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GROUPS WITH METAMODULAR SUBGROUP LATTICE
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Abstract. A group G is called metamodular if for each subgroup H of G either
the subgroup lattice L(H) is modular or H is a modular element of the lattice L(G).
Metamodular groups appear as the natural lattice analogues of groups in which every
non-abelian subgroup is normal; these latter groups have been studied by Romalis and
Sesekin, and here their results are extended to metamodular groups.

1. Introduction. A subgroup of a group G is called modular if it is a
modular element of the lattice L(G) of all subgroups of G. It is clear that
every normal subgroup of a group is modular, but arbitrary modular sub-
groups need not be normal; thus modularity may be considered as a lattice
generalization of normality. Lattices with modular elements are also called
modular, and a group G is said to be an M -group if L(G) is a modular
lattice. Abelian groups and the so-called Tarski groups (i.e. infinite groups
all of whose proper non-trivial subgroups have prime order) are obvious
examples of M -groups. The structure of periodic M -groups has been
completely described by K. Iwasawa [5], [6] and R. Schmidt [12].

A group G is called metahamiltonian if all its non-abelian subgroups are
normal. The structure of groups with this property has been investigated
by G. M. Romalis and N. F. Sesekin in a series of papers ([9], [10], [11]),
where they proved that if G is a soluble metahamiltonian group, then the
commutator subgroup G′ of G is finite of prime power order and G has
derived length at most 3.

We shall say that a lattice L with 0 and 1 is metamodular if for each
a ∈ L either the interval [a/0] is a modular lattice or a is a modular element
of L. A group will be called a metamodular group if its subgroup lattice is
metamodular. If ϕ is an isomorphism from the subgroup lattice of a group
G onto the lattice of all subgroups of a group G, and N is a normal sub-
group of G, then the image Nϕ of N is a modular element of the lattice
L(G); furthermore, ϕ maps every abelian subgroup of G to a subgroup of G
having modular subgroup lattice. Thus every lattice-isomorphic image of a

2000 Mathematics Subject Classification: Primary 20F24.

[231]



232 M. DE FALCO ET AL.

metahamiltonian group is a metamodular group, and the aim of this article
is to provide a lattice analogue of the above-quoted result of Romalis and
Sesekin. Recall that a group G is locally graded if every finitely generated
non-trivial subgroup of G contains a proper subgroup of finite index. We
will prove the following theorems.

Theorem A. Let G be a locally graded metamodular group. Then G is
soluble with derived length at most 5.

Theorem B. Let G be a periodic locally graded metamodular group.
Then G contains a finite normal subgroup N such that the factor group
G/N has modular subgroup lattice. Moreover , the subgroup G′′ is finite of
prime power order.

In the above statement the assumption that the group is locally graded
cannot be omitted, as the following example shows.

Example. Let A and B be isomorphic Tarski p-groups; a result of
Obraztsov [7] shows that A and B can be embedded in a periodic simple
2-generator group G in such a way that A ∩ B = {1} and every non-cyclic
subgroup of G is contained either in a conjugate of A or in a conjugate of B.
It follows that all proper subgroups of G have modular subgroup lattices;
in particular, the simple group G is a metamodular group, but the lattice
L(G) is not modular.

It is not clear whether the bound for the derived length obtained in
Theorem A is best possible; however, the symmetric group S4 of degree 4
shows that finite groups with metamodular subgroup lattice need not be
metabelian, and in Section 3 we will also construct a finite metamodular
group with derived length 4.

Most of our notation is standard and can be found in [8]. We shall use
the monograph [13] as a general reference for results on subgroup lattices.

2. Proof of Theorem A. Let L be a metamodular lattice. If a is an
element of L such that the interval [a/0] is not modular, it follows from the
definition that every element of the interval [1/a] is modular in L, so that in
particular [1/a] is a modular lattice. As a special case, we get the following
result.

Lemma 2.1. Let G be a metamodular group, and let N be a normal
subgroup of G. Then at least one of the groups N and G/N has modular
subgroup lattice.

A groupG is called a P ∗-group if it is the semidirect product of an abelian
normal subgroup A of prime exponent by a cyclic group 〈x〉 of prime power
order such that x induces on A a power automorphism of prime order (recall
here that a power automorphism of a group G is an automorphism mapping
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every subgroup of G onto itself). It is easy to see that the subgroup lattice of
any P ∗-group is modular, and Iwasawa ([5], [6]) proved that a locally finite
group has modular subgroup lattice if and only if it is a direct product

G = Dr
i∈I

Gi,

where each Gi is either a P ∗-group or a primary locally finite group with
modular subgroup lattice, and elements of different factors have coprime
orders; this direct decomposition will be called the Iwasawa decomposition
of the M -group G. Recall also that a group G is said to be a P -group if
either it is abelian of prime exponent or G = 〈x〉nA is a P ∗-group with the
subgroup 〈x〉 of prime order.

It is well known that a special role among modular subgroups is played
by permutable subgroups; here a subgroup H of a group G is said to be
permutable if HK = KH for every subgroup K of G. Recall also that a
subgroup H of a periodic group G is said to be P -embedded in G if the
following conditions are satisfied:

• G/HG = (Dri∈I(Si/HG))×L/HG, where each Si/HG is a non-abelian
P -group;
• in the above direct decomposition, elements from different factors have

coprime orders;
• H/HG = (Dri∈I(Qi/HG)) × ((H ∩ L)/HG), where each Qi/HG is a

non-normal Sylow subgroup of Si/HG;
• H ∩ L is a permutable subgroup of G.

All P -embedded subgroups are modular, and it can be proved that ev-
ery modular subgroup of a locally finite group is either permutable or P -
embedded (see [15, Theorem 3.2 and Theorem E]).

Lemma 2.2. Let G be a finite metamodular group. Then G is soluble.

Proof. It is clearly enough to prove the statement when G is a finite
simple metamodular group. In this case G does not contain proper non-
trivial modular subgroups (see [13, Theorem 5.3.1]), and hence every proper
subgroup of G has modular subgroup lattice. It follows that all proper sub-
groups of G are supersoluble, so that G is a soluble group.

In order to prove that arbitrary locally graded metamodular groups are
soluble with derived length at most 5 we need the following information on
modular subgroups of non-periodic groups.

Lemma 2.3. Let G be a group, and let H be a modular subgroup of G
such that the factor group G/HG is generated by elements of infinite order.
Then H is normal in G.
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Proof. Let g be any element of G such that the coset gHG has infinite
order. Then

〈H, g〉 ∩HG = 〈H, 〈g〉 ∩HG〉 = H,

and so H is normal in 〈H, g〉. Since the group G is generated by its elements
with infinite order modulo HG, it follows that H is a normal subgroup
of G.

Proof of Theorem A. Assume by contradiction that the statement is
false, so that there exists a finitely generated locally graded metamodular
group G with G(5) 6= {1}. As locally graded M -groups are metabelian (see
[13, Theorem 2.4.21]), the lattice L(G(3)) is not modular, and so G/G(3)

is an M -group by Lemma 2.1. It follows that G′′ = G(3), so that G′′ is a
perfect group, and hence it has no finite non-trivial homomorphic images
by Lemma 2.2. In particular, G′′ is not finitely generated and G/G′′ is not
periodic, so that G can be generated by its elements of infinite order modulo
G′′ (see [13, Lemma 2.4.8]). Let H be any subgroup of G′′ such that the
lattice L(H) is not modular. Then by Lemma 2.3 every subgroup of G′′

containing H is normal in G. In particular, G′′/H is a Dedekind group, so
that H = G′′ and hence every proper subgroup of G′′ has modular subgroup
lattice. On the other hand, the property of having modular subgroup lattice
is local (see [3, Lemma 5.1]), so that G′′ is an M -group and G(4) = {1}.
This contradiction completes the proof.

3. Proof of Theorem B. The first three lemmas of this section deal
with the structure of the factor group G/HG when H is a modular subgroup
of a finite group G.

Lemma 3.1. Let G be a finite group, and let H be a Hall subgroup of G.
If H is modular in G, then G/HG = HG/HG × L/HG, where the factors
have coprime orders and HG/HG is an M -group. Moreover , either H is
normal in G or HG/HG is the direct product of non-abelian P -groups with
pairwise coprime orders.

Proof. Obviously we may suppose that the subgroup H is not normal
in G. Then

G/HG = S1/HG × . . .× St/HG × L/HG,

where the factors have pairwise coprime orders, every Si/HG is a non-abelian
P -group, H ∩ L is a permutable subgroup of G,

H/HG = Q1/HG × . . .×Qt/HG × (H ∩ L)/HG

and Qi/HG is a non-normal Sylow subgroup of Si/HG for each i ≤ t (see
[13, Theorem 5.1.14]). As H is a Hall subgroup of G, it follows that the
intersection H ∩L is characteristic in L, so that it is normal in G and hence
H ∩ L = HG. Therefore HG = 〈S1, . . . , St〉 and the lemma is proved.
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Lemma 3.2. Let G be a finite metamodular group, and let H be a Hall
subgroup of G. If H is not an M -group, then the factor group G/HG has
modular subgroup lattice.

Proof. The subgroup H is modular in G, and hence by Lemma 3.1 we
have

G/HG = HG/HG × L/HG,

where the factors have coprime orders and HG/HG has modular subgroup
lattice. On the other hand, L/HG ' G/HG is an M -group by Lemma 2.1,
so that also the lattice L(G/HG) is modular.

Lemma 3.3. Let G be a finite group, and let H be a modular subgroup
of G such that the index |G : H| is a power pn of a prime number p. If H is
not permutable in G, then the factor group G/HG is a non-abelian P -group
of order pnq, where q is a prime number and q < p.

Proof. Since H is not permutable in G, we have

G/HG = S1/HG × . . .× St/HG × L/HG,

where the factors have pairwise coprime orders, every Si/HG is a non-abelian
P -group and H ∩ L is permutable in G (see [13, Theorem 5.1.14]). On the
other hand, the index |G : H| is a power of a prime number, and hence
in the above decomposition there is only one non-trivial factor. Therefore
G/HG is a P -group and |G/HG| = pnq for some prime number q < p.

We will now prove a series of lemmas, which will be used in order to
show that the second commutator subgroup of a finite metamodular group
has prime power order.

Lemma 3.4. Let G be a finite group of order pmqn, where p and q are
prime numbers, and let P be a Sylow p-subgroup of G such that the normal-
izer NG(P ) is a P ∗-group. Then G′′ is a q-group.

Proof. Let Q be a Sylow q-subgroup of G, so that G = PQ and NG(P ) =
P 〈b〉, where P is elementary abelian and b is an element of Q inducing on P
a power automorphism of order q. Then

[P ∩NG(Q), b] ≤ P ∩Q = {1},
so that

P ∩NG(Q) ≤ CP (b) = {1}
and hence

NG(Q) = Q(P ∩NG(Q)) = Q.

It follows that the soluble group G has no normal subgroups of index p, and
so it must contain a normal subgroup K such that G/K has order q. Clearly
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NG(P ) is not contained in K and

NK(P ) = NG(P ) ∩K = P (〈b〉 ∩K) = P × 〈bq〉,
so that K is p-nilpotent by Burnside’s theorem. Then Q ∩ K is a normal
subgroup of K and K/Q ∩K is abelian, so that G′′ ≤ K ′ ≤ Q and G′′ is a
q-group.

Lemma 3.5. Let G be a finite metamodular group, and let P be a Sylow
subgroup of G. If P is normal in G, then either G′′ is contained in P or
P ∩G′′ = {1}.

Proof. Since P is normal in G, there exists a subgroup H of G such
that G = PH and P ∩ H = {1}. If H has modular subgroup lattice, then
G/P ' H is metabelian and so G′′ ≤ P . Suppose now that H is not an
M -group, so that H is a modular subgroup of G and Lemma 3.2 yields that
the lattice L(G/HG) is modular. In this case G′′ is contained in H, and
hence P ∩G′′ = {1}.

Lemma 3.6. Let G be a finite metamodular group of order pmqn, where
p and q are prime numbers with p > q, and let P be a Sylow p-subgroup
of G. Then either P is normal in G or the normalizer NG(P ) is a maximal
subgroup of G.

Proof. Assume by contradiction that P is not normal in G and there
exists a subgroup H of G such that NG(P ) < H < G. Clearly H is not
subnormal in G and the index |G : H| is a power of q. As P is not normal
in H, the lattice L(H) is not modular, so that H is modular in G and G/HG

is a P -group by Lemma 3.3. As p > q, it follows that PHG/HG is the unique
Sylow p-subgroup of G/HG, a contradiction since H/HG is core-free.

Lemma 3.7. Let G be a finite metamodular group, and let p be the largest
prime divisor of the order of G. If P is a Sylow p-subgroup of G and
|π(PG)| = 2, then the normalizer NG(P ) has modular subgroup lattice.

Proof. Assume by contradiction that NG(P ) is not an M -group, so that
it is a modular subgroup of G. Put π(PG) = {p, q}, and let H be a q-
complement of G containing P . Then P = PG ∩ H is a normal subgroup
of H, and so the index |G : NG(P )| is a power of q. Let K = (NG(P ))G be
the core of NG(P ) in G. Since NG(P ) is a proper self-normalizing subgroup
of G, it follows from Lemma 3.3 that G/K is a P -group of order qnr, where
r is a prime number and r < q. In particular, PG/PG ∩ K is a q-group
and PG ∩K ≤ NG(P ), so that NPG(P ) is subnormal in PG. Therefore P is
subnormal, and so even normal in G. This contradiction proves the lemma.

Lemma 3.8. Let G be a finite metamodular group. Then the subgroup
G′′ has prime power order.
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Proof. Assume by contradiction that the lemma is false, and choose a
counterexample G with minimal order. Since all finite M -groups are met-
abelian, it follows from Lemma 3.2 that every Sylow subgroup of G has
modular subgroup lattice. Suppose that G contains a non-trivial normal
Sylow subgroup S; then S ∩G′′ = {1} by Lemma 3.5, and so G′′ ' G′′S/S
has prime power order, a contradiction. ThereforeG does not contain normal
non-trivial Sylow subgroups. Let p be the largest prime divisor of the order
of G, and let P be a Sylow p-subgroup of G. As G is soluble by Lemma 2.2,
we may consider a Sylow basis Σ of G containing P , and there exists a Sylow
q-subgroup Q of G such that Q ∈ Σ and P is not normal in the subgroup
H = PQ. Clearly the lattice L(H) is not modular, and so H is a modular
subgroup of G. It follows from Lemma 3.2 that G/HG is an M -group, so that
G′′ is contained in H and hence it is a {p, q}-group. Moreover, PHG/HG is
a normal subgroup of G/HG, so that P ≤ HG and H/HG is a q-group. Thus
either H is normal in G or HG/HG is a P -group of order rmq, where r is a
prime number and p > r > q.

Let U and V be the p-complement and the q-complement, respectively, in
the Sylow system Σ∗ of G associated to Σ. Assume that the lattice L(U) is
not modular. Then G/UG is an M -group by Lemma 3.2 and G′′ is contained
in U , so that G′′ is a q-group. This contradiction shows that U has modular
subgroup lattice, and a similar argument proves that also V is an M -group.
Put W = U ∩ V , and let

W = S1 × . . .× St
be the Iwasawa decomposition of the M -group W . Suppose that Si is a
P ∗-group for some i ≤ t. Then Si must occur as factor also in the Iwasawa
decompositions of the groups U and V , so that Si is a normal subgroup
of G = 〈U, V 〉; on the other hand, Si contains a normal non-trivial Sylow
subgroup Pi, and Pi is normal in G. This contradiction proves that every Si
has prime power order, and hence W is a nilpotent group. As G = QV , we
have U = QW and at most one of the Sylow subgroups of W can generate
together with Q a P ∗-group in the Iwasawa decomposition of U . Thus either
U is nilpotent or U = (QSi)×Ei, where Si is a Sylow subgroup of W , QSi
is a P ∗-group and W = Si×Ei. Similarly we find that either V is nilpotent
or V = PSj × Ej , where Sj is a Sylow subgroup of W , PSj is a P ∗-group
and W = Sj × Ej .

Assume by contradiction that the subgroup H is not normal in G, so
that HG/HG is a P -group of order rmq with r > q. Let R be the Sylow
r-subgroup of G in Σ. Clearly RQ is not nilpotent, and hence RQ = QSi
is a P ∗-group. It follows that Q is cyclic and R = Si is a normal subgroup
of U . Thus R cannot be normalized by P , so that PR is not nilpotent and
so PR = PSj is a P ∗-group. Therefore R = Si = Sj is the unique Sylow
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subgroup of W which is not normal in G, so that W = R and G is a {p, q, r}-
group. As Q is cyclic and p > r > q, we deduce that G contains a normal
q-complement (see [8, 10.1.9]), so that V is normal in G, and hence also P
is a normal subgroup of G. This contradiction shows that H is normal in G,
so that the normal closure PG of P is a {p, q}-group and the normalizer
NG(P ) has modular subgroup lattice by Lemma 3.7.

Suppose now that V is not nilpotent, so that V = PSj × E and PSj is
a P ∗-group; in particular, P is normal in PSj and PSj is a direct factor in
the Iwasawa decomposition of NG(P ). Thus NH(P ) = P ×Q0 with Q0 ≤ Q,
and hence H has a normal p-complement by Burnside’s theorem. It follows
that Q is normal in H, and so even in G, a contradiction. Therefore the
subgroup V is nilpotent. Since G = UV , every non-trivial Sylow subgroup
of W is not normal in U . Assume that H is properly contained in G, i.e.
that G is not a {p, q}-group. Thus W 6= {1}, and in particular the subgroup
U is not nilpotent, so that

U = QSi × Ei = QSi

is a P ∗-group. Moreover, Q = H ∩ U is a normal subgroup of U , so that
Q is abelian of exponent q and Si is cyclic of order rn, where r is a prime
number. Suppose that the normalizer NG(Q) is an M -group; then

NH(Q) = Q× (P ∩NH(Q)),
and it follows from Burnside’s theorem that H is q-nilpotent, so that P is
normal in H and hence even in G, which is not the case. Therefore NG(Q)
is not an M -group, and so it is a modular subgroup of G. Since Q is normal
in U , the index |G : NG(Q)| is a power of p, and Lemma 3.3 implies that
G/(NG(Q))G is a non-abelian P -group of order pks, where s is a prime
number and s < p. On the other hand, G is a {p, q, r}-group and its {p, r}-
subgroups are nilpotent, so that s = q and G contains a normal subgroup
N of index q. Since G/H ' Si, it follows that G/H ∩ N is cyclic of order
qrn; but U = QSi is a Hall {q, r}-subgroup of G and it has no elements of
order qrn. This contradiction proves that G = H = PQ is a {p, q}-group.

As the lattice L(NG(P )) is modular, it follows now from Lemma 3.4 that
NG(P ) is not a P ∗-group, so that NG(P ) is nilpotent and hence NG(P ) =
P×Q0, where Q0 is a proper subgroup of Q. Let Q1 be a subgroup of Q such
that Q0 is a maximal subgroup of Q1. Since NG(P ) is a maximal subgroup
of G by Lemma 3.6, we see that Q0 is normal in G = 〈NG(P ), Q1〉. Let N =
(NG(P ))G be the core of NG(P ) in G, and let M/N be the unique minimal
normal subgroup of the primitive soluble group G/N . Then G = MNG(P )
and M ∩NG(P ) = N , and in particular

|M/N | = |G : NG(P )| = qk,

with k ≥ 2 because P is not normal in G and q < p. Moreover, Q0 lies
in N , so that NG(P )/N is a p-group and Q is a proper subgroup of M ; it
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follows that Q0 is properly contained in N , and so N = P0 × Q0, where
P0 = P ∩ N is a non-trivial normal subgroup of G. Since Q is not normal
in G, the subgroup M is not nilpotent, and hence there exist (at least) q
maximal subgroups X1, . . . ,Xq of M containing N which are not nilpotent.
Assume that Xi is a modular subgroup of G for some i ≤ q; as N < Xi < M ,
we obtain

NG(P ) < 〈NG(P ),Xi〉 < G,

which contradicts the maximality of NG(P ) in G. This shows that the sub-
groups X1, . . . ,Xq are not modular in G, so that they have modular sub-
group lattices, and hence X1, . . . ,Xq are P ∗-groups. Therefore P0 is elemen-
tary abelian and Xi induces on P0 a group of power automorphisms for each
i ≤ q. It follows that also M induces on P0 a group of power automorphisms,
so that M/CM (P0) is a cyclic non-trivial group. Thus CM (P0) is a normal
subgroup of G such that

N < CM (P0) < M,
which is impossible.

We can now prove the main result of the paper. In our argument we need
information on groups in which every subgroup has finite index in a modular
subgroup; the structure of such groups has recently been investigated in [1]
and [2].

Proof of Theorem B. The group G is soluble with derived length at most
5 by Theorem A. In order to prove that G contains a finite normal subgroup
N such that G/N is an M -group, it can obviously be assumed that G is not
an M -group, so that G contains a finite subgroup E such that the lattice
L(E) is not modular (see [3, Lemma 5.1]), and E is modular in G. Since
every modular subgroup of a locally finite group is either permutable or
P -embedded (see [13, Theorem 6.2.17]), we have

G/EG = S/EG × L/EG,
where S/EG is an M -group, L∩E is a permutable subgroup of G and the set
π(S/EG) ∩ π(L/EG) is empty. Let H be any subgroup of L containing EG.
Then 〈H,E〉 is a modular subgroup of G, and hence 〈H,E〉 ∩ L is modular
in L. On the other hand,

〈H,E〉 ∩ L = 〈H,E ∩ L〉 = H(E ∩ L)

and so the index |〈H,E〉∩L : H| is finite. Therefore each subgroup of L/EG
has finite index in a modular element of L(L/EG) and there exists a finite
normal subgroup N of L such that EG ≤ N and the lattice L(L/N) is
modular (see [1]). Clearly N is a normal subgroup of G, and G/N is an
M -group. In particular, G/N is metabelian, so that G′′ is finite and there
exists a finite subgroup G0 of G such that G′′0 = G′′. Therefore G′′ has prime
power order by Lemma 3.8, and the theorem is proved.
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Finally, it will now be proved that there exist finite metamodular groups
with derived length 4. It is well known that the symmetric group S4 of
degree 4 has precisely two non-isomorphic representation groups (see [14]);
one of them is GL(2, 3) and the other is a group G of order 48 with just
one subgroup Z of order 2. Then G/Z ' S4 and G has derived length 4.
Moreover, since G has only one subgroup of order 2, every subgroup of order
8 or 12 of G has modular subgroup lattice. Let M/Z be the normal subgroup
of order 4 of G/Z, and let X be any subgroup of G such that the lattice
L(X) is not modular; then X contains M and so it is a modular subgroup
of G because G/M ' S3. Therefore the group G has metamodular subgroup
lattice.
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