, in the second [X]
Λ̃

= bh
(−1)
∞ + ah0, where gcd(a, b) = 1

in both cases.

Lemma 6.2. With the above notation we have in both cases

dim HomΛ̃(X,X(+1)) = 6a2 + 6ab+ 2b2 and HomΛ̃(X,X(−1)) = 0.

As a consequence

dim EndΛ(FλX) = 1 + 6a2 + 6ab+ 2b2

where Fλ is the push-down functor associated to the Galois covering F .

Proof. Since X is homogeneous, by Lemma 6.1 we get X (+1) ∼= X[1].
Thus we have a short exact sequence

0→ X → IX → X(+1) → 0

with IX projective-injective. Applying Hom
Λ̃

(X,−) to this short exact se-
quence, we find that

dim Hom
Λ̃

(X, IX) = dim Hom
Λ̃

(X,X(+1))
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since Hom
Λ̃

(X,X) and Ext1
Λ̃

(X,X) are both of dimension 1. On the other

hand, Λ̃ is triangular, thus we can easily determine the decomposition of IX
into direct summands using [IX ] = [X] + [X(+1)], and our first claim fol-
lows. The same calculation shows that the supports of topX (+1) and X are
disjoint, and the second claim follows. Note that topX (+1) ∼= top IX . Finally

HomΛ(FλX,FλX) =
⊕

g∈Z
Hom

Λ̃
(X,X(g))

and our last claim follows from the previous calculations since only for g ∈
{−1, 0, 1} are the supports of X and X(g) not disjoint.

Recall that Γ , being a tubular algebra, is quasi-tilted. Since Λ̃ is the
repetitive algebra of Γ , we can find in mod(Λ̃) a full hereditary subcategory
H such that

mod(Λ̃) =
∨

i∈Z
H[i].

We describe a choice of a subcategory H ⊂ mod(Λ̃) which induces such

an H. Denote by T0 (respectively T∞) the tubular family in mod (Λ̃) coming
from Γ0 (respectively ∆0) as described above. Next,

T+ ⊂ mod(Γ ) ⊂ mod(Λ̃)

is given by all indecomposable Γ -modules X with

〈h0, [X]〉Γ > 0 and 〈[X],h∞〉Γ > 0

(this just accounts for all stable tubular families in mod(Γ )). Similarly

T− ⊂ mod(∆(−1)) ⊂ mod(Λ̃)

is given by all indecomposable ∆(−1)-modules Y with

〈h(−1)
∞ , [Y ]〉∆(−1) > 0 and 〈[Y ],h0〉∆(−1) > 0

(this just accounts for all stable tubular families in mod(∆(−1))). Then let

H = T− ∨ T0 ∨ T+ ∨ T∞.
Note that by Lemma 6.1 and tubularity we also have

mod(Λ̃) =
∨

g∈Z
H(g).

Next, the identification of Λ̃ with the repetitive algebra of Γ (respectively
∆(−1)) gives us canonical isomorphisms

K0(Γ )
πΓ← K0(mod(Λ̃))

π∆→ K0(∆(−1)),

which in turn yields an isomorphismK0(∆(−1))→ K0(Γ ). Here K0(mod(Λ̃))

denotes the Grothendieck group of the triangulated category mod(Λ̃). If

X ∈ mod(Λ̃) we denote by [X] the corresponding class in K0(Γ ).
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Define the set of roots (respectively positive roots) for Γ as

R := {x ∈ K0(Γ ) \ {0} | qΓ (x) ≤ 1},
respectively

R+ := {x ∈ R | 〈x,h∞〉Γ > 0 or (〈x,h∞〉Γ = 0 and 〈h0,x〉Γ > 0)}.
Then R+ = {[X] | X ∈ H indecomposable}. Similarly to the case of di-
mension vectors, let R+

S be the set of Schur roots in R+. Note that these
correspond precisely to the classes of objects inH with trivial endomorphism
rings. Moreover, for x ∈ R+ we denote byH(x) the set of all indecomposable
X ∈ H with [X] = x.

Remark 6.3. Let x ∈ R+ be isotropic, i.e. 〈x,x〉Γ = 0. Then x =
ah0 + bh∞ with a > 0 or (a = 0 and b > 0). Thus if we define for γ ∈ Q∞
the set Rγ = {y ∈ R+ | 〈h0,y〉Γ /〈y,h∞〉Γ = γ} we find that x ∈ Rb/a. If
y ∈ Rγ with γ 6= b/a we get 0 6= 〈x,y〉Γ = −〈y,x〉Γ . Since H is hereditary
we conclude that Ext1

Λ̃
(X,Y ) 6= 0 or Ext1

Λ̃
(Y,X) 6= 0 if X ∈ H(x) and

Y ∈ H(y).
Now we might define Tγ = {X ∈ H | X indecomposable and [X] ∈ Rγ}.

In our situation this always gives a tubular family of type (6, 3, 2). These
considerations as well as the definition of R+ are inspired by [15].

It is easy to define a map σ : R+ → K0(Λ̃) such that for each x ∈ R+

there exists an indecomposable object X ∈ H with [X] = x and σ(x) =

[X]
Λ̃

. Moreover, we have a linear map δ : K0(Λ̃)→ K0(Λ) with the property

δ([X]
Λ̃

) = [FλX]Λ for all Λ̃-modules X.

Lemma 6.4. For X,Y ∈ H ⊂ mod(Λ̃) we have

Ext1
Λ(FλX,FλY ) ∼= Ext1

Λ̃
(X,Y )⊕ Ext1

Λ̃
(Y,X).

Proof. It is easy to see that

Ext1
Λ(FλX,FλY ) ∼=

⊕

i∈Z
Ext1

Λ̃
(X,Y (i)).

Thus since Λ̃ is self injective, from Lemma 6.1 we obtain

Ext1
Λ(FλX,FλY ) ∼=

⊕

i∈Z
HomΛ̃(X[−1], Y (i)) ∼=

⊕

i∈Z
HomΛ̃(X, τ−i

Λ̃
Y [i+ 1])

= Hom
Λ̃

(X, τ
Λ̃
Y )⊕ Hom

Λ̃
(X,Y [1]);

for the last equality we have used the fact that in mod(Λ̃) there are only
maps from H[0] to H[i] for i ∈ {0, 1}. Our claim now follows from the
Auslander–Reiten formula.

Let x ∈ R+. We denote by indΛ(δσ(x),x) the subset of modΛ(δσ(x))
which corresponds to the modules of the form FλX for X ∈ H(x). We write
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CΛ(x) for the Zariski closure indΛ(δσ(x),x), and CΛ(i) for the closure of the
orbit of the indecomposable projective module corresponding to the vertex i.

Remark 6.5. For our next result we need the following observation
which should be well known: Let F : Λ̃ → Λ be a Galois covering. For each
dimension vector d of Λ̃ we have an obvious morphism of varieties

Φd : modΛ̃(d)×Gl(δd)→ modΛ(δd).

If U ⊂ mod
Λ̃

(d) we write Fλ(U) = Φd(U ×Gl(δd)). Now if Λ̃ is locally sup-

port-finite, each irreducible component C⊂modΛ(h) is of the form Fλ(C ′)
for some irreducible component C ′⊂mod

Λ̃
(d) and some d with δd = h. In

particular C is indecomposable if and only if C ′ is indecomposable.

In fact, since Λ̃ is locally support-finite we conclude from [9] that there
exists a finite collection of dimension vectors d1, . . . ,dm such that

modΛ(d) =
m⋃

i=1

Fλ(mod
Λ̃

(di)).

If C ′1, . . . , C
′
n denotes the collection of the irreducible components of the

varieties mod
Λ̃

(di), 1 ≤ i ≤ m, we trivially have

modΛ(d) =
n⋃

i=1

Fλ(C ′i);

but the Fλ(C ′i) are irreducible closed subsets of modΛ(h) and our claim
follows.

Theorem 6.6. The map x 7→ CΛ(x) induces a bijection between the
set R+

S of Schur roots and the indecomposable irreducible components of
varieties of Λ-modules which contain no projective-injective module. For
x ∈ R+

S the component CΛ(x) contains an open orbit if x is real , otherwise
CΛ(x) is not generically reduced.

Proof. By Theorem 1.1 and Remark 6.5 our CΛ(x) with x ∈ R+
S are the

only candidates for indecomposable components, besides the CΛ(i).

Assume first that x is real. Then there exists a unique indecomposable
X ∈ H with [X] = x, moreover Ext1

Λ̃
(X,X) = 0, thus by Lemma 6.4 we

also have Ext1
Λ(FλX,FλX) = 0. By Voigt’s Lemma FλX represents an open

orbit in modΛ(δσ(x)).

If x is not real, we have a one-parameter family (Xt)t∈k ⊂ H of Λ̃-mod-
ules with [Xt] = x for all t. From Lemma 6.2 (use the notation from there)
we have

δσ(x) = [FλXt]Λ = (2a+ b, 3a+ 2b, 4a+ 2b, 3a+ 2b, 2a+ b)

and

dim EndΛ(FλXt) = 1 + 6a2 + 2b2 + 6ab
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for some a, b ∈ N0. Thus

dim EndΛ(FλXt)− qA5([FλXt]Λ) = 1.

Now (FλXt)t∈k is a family of non-isomorphic modules, and they are dense in
some component since for example by [16, 12] each irreducible component of
modΛ(d) has dimension dim Gl(d)− qA5(d). Finally dim Ext1

Λ(FλXt, FλXt)
= 2 by Lemma 6.4. Thus CΛ(x) is not generically reduced by Voigt’s Lemma.
Note that for a non-real root x ∈ R+

S , we have ext1
Λ(CΛ(x), CΛ(x)) = 0, but

dim Ext1
Λ(X,X) = 2 for all X in a dense subset U of CΛ(x).

Corollary 6.7. Let x,y ∈ R+
S . Then ext1

Λ(CΛ(x), CΛ(y)) = 0 if and
only if there exist X ∈ H(x) and Y ∈ H(y) with Ext1

Λ̃
(X,Y ) = 0 =

Ext1
Λ̃

(Y,X).

Proof. This follows directly from Theorem 6.6 and Lemma 6.4.

We conclude that each irreducible component C of modΛ(d) admits a
unique decomposition into indecomposable components

l⊕

i=1

CΛ(xi)
n(i) ⊕

5⊕

i=1

CΛ(i)m(i)

with the xi ∈ R+
S pairwise different. If say x1 is isotropic, we have

〈h0,xi〉/〈xi,h∞〉 = 〈h0,x1〉/〈x1,h∞〉
for i = 2, . . . , l by Remark 6.3, i.e. the xi are dimension vectors of inde-
composable objects which all belong to the same tubular family, and we
conclude from the last corollary that l ≤ 9 = (6−1)+(3−1)+(2−1)+1. If
all the xi are real, we get l ≤ 10. In fact, in this case there exist Xi ∈ H(xi)
with Ext1

Λ̃
(Xi,Xj) = 0 for all 1 ≤ i, j ≤ l (see the proof of Theorem 6.6 and

Corollary 6.7). Thus
⊕l

i=1Xi is a partial tilting object in the hereditary cat-
egory H, which has Grothendieck group isomorphic to K0(Γ ) ∼= Z10. Thus
in any case the number of non-isomorphic summands is bounded by 15,
which is the number of positive roots for A5.

Let A be any finitely generated k-algebra, and {Ci | i ∈ I} a set of pair-
wise different indecomposable irreducible components of varieties of A-mod-
ules such that ext1

A(Ci, Cj) = 0 for all i 6= j. If the set is maximal with this
property, then we call it a maximal set of indecomposable components for A.

For A = Λ it follows from our considerations that a maximal set of
indecomposable components for Λ contains either 14 or 15 components. At
most one of them does not contain a dense orbit, and in this case, the
maximal set contains 14 components.

Note also that ext1
Λ(C,C) = 0 for any indecomposable irreducible com-

ponent C (there is no contradiction to the fact that dim Ext1
Λ(M,M) ≥ 2

for all M ∈ C if C corresponds to an isotropic root as noted in the proof of
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Theorem 6.6). This immediately implies ext1
Λ(C,C) = 0 for any irreducible

component C.

Finally, note that the preprojective algebra P (Q) for Q a quiver of type
D4 admits a Galois covering, which is the repetitive algebra of a tubular
algebra of type (3, 3, 3). One checks easily that Lemma 6.1 holds also in
this situation. Thus we can repeat the above program. In particular, we find
that a maximal set of indecomposable components for P (Q) contains either
11 = (3− 1) + (3− 1) + (3− 1) + 1 + 4 or 12 = 8 + 4 elements. Observe that
a quiver of type D4 admits 12 positive roots.

One might ask the following question: Let Q be any Dynkin quiver.
Assume that the number of positive roots of Q is n. Let {Ci | i ∈ I} be
a maximal set of indecomposable components for P (Q). Assume that Ci
contains a dense ni-parameter family of indecomposable P (Q)-modules for
all i. Is I a finite set and does the formula

|I| = n−
∑

i∈I
ni

hold? This was verified before for Q of type Ai with i ≤ 4. By our above
considerations this holds also for Q of type A5 or D4.
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