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BOUNDARY POTENTIAL THEORY FOR
STABLE LÉVY PROCESSES

BY

PAWEŁ SZTONYK (Wrocław)

Abstract. We investigate properties of harmonic functions of the symmetric stable
Lévy process on Rd without the assumption that the process is rotation invariant. Our
main goal is to prove the boundary Harnack principle for Lipschitz domains. To this end
we improve the estimates for the Poisson kernel obtained in a previous work. We also
investigate properties of harmonic functions of Feynman–Kac semigroups based on the
stable process. In particular, we prove the continuity and the Harnack inequality for such
functions.

1. Introduction. For α ∈ (0, 2), a Lévy process Xt on Rd with charac-
teristic exponent Φ is called stable with index α if Φ(ku) = kαΦ(u) for k > 0,
u ∈ Rd. The stable processes appear in a natural way in limit theorems and
have the scaling property: for every a > 0 the rescaled process a−1/αXat has
the same law as Xt.

Recently, remarkable progress has been made in the potential theory
of the rotation invariant α-stable Lévy processes (for definitions see Pre-
liminaries). The results obtained include estimates of the Green function
and Poisson kernel ([18], [11], [17]), the boundary Harnack principle for α-
harmonic functions ([6], [9], [21]), and similar developments in the potential
theory of the α-stable Schrödinger operator ([7], [8]). Many of the results are
based on the exact formulae for the Poisson kernel and the Green function
for the ball established by M. Riesz ([19], [20], [4]).

In this paper we extend some of these results to α-stable Lévy processes
which are symmetric but not necessarily rotation invariant. We focus on the
behaviour of such processes near the boundary of a domain D ⊂ Rd.

The results of the present paper complement the earlier ones contained
in [10]. We note that the main results of [10] were restricted to α ≤ 1. They
were based on certain estimates of the harmonic measure, which substitute
the exact formula for the Poisson kernel of the ball (see Proposition 4.1
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below). In Sections 3 and 4 below we improve these estimates and we obtain
the Carleson estimate, boundary Harnack principle and 3G Theorem for all
α ∈ (0, 2). We note that the paper is related to the papers of R. F. Bass
and D. A. Levin [1] and Z. Vondraček [24]. In particular, we use in a crucial
way the Harnack inequality of [1]. We also extend and strengthen some of
the results of [24] (see, e.g., Lemmas 4.1 and 4.2).

The results allow for a study of harmonic functions of the Feynman–
Kac perturbation of Xt by a multiplicative functional exp(

� τD
0 q(Xt) dt). In

Section 5 we prove the continuity and Harnack inequality for such functions.

2. Preliminaries. In what follows α ∈ (0, 2) and d ≥ 2. We denote by
(Xt, P

x) a symmetric α-stable Lévy process in Rd (i.e. homogeneous, with
independent increments), with characteristic function of the form

E0ei〈u,Xt〉 = e−tΦ(u), u ∈ Rd, t ≥ 0,

where the characteristic exponent Φ is given by

Φ(u) = �
S(0,1)

|〈u, ξ〉|α µ(dξ),

and µ is a finite, symmetric measure on S(0, 1). We assume that µ is abso-
lutely continuous and has a density fµ with respect to the uniform measure
on S(0, 1) and there exists a constant c1 > 1 such that

c−1
1 ≤ fµ(ξ) ≤ c1, ξ ∈ S(0, 1).

The Lévy measure ν of such a process has a density fν with respect to the
Lebesgue measure on Rd and there exists M = M(α, µ) > 1 such that

M−1

|x|d+α ≤ fν(x) ≤ M

|x|d+α , x ∈ Rd.(2.1)

Note that fν is discontinuous whenever fµ is.
The process Xt has the infinitesimal generator

Aϕ(x) = �
Rd

(ϕ(x+ y)− ϕ(x)− 1B(0,1)(y)〈y,∇ϕ(x)〉)fν(y) dy

(see [2]; for connections with pseudo-differential operators see also [16] ).
Let p(t;x, y) = pt(y − x) be the transition density of Xt. The function

pt(x) = pt(−x) is continuous in (t, x) for t > 0 (see e.g. [23]), and has the
scaling property : pt(x) = t−d/αp1(x/t1/α). From the scaling property and
[14] it follows that there exists a constant c2 = c2(α, µ) such that

p(t, x) ≤ c2 min(t|x|−d−α, t−d/α), x ∈ Rd, t > 0.(2.2)

We assume as we may that the sample paths of Xt are right-continuous
and have left-hand limits. The process is strong Markov with respect to
the so-called “standard filtration” {Ft; t ≤ 0} and quasi left-continuous on
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[0,∞]. The shift operator is denoted by θt: θtXs = Xs+t, s, t ≥ 0. The
operator θt is also extended to Markov times τ and is denoted by θτ .

The potential kernel of Xt is given by

K(x) =
∞

�
0

p(t, x) dt, x ∈ Rd.

By Lemma 3.1 of [10] there exists a constant C1 = C1(α, µ) such that

C−1
1

|x|d−α ≤ K(x) ≤ C1

|x|d−α , x ∈ Rd.(2.3)

Moreover, by (2.2) and the dominated convergence theorem, it is easy to see
that K(·) is continuous in the extended sense on Rd ([24]).

Let D denote an open set in Rd. We set τD = inf{t ≥ 0; Xt 6∈ D},
the first exit time of D. By (PDt ) we denote the semigroup of the process
(Xt) killed on exiting D. The semigroup (PDt ) is determined by transition
densities pDt (x, y), which are symmetric: pDt (x, y) = pDt (y, x), and continuous
in (t, x, y) for t > 0 and x, y ∈ D (cf. [12]).

We let

GD(x, y) =
∞

�
0

pDt (x, y) dt

and call GD(x, y) the Green function for D. For x, y ∈ D we have

GD(x, y) = K(x, y)− ExK(XτD , y),(2.4)

where K(x, y) = K(y−x). The function GD(x, y) is symmetric: GD(x, y) =
GD(y, x), x, y ∈ D, and jointly continuous in x, y ∈ D for x 6= y (cf. [12]).

We say that a domain D in Rd is Green-bounded if supx∈Rd E
xτD < ∞.

For instance, D is Green-bounded whenever |D| < ∞ (see the proof of
Theorem 1.17 in [12]).

For x ∈ D, we write ωxD to denote the harmonic measure of D:

ωxD(A) = P x(XτD ∈ A), x ∈ D, A ⊂ Rd.
It follows from [15] that, on (D)c, ωxD is absolutely continuous with respect
to the Lebesgue measure, with density function PD(x, ·) (the Poisson kernel)
given by

PD(x, y) = �
D

GD(x, z)fν(y − z) dz, y ∈ (D)c.(2.5)

Moreover, it follows from [22] that the boundary of a Lipschitz domain has
zero harmonic measure. By Lemma 3.3 of [10] we have

PD(x, y) ≤M ExτD (dist(D, y))−d−α, x ∈ D, y ∈ (D)c,(2.6)

and
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(2.7) PD(x, y)

≥M−1ExτD (dist(D, y) + diam(D))−d−α, x ∈ D, y ∈ (D)c.

Let u be a Borel measurable function on Rd. We say that u is harmonic
in an open set D ⊂ Rd if

u(x) = Exu(XτU ), x ∈ U,(2.8)

for every bounded open set U with U ⊂ D. It is called regular harmonic in
D if (2.8) holds for U = D. If D is unbounded then by the usual convention
Exu(XτD) = Ex[τD < ∞;u(XτD)]. Under (2.8) it is always assumed that
the expectation in (2.8) is absolutely convergent; in particular, finite.

Example. (a) Let fµ ≡ Γ ((d + α)/2)/(2π(d−1)/2Γ ((1 + α)/2)). We
write X̂t, Φ̂, ν̂, f̂ν , K̂ to denote the corresponding process, its character-
istic exponent, etc. X̂t is the rotation invariant stable process mentioned
in the introduction. We have Φ̂(u) = |u|α, f̂ν = A(d,−α)|x|−d−α, and
K̂(x) = A(d, α)|x|−d−α, where A(d, γ) = Γ ((d − γ)/2)/(2γπd/2|Γ (γ/2)|).
An explicit formula for the Poisson kernel for a ball is also known:

P̂B(0,r)(x, y) = cdα

[
r2 − |x|2
|y|2 − r2

]α/2
|x− y|−d, |x| < r, |y| > r,

where cdα = Γ (d/2)π−d/2−1 sin(πα/2) (see [4]).
(b) Let T : Rd → Rd be a linear isomorphism. Define Xt = TX̂t. For ev-

ery fixed a > 0, the measure ε−1P 0(Xε ∈ dx) converges vaguely on {|x| > a}
as ε→ 0 to the Lévy measure ν(dx) (see, e.g., [2]), hence

fν(x) = A(d,−α)|T |−1|T−1x|−d−α, x 6= 0.

The process Xt satisfies our assumptions. In particular

c−1
3

|x|d+α ≤ fν(x) ≤ c3

|x|d+α

for some constant c3 = c3(T ) > 1.

3. Harmonic functions and Harnack inequality. In [10] we proved
the Harnack inequality for nonnegative functions that are harmonic with
respect to a symmetric α-stable process for α ∈ (0, 1]. In a recent work of
R. F. Bass and D. A. Levin [1] the Harnack inequality is proved for stable
processes with arbitrary α ∈ (0, 2). We note that the authors of [1] use
a different definition of harmonicity but their proof is valid in our setting
without any important changes (see also [24]).

Lemma 3.1 (Harnack inequality, [1]). There exists a constant C2 =
C2(α, µ) such that if u is nonnegative and bounded on Rd and harmonic
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in B(x0, 16) then

u(x1) ≤ C2u(x2), x1, x2 ∈ B(x0, 1).

Note that by scaling we can take B(x0, 16r) and B(x0, r), r > 0, instead
of B(x0, 16) and B(x0, 1) in Lemma 3.1. Moreover, as we prove below, one
can release the assumption that u is bounded.

Lemma 3.2. If u is nonnegative and harmonic in B(x0, 16) then

u(x1) ≤ C2u(x2), x1, x2 ∈ B(x0, 1/2).

Proof. Let B = B(x0, 8) and let x1, x2 ∈ B(x0, 1/2). The function ωxB(A)
is nonnegative, bounded and regular harmonic in B for every set A ⊂ Bc so
we have

ωx1
B (A) ≤ C2ω

x2
B (A),

and that means
�
A

PB(x1, y) dy ≤ C2 �
A

PB(x2, y) dy,

for every A ⊂ Bc. We get

PB(x1, y) ≤ C2PB(x2, y)(3.1)

for a.e. y ∈ Bc. Since u(x) =
�
Bc u(y)PB(x, y) dy, x ∈ B(x0, 1/2), the asser-

tion follows.

The proof of the following “chain” Harnack inequality follows from Lem-
ma 3.2 and (2.7) by an easy adaptation of the proof of Lemma 2 in [6] and
is therefore omitted.

Lemma 3.3. Let x1, x2 ∈ Rd, r > 0 and k ∈ N satisfy |x1 − x2| < 2kr.
Let u ≥ 0 be a function which is harmonic in B(x1, r) ∪B(x2, r). Then

J−12−k(d+α)u(x2) ≤ u(x1) ≤ J2k(d+α)u(x2)(3.2)

for a constant J = J(α, µ).

In what follows, we set δD(x) = dist(x,Dc). Lemma 3.4 below gives a
lower bound for the Green function GD. By (2.3) and (2.4),

GD(x, y) ≤ C1|y − x|α−d, x, y ∈ D,
for every open set D ⊂ Rd.

Lemma 3.4. Let D be an open set in Rd and x, z ∈ D. Suppose that
a > 0 is given. There exists a constant C3 = C3(α, µ, a) such that if |z−x| ≤
a(δD(x) ∧ δD(z)) then

GD(x, z) ≥ C3|z − x|α−d.
Proof. Let x, z ∈ D. We may and do assume that δD(x) ≤ δD(z). Let

b = (2C2
1)1/(α−d). If |z − x| < bδD(x) then by (2.3) and (2.4) we have
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GD(x, z) ≥ C−1
1 |z − x|α−d − C1E

x|z −XτD |α−d

≥ C−1
1 |z − x|α−d − C1(δD(z))α−d

≥ C−1
1 |z − x|α−d − C1(|z − x|/b)α−d = 1

2C
−1
1 |z − x|α−d.

Now, we assume that

bδD(x) ≤ |z − x| ≤ aδD(x).

Let w ∈ B(x, bδD(x)) \ B
(
x, 1

2bδD(x)
)
. The function GD(x, ·) is harmonic

in B
(
w, 1

4bδD(x)
)
∪ B

(
z, 1

4bδD(x)
)
, hence by Lemma 3.3 and the above we

obtain

GD(x, z) ≥ cGD(x,w) ≥ 1
2cC

−1
1 |w − x|α−d ≥ 1

2cC
−1
1 |z − x|α−d,

where c = c(α, µ, a).

Corollary 3.1. Let D be a bounded open set in Rd and F ⊂ D such
that % = dist(F,Dc) > 0. There exists a constant C4 = C4(α, µ, %,D) such
that

GD(x, z) ≥ C4|z − x|α−d, x, z ∈ F.

Proof. For x, z ∈ F we have δD(x) ∧ δD(z) ≥ % and |z − x| < diam(D),
so we can take a = diam(D)/% in Lemma 3.4.

4. Exit time and Poisson kernel for a ball. In the following lemma
we improve [24, Theorem 5.7].

Lemma 4.1. Let D be a bounded open set. The function PD(·, ·) is jointly
continuous in D × (D)c.

Proof. Let x0 ∈ D, y0 ∈ (D)c, and xn → x0, yn → y0. Set % = δD(x0)/2,
η = dist(y0,D)/2. We may and do assume that xn ∈ B(x0, %) and yn ∈
B(y0, η) for all n ∈ N. We have

PD(x, y) = �
D

GD(x, z)fν(y − z) dz = �
Rd
GD(x, z)fν(y − z) dz

= �
Rd
GD(x, y − z)fν(z) dz, x ∈ D, y ∈ (D)c.

Moreover, by (2.1) and (2.3) we get for ε = α/(2(d− α)),

�
Rd

(GD(xn, yn − z)fν(z))1+ε dz

≤ (C1M)1+ε �
yn−D

|yn − z − xn|(α−d)(1+ε)|z|(−d−α)(1+ε) dz
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≤ (C1M)1+ε �
D

|z − xn|(α−d)(1+ε)|yn − z|(−d−α)(1+ε) dz

≤ (C1M)1+εη(−d−α)(1+ε) �
B(xn,diam(D))

|z − xn|(α−d)(1+ε) dz

= c(diam(D))α+ε(α−d) <∞,
hence the functions GD(xn, yn − z)fν(z) are uniformly integrable and the
assertion follows by the continuity of GD(·, ·), because the set of irregular
points of D is of Lebesgue measure 0.

The following lemma is an extension of (3.1).

Lemma 4.2. For every % ∈ (0, 1) there exists a constant C5 = C5(α, µ, %)
such that for every y ∈ intB(0, 1)c and x1, x2 ∈ B(0, %) we have

PB(0,1)(x1, y) ≤ C5PB(0,1)(x2, y).

Proof. Let B = B(0, 1) and let x1, x2 ∈ B(x0, %). The function ωxB(A)
is nonnegative, bounded and regular harmonic in B for every set A ⊂ Bc,
hence by Lemma 3.3 we have

ωx1
B (A) ≤ cωx2

B (A)

where c = c(α, µ, %), and that means

�
A

PB(x1, y) dy ≤ c �
A

PB(x2, y) dy

for every A ⊂ Bc. We conclude that PB(x1, y) ≤ cPB(x2, y) for almost all,
hence all, y ∈ intBc.

Lemma 4.3. Let D ⊂ Rd be an open set and u be a harmonic function
on D. Then u ∈ C(D).

Proof. Let x0 ∈ D, % = 1
2δD(x0), and B = B(x0, %). Let xn → x0; then

xn ∈ B(x0, %/2) for all n ≥ n0. We have u(xn) =
�
Bc u(y)PB(xn, y) dy, and

by Lemma 4.2,

|u(y)|PB(xn, y) ≤ c|u(y)|PB(x0, y), y ∈ Bc, n ≥ n0,

where c = c(α, µ). Moreover, from the definition of harmonic functions

�
Bc

c|u(y)|PB(x0, y) dy = cEx0 |u(XτB)| <∞;

hence, by Lemma 4.1 and dominated convergence, we get

lim
n→∞

u(xn) = u(x0),

so u is continuous at x0 and in D.

The following estimate is given in [10].



198 P. SZTONYK

Proposition 4.1. For every % ∈ (0, 1) there exist C = C(α, µ, %) and
η = η(α, µ) such that

PB(0,1)(x, y) ≤ C(|y| − 1)−α+η, |x| < %, |y| > 1.(4.1)

Our next goal in this section is to strengthen this estimate and prove
that η = α/2 (see Proposition 4.2 below).

The following lemma was communicated to us by M. Lewandowski.

Lemma 4.4. There exists a constant C6 = C6(α, µ) such that

ExτB(0,1) ≤ C6(1− |x|2)α/2, x ∈ B(0, 1).

Proof. For x 6= 0 let Zt = 〈Xt, x〉/|x|. Then Zt is a Lévy process on R
and we have for u ∈ R,

E0eiuZt = exp
(
− t|u|α �

S(0,1)

|〈x/|x|, ξ〉|α µ(dξ)
)
.

We see that Zt has the same distributions as c1/α
x Yt where Yt denotes the

symmetric α-stable Lévy process on R with E0eiuYt = e−t|u|
α
, and cx =�

S(0,1) |〈x/|x|, ξ〉|α µ(dξ). Moreover, if Xt ∈ B(0, 1) then |Zt| ≤ |Xt| |x|/|x|
< 1, hence

ExτB(0,1) ≤ E|x|s,

where s = inf{t ≥ 0 : |Zt| > 1} D= c−1
x inf{t ≥ 0 : |Yt| > 1}. Let s′ =

inf{t ≥ 0 : |Yt| > 1}. It is well known (see [13]) that

E|x|s′ =
(1− |x|2)α/2

Γ (α+ 1)
so we obtain

ExτB(0,1) ≤ c−1
x

(1− |x|2)α/2

Γ (α+ 1)
.

Finally, by our assumptions on µ, we have c−1 < cx < c where c = c(α, µ).

The following proposition improves (4.1).

Proposition 4.2. For every % ∈ (0, 1) there exists a constant C7 =
C7(α, µ, %) such that

PB(0,1)(x, y) ≤ C7(|y| − 1)−α/2, |x| < %, |y| > 1.(4.2)

Proof. Let B = B(0, 1). By symmetry of the Green function, Fubini’s
theorem and Lemma 4.4 we have for y ∈ int(Bc),

�
B

PB(w, y) dw = �
B

�
B

GB(w, z)fν(y − z) dz dw

= �
B

fν(y − z)
( �
B

GB(z, w) dw
)
dz
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= �
B

fν(y − z)EzτB dz ≤MC6 �
B

|y − z|−d−α(1− |z|2)α/2 dz

≤MC62α/2 �
B(y,|y|−1)c

|y − z|−d−α|y − z|α/2 dz

= c1(|y| − 1)−α/2,

with c1 = c1(α, µ). Moreover, for x ∈ B(0, %) from Lemma 4.2 we obtain

�
B

PB(w, y) dw ≥ �
B(0,%)

PB(w, y) dw ≥ c2PB(x, y),

where c2 = c2(α, µ, %).

The following results extend the Carleson estimate and boundary Har-
nack principle given in [10] for α ≤ 1 to all α ∈ (0, 2).

Theorem 4.1 (Carleson estimate). Let D be a domain such that 0 ∈
∂D. Let κ > 0 and B(A, κ) ⊂ D ∩ B(0, 1). There exists a constant M1 =
M1(α, µ) such that for all functions u ≥ 0, regular harmonic in D ∩B(0, 2)
and equal to 0 in Dc ∩B(0, 2), we have

u(x) ≤M1 κ
−αw(A) ≤M1 κ

−αu(A), x ∈ D ∩B(0, 3/2),

where w is the regular harmonic function in D ∩B(0, 1) defined by

w(x) =
{
u(x), x ∈ B(0, 3/2)c ∪ (Dc ∩B(0, 1)),

0, 1 ≤ |x| < 3/2.

Theorem 4.2 (Boundary Harnack principle). Let D be an open set ,
Q ∈ ∂D, r > 0, and suppose that B(A, κr) ⊂ D ∩ B(Q, r). There exists
a constant C8 = C8(α, µ) such that for all functions u, v ≥ 0, regular har-
monic in D ∩B(Q, 2r) and equal to 0 in Dc ∩B(Q, 2r), we have

C−1
8 κd+αu(A)

v(A)
≤ u(x)
v(x)

≤ C8 κ
−d−αu(A)

v(A)
, x ∈ D ∩B(Q, r/2).(4.3)

The proofs of Theorems 4.1 and 4.2 are direct adaptations of the proofs
given in [10] with (4.1) replaced by (4.2).

Remark. Consider the process Xt = TX̂t described in Example (b)
above. By [11] and [18] it is fairly easy to see that if D in Theorem 4.2 is
a C1,1 domain then c−1 ≤ u(x)/δD(x)α/2 ≤ c, x ∈ D ∩ B(Q, r/2), which is
the same asymptotics as for X̂t. However, let D be a cone with vertex angle
λ ∈ (0, π/2). The asymptotics of harmonic functions of X̂t at the vertex
of the cone changes when λ → 0 ([17]). Therefore the asymptotics varies
among different processes of the form Xt = TX̂t.

The main application of Theorems 4.1 and 4.2 is to the Green function
of D. We now state for our α-stable process an important result on the Green
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function of Lipschitz domains called the “3G Theorem”. The proof, which
relies on Theorems 4.1 and 4.2, is omitted because it is a direct adaptation
of arguments developed for Brownian motion in [5] (see also [12]).

Theorem 4.3 (3G Theorem). Let D be a bounded Lipschitz domain
in Rd. There exists a constant C9 = C9(α, µ,D) such that for all x, y, z ∈ D
we have

GD(x, y)GD(y, z)
GD(x, z)

≤ C9

( |z − x|
|y − x| |z − y|

)d−α

≤ 2d−αC9(|y − x|α−d + |z − y|α−d),
unless x = y = z. In fact , the constant C9 above depends on D only through
its Lipschitz character and diameter.

5. q-harmonic functions. We say that a Borel function q belongs to
the Kato class J if q satisfies either of the two equivalent conditions (see
[12])

lim
r→0

sup
x∈Rd

�
|x−y|≤r

|q(y)K(y − x)| dy = 0,(5.1)

lim
t→0

sup
x∈Rd

t

�
0

Ps|q|(x) ds = 0.(5.2)

We write q ∈ Jloc if for every bounded Borel set U ⊂ Rd we have 1Uq ∈ J .
Clearly Jloc ⊂ L1

loc. If f ∈ L∞(Rd) and q ∈ J then f, fq ∈ J . Note that
by (2.3) we have J = J α where J α denotes the Kato class for the rotation
invariant α-stable process X̂t ([7]).

Let U be a domain in Rd and let q ∈ J . We define

eq(τU ) = exp
( τU�

0

q(Xt) dt
)
.(5.3)

By (5.2) we have
� t
0 |q(Xs)| ds <∞ a.s., for each t > 0. Therefore, if τU <∞,

the random variable eq(τU ) is well defined.
Let u be a Borel measurable function on Rd. We say that u is q-harmonic

in an open set D ⊂ Rd if

u(x) = Ex[τU <∞; eq(τU )u(XτU )], x ∈ U,
for every bounded open set U with U ⊂ D. It is called regular q-harmonic
in D if the above equality holds for U = D.

We always understand that the expectation in the above condition is
absolutely convergent. For q ≡ 0 we obtain the previous definition of har-
monicity. By the strong Markov property ofXt a regular q-harmonic function
u is q-harmonic.
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An important technical tool in further considerations is the conditional
α-stable Lévy motion. For the definition and properties of the conditional
process for X̂t we refer to [7]; here the definitions are analogous. We recall
that for a domain D by the α-stable y-Lévy motion we mean the process
conditioned by the Green function G(·, y) of D. If D is a bounded Lipschitz
domain then we obtain, by routine arguments (see, e.g., [12]), for Φ ≥ 0
measurable with respect to FτD−, and any Borel f ≥ 0, the following for-
mula:

Ex[f(XτD)Φ] = Ex[f(XτD)ExXτD− [Φ]], x ∈ D.(5.4)

In what follows Ex
v denotes the expectation for the α-stable v-Lévy process

conditioned by GB(·, v) where B is a given ball in Rd and x, v ∈ B. The
process approaches v in a finite time and is killed then.

Lemma 5.1. Let q ∈ J and ε > 0. There is r0 = r0(α, µ, q, ε) such that

�
B

GB(x, y)GB(y, v)
GB(x, v)

|q(y)| dy ≤ ε(5.5)

for every ball B ⊂ Rd of radius r ≤ r0.

Proof. Let x0 ∈ Rd, r > 0 and B = B(x0, r). By scaling we have

GB(z, w) = rα−dG
(
z − x0

r
,
w − x0

r

)
, z, w ∈ B,

where G is the Green function for the ball B(0, 1).
By the 3G Theorem we have for v, x, y ∈ B,

GB(x, y)GB(y, v)
GB(x, v)

≤ 2d−αC9r
α−d
(( |y − x|

r

)α−d
+
( |v − y|

r

)α−d)

= 2d−αC9(|y − x|α−d + |v − y|α−d).
By (5.1) there is r0 = r0(α, µ, q, ε) such that (5.5) holds if 0 < r ≤ r0.

We recall the following important fact known as Khasminski’s lemma:
For every nonnegative q and Markov time τ such that τ ≤ t + τ ◦ θt on
{t < τ} for each t ≥ 0, we have:

If sup
x∈Rd

Ex
τ

�
0

q(Xs) ds = ε < 1 then sup
x∈Rd

Exeq(τ) < (1− ε)−1.

Lemma 5.2. Let q ∈ J and ε > 0. Let r0 = r0(α, µ, q, ε) > 0 be the
constant of Lemma 5.1. Then for every ball B ⊂ Rd of radius r ≤ r0 we
have

exp(−ε) ≤ Exv eq(τB) ≤ (1− ε)−1, x, v ∈ B.(5.6)
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Proof. We have

Exv

[ τB�
0

q(Xt) dt
]

= GB(x, v)−1Ex
[ τB�

0

q(Xt)GB(Xt, v) dt
]

= �
B

GB(x, y)GB(y, v)
GB(x, v)

q(y) dy.

The upper bound in (5.6) follows by Lemma 5.1 and Khasminski’s lemma
applied to the expectations {Ex

v : x ∈ Rd}, and the lower bound follows
from Jensen’s inequality.

The proofs of the next two lemmas are standard (see, e.g., [12] or [7]);
we provide them only for the reader’s convenience.

Lemma 5.3. Let D be a Green-bounded domain in Rd and q ∈ J .

(i) For every b > 0 there exists a = a(α, q, b) such that
GD|q| ≤ aGD1 + b.(5.7)

Consequently , for a fixed q ∈ J and variable D, we have ‖GDq‖∞ → 0 as
‖GD1‖∞ → 0.

(ii) GDq ∈ L∞(Rd)∩C(D), and for any z ∈ ∂D regular for D, we have
lim
x→z

GDq(x) = 0.(5.8)

(iii) Under the additional hypothesis: (a) q ∈ L1(D), or (b) |D| <∞, we
have

lim
|x|→∞

GDq(x) = 0.(5.9)

Proof. In the proof of (i) we may suppose that q ≥ 0. For any s > 0
let Λn denote the indicator of the set {τD > ns}, n ≥ 0. The following
inequality holds:

τD�
0

q(Xt) dt =
∞

�
0

q(Xt)1{τD>t} dt ≤
∞∑

n=0

(n+1)s

�
ns

q(Xt)1{τD>ns} dt

=
∞∑

n=0

Λn

(n+1)s

�
ns

q(Xt) dt.

Taking expectations of both sides, using Fubini’s theorem and the Markov
property we obtain

GDq(x) ≤
∞∑

n=0

Ex
[
τD > ns; EXns

[ s�
0

q(Xt) dt
]]
.

Since q ∈ J , we can choose s > 0 so that

sup
x∈Rd

Ex
[ s�

0

q(Xt) dt
]
≤ b.
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We then obtain

GDq(x) ≤ b
∞∑

n=0

P x(τD > ns) ≤ b(1 + Ex[τD/s]),

which gives (5.7) with a = b/s.
From now on we no longer assume that q ≥ 0. Let us recall that PD

t has
the strong Feller property. Since, by (5.7), GDq is bounded in Rd, PDt (GDq)
is continuous in D. From the semigroup property of PD

t we obtain

GDq − PDt (GDq) =
t

�
0

PDs q ds.(5.10)

Since |PDs q| ≤ Ps|q|, and q ∈ J , the right hand side above converges to zero
uniformly in Rd as t→ 0 and so GDq is continuous in D. Next, if z ∈ ∂D is
regular for D, then

lim sup
x→z

|PDt GDq(x)| ≤ lim sup
x→z

(PDt 1(x))‖GDq‖∞
= lim sup

x→z
P x(τD > t)‖GDq‖∞

≤ P z(τD > t)‖GDq‖∞ = 0,

because the function x 7→ P x(τD > t) is upper-semicontinuous at z (cf. [12]).
Hence (5.8) is also true by the uniform convergence in (5.10) and the above
argument.

Under the hypothesis (a) in (iii) we have GDq ∈ L1(D), because ‖GDq‖1
≤ ‖GD1‖∞‖q‖1 < ∞. Since lim|x|→∞ p(t, x, y) = 0 for each t > 0 and
y ∈ Rd, it follows by dominated convergence that lim|x|→∞ PDt GDq(x) = 0.
We obtain (5.9) once again by the uniform convergence in (5.10). Under
the hypothesis (b) in (iii) we have GDq ∈ L∞(D) ⊂ L1(D), so the same
argument is valid.

Lemma 5.4. Let q ∈ Jloc and u be a nonnegative function which is locally
bounded and q-harmonic on an open set D ⊂ Rd. Then for every open
bounded set U ⊂ D such that U ⊂ D we have

u(x) = Exu(XτU ) +GU (qu)(x), x ∈ U.(5.11)

In particular , u is continuous in D.

Proof. By the assumptions qu1U ∈ J so supx∈U GU (u|q|)(x) < ∞ and
GU (qu) is continuous on U by Lemma 5.3. We put

Φ(t) = 1{t<τU}q(Xt)u(XτU ) exp
τU�
t

q(Xs) ds,

Ψ(t) = 1{t<τU}|q(Xt)|u(XτU ) exp
τU�
t

q(Xs) ds,
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Using the Markov property along with the Fubini–Tonelli theorem we obtain
∞

�
0

Ex[Ψ(t)] dt = Ex
[ τU�

0

|q(Xt)|(eq(τU )u(XτU )) ◦ θt dt
]

= Ex
[ τU�

0

|q(Xt)|EXt [eq(τU )u(XτU )] dt
]

= Ex
[ τU�

0

|q(Xt)|u(Xt) dt
]

= GU (u|q|)(x) <∞.

Thus, by Fubini’s theorem we obtain
∞

�
0

Ex[Φ(t)] dt = GU (qu)(x),

while, at the same time,
∞

�
0

Ex[Φ(t)] dt = Ex[{eq(τU )− 1}u(XτU )] = Ex[eq(τU )u(XτU )]−Exu(XτU )

= u(x)− Exu(XτU ).

Indeed,
� τU
0 |q(Xs)| ds <∞ and so the function [0, τU ] 3 t 7→ exp

� τU
t q(Xs) ds

is absolutely continuous (a.s.). Its derivative equals −q(Xt) exp
� τU
t q(Xs)ds

a.s. This shows the formula (5.11). The function x 7→ Exu(XτU ) is harmonic,
hence continuous on U (Lemma 4.3).

Theorem 5.1. Let q ∈ Jloc, u be a nonnegative q-harmonic function
in an open set D, and F ⊂ D be compact. There exists a constant C10 =
C10(α, µ, q, F,D) such that

u(x) ≤ C10u(y), x, y ∈ F.(5.12)

If u(x) = 0 for some x ∈ D then u = 0 on D and u = 0 a.e. on Dc.

Proof. Let F ⊂⊂ D and δF = dist(F,Dc). Put A = {x ∈ D : dist(x, F )
≤ δF /2}. Then A is a compact subset of D and we have q1A ∈ J . Let
%0 = r0 ∧ (δF/2), where r0 = r0(α, µ, q1A) is the constant from Lemma 5.1
for ε = 1/2. Let x ∈ F , 0 < r ≤ %0 and B = B(x, r). We have B ⊂ A and
by (5.4),

u(y) = Ey[eq(τB)u(XτB)] = Ey[u(XτB)EyXτB−
(τB)], y ∈ B.

Lemma 5.2 yields
1
2E

yu(XτB) ≤ u(y) ≤ 2Eyu(XτB), y ∈ B.(5.13)

The function h(y) = Eyu(XτB), y ∈ Rd, is regular harmonic in B, so by
Lemma 3.3 we obtain

c−1
1 Eyu(XτB) ≤ Exu(XτB) ≤ c1E

yu(XτB), y ∈ B(x, r/2),
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where c1 = c1(α, µ). By (5.13) and the above we get

(4c1)−1u(x) ≤ u(y) ≤ 4c1u(x), y ∈ B(x, r/2).(5.14)

We now consider z ∈ F such that |z − x| ≥ %0/2. Let B1 = B(z, %0/4).
Note that B1 ⊂ A and B1∩B(x, %0/4) = ∅. By (2.7), (5.13) and (5.14) with
r = %0 we obtain

u(z) ≥ 1
2
Ezu(XτB1

) ≥ 1
2

�
B(x,%0/4)

PB1(z, w) dw

≥ 1
2
M−1EzτB1 �

B(x,%0/4)

(|w − z|+ %0/4)−d−αu(w) dw

≥ 1
2
M−1(%0/4)αE0τB(0,1)(4c1)−1u(x)(2|x− z|)−d−α|B(x, %0/4)|

≥ c2u(x),

where c2 = M−18−d−α−1(ωd/d)E0τB(0,1)c
−1
1 (%0/diam(F ))d+α. From this

and (5.14) with r = %0, (5.12) follows.
We now assume that x ∈ D and u(x) = 0. By the first part of the proof,

for every B = B(x, r) with r > 0 small enough we have

0 = u(x) ≥ 1
2
Exu(XτB) ≥ 1

2
�
Dc

PB(x, y)u(y) dy.

It follows that u = 0 a.e. on Dc. The pointwise equality u = 0 on D is a
consequence of (5.12).

From (5.12) it follows that every nonnegative q-harmonic function is
locally bounded on D, hence by Lemma 5.4 we get the following

Corollary 5.1. Every function q-harmonic in D is continuous in D.
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