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NONANALYTICITY OF SOLUTIONS TO ∂tu = ∂2
xu+ u2

BY

GRZEGORZ ŁYSIK (Warszawa)

Abstract. It is proved that the solution to the initial value problem ∂tu = ∂2
xu+u2,

u(0, x) = 1/(1 + x2), does not belong to the Gevrey class Gs in time for 0 ≤ s < 1. The
proof is based on an estimation of a double sum of products of binomial coefficients.

1. Introduction. We consider the characteristic Cauchy problem for
the semilinear heat equation

(1)
∂tu = ∂2

xu+ u2,

u(0, x) = ϕ(x).

The equation describes the heat flow with a temperature dependent source
and was studied by many authors, mainly in the Sobolev space setting ([F],
[P1], [P2], [KST], [W], [Ō], [AH]). Since the nonlinearity, f(u) = u2, is locally
Lipschitz in u, it follows from standard results that any nonnegative solution
of (1) is in fact classical, but it exists only locally in time ([F], [P1], [P2]). Also
the following smoothing effect is known. For any choiceϕ ∈ L2(R) there exists
T > 0 such that the solution u of (1) has an analytic continuation to Ω =
{(teiθ, x+iy) : 0 < t < T, |θ| < α < π/2, x ∈ R, |y| <

√
t} ([AH]). The above

result does not guarantee the analyticity in time at t = 0 even if the initial
data is analytic. Indeed, if ϕ is analytic then (1) has a unique formal solution

(2) u(t, x) =
∞∑

n=0

ϕn(x)tn,

where ϕn are given by the recurrence relations

(3)





ϕ0 = ϕ,

ϕn+1 =
1

n+ 1

(
∂2
xϕn +

n∑

i=0

ϕiϕn−i
)
, n ∈ N0.
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We shall prove that this formal solution belongs to the Gevrey class G1, but
it is divergent if ϕ does not extend to an entire function of exponential order
2 and has nonnegative Taylor coefficients. Recall here that S. Kovalevskaya
already proved in [K] that the condition that ϕ is entire of exponential order
at most 2 is necessary and sufficient for the existence of an analytic solution
to the linear heat equation ∂tu = ∂2

xu, u(0, x) = ϕ(x) (see also [LMS]). So it
seems that the condition of nonnegativity of Taylor coefficients of ϕ is not
necessary for the divergence of formal solutions to (1). However, when trying
to prove the divergence without this condition we encountered difficulties
connected with the influence of the nonlinear part of the equation. We only
managed to prove the divergence of the formal solution in the “simplest”
case of ϕ(x) = 1/(1 + x2). This function is analytic in a strip along R and
it belongs to H∞(R) (so it has a finite energy). Our main result reads as
follows:

Theorem 1. Let ϕ(x) = c/(1 + x2) with 0 < c < 2. Then the formal
solution (2) to the initial value problem (1) does not belong to the Gevrey
class Gs in time for 0 ≤ s < 1. Thus, the solution of (1) is not analytic in
time at t = 0.

The proof of the main theorem is based on the following lemma which
seems to be of independent interest.

The Main Lemma. For k, n ∈ N0 put

(4) C(k, n) =
n∑

i=0

k∑

l=0

(
n

i

)(
2k
2l

)/(
2k + 2n
2l + 2i

)
.

Then

(5) C(k, n) ≤
{

2 2
5 for n ∈ N0 if k = 0, 1,

k + 1 for n ∈ N0 if k ≥ 2.

Our method of the proof of the main theorem can also be applied to
the Cauchy problem for the Korteweg–de Vries equation ∂tu = ∂3

xu +
2u∂xu, u(0, x) = 1/(1 + x2). However, the proof of the corresponding ver-
sion of the main lemma is much more involved and will be published else-
where ([Ł]).
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2001/02. The problem of nonanalyticity of solutions to the KdV and u2-heat
equations was brought to the author’s attention by Alex Himonas, and the
author wishes to thank him and Gerard Misiolek for hospitality and many
valuable discussions.
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2. Gevrey estimates

Definition 1. We say that the formal power series (2) is in the Gevrey
class Gs(Ω) in time, s ≥ 0, Ω ⊂ R, if for any compact set K ⊂⊂ Ω one can
find L <∞ such that

(6) sup
n∈N0

sup
x∈K

|ϕn(x)|
Ln(n!)s

<∞.

In the proof of Theorem 2 we shall need

Lemma 1. Let ν, µ,m ∈ N0. Then

(7)
m∑

k=0

(k + ν)!
k!

(m− k + µ)!
(m− k)!

=
ν!µ!(m+ ν + µ+ 1)!

(ν + µ+ 1)! m!
.

Proof. The formula (7) is equivalent to
m∑

k=0

(
k + ν

ν

)(
m− k + µ

µ

)
=
(
m+ ν + µ+ 1
ν + µ+ 1

)
,

which can be proved by combinatorial tricks (see [PBM, Form. 4.2.5.36]).

Theorem 2. Let ϕ be analytic in Ω ⊂ R. Then the formal solution (2)
to the initial value problem (1) belongs to G1(Ω) in time.

Proof. Let K be compact in Ω. Since ϕ0 = ϕ is analytic in Ω we can
find 1 ≤ C <∞ such that for m ∈ N0,

(8) sup
x∈K
|∂mϕ0(x)| ≤ Cm+1m!, sup

x∈K
|∂mϕ2

0(x)| ≤ Cm+2(m+ 1)!.

We shall prove that for n ∈ N,m ∈ N0,

(9) sup
x∈K
|∂mϕn(x)| ≤ 2Cm+2n+1 (m+ 2n)!

n!
,

which implies (6) with s = 1 and L = 4C2. For n = 1 we have ϕ1 =
∂2ϕ0 + ϕ2

0. Hence by (8) we get supx∈K |∂mϕ1(x)| ≤ 2Cm+3(m + 2)!. To
prove (9) for n ≥ 2 note that the recurrence relations (3) imply

(10) ϕn =
1
n!

(
∂2nϕ0 +

n−1∑

j=0

j!∂2n−2j−2
j∑

i=0

ϕiϕj−i
)
, n ∈ N.

Next by the Leibniz rule, the inductive assumption and Lemma 1 we derive
for j ≥ 1,

sup
x∈K
|∂m(ϕ0ϕj)(x)| ≤

m∑

k=0

(
m

k

)
Ck+1k!

2
j!
Cm−k+2j+1(m− k + 2j)!

≤ 2
j!(2j + 1)

Cm+2j+2(m+ 2j + 1)!,
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and for j ≥ 2, 1 ≤ i ≤ j − 1,

sup
x∈K
|∂m(ϕiϕj−i)(x)| ≤

m∑

k=0

(
m

k

)
2
i!
Ck+2i+1(k + 2i)!

× 2
(j − i)! C

m−k+2j−2i+1(m− k + 2j − 2i)!

≤ 4
i!(j − i)!

(2i)!(2j − 2i)!
(2j + 1)!

Cm+2j+2(m+ 2j + 1)!.

Hence by (10) and (8) we get

sup
x∈K
|∂mϕn(x)| ≤ 1

n!
Cm+2n+1(m+ 2n)!

×
{

1 +
1

C(m+ 2n)

[
1 +

n−1∑

j=1

4
2j + 1

(
1 +

j−1∑

i=1

(
j

i

)/(
2j
2i

))]}

≤ 2
n!
Cm+2n+1(m+ 2n)!

since C ≥ 1 and
n−1∑

j=1

4
2j + 1

(
1 +

j−1∑

i=1

(
j

i

)/(
2j
2i

))
≤
n−1∑

j=1

4
2j + 1

(1 + j − 1) ≤ 2n− 2.

Theorem 3. Fix % ≥ 2. Let ϕ be analytic in Ω ⊂ R and assume that
at a point x̊ ∈ Ω the Taylor coefficients of ϕ are nonnegative. If ϕ does not
extend to an entire function of exponential order % then the formal solution
(2) of (1) does not belong to Gs(Ω) in time for any 0 ≤ s ≤ 1 − 2/%. In
particular , it is divergent.

Proof. Since ϕn are given by (10) the assumption about nonnegativity
of the Taylor coefficients of ϕ implies that

(11) ϕn(̊x) ≥ 1
n!
∂2nϕ(̊x).

Next the condition that ϕ is not an entire function of exponential order % is
equivalent to (see [B, Sec. 2.2])

lim n

√
∂2nϕ(̊x)((2n)!)1/%−1 =∞,

which together with (11) contradicts (6) for s ≤ 1− 2/%.

Remark 1. We conjecture that Theorem 3 remains true without the
nonnegativity assumption. Also, if ϕ is an entire function of exponential
order % < 2 the solution (2) should be an entire function in t of exponential
order %/(2− %).
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3. Auxiliary lemmas. In the proof of the Main Lemma we shall need
a few lemmas.

Lemma 2. For k, n ∈ N0 put

(12) D(k, n) =
n∑

i=0

(
n

i

)/(
2k + 2n
k + 2i

)
.

Then D(k, n+ 1) ≤ D(k, n) for n ≥ 3 if k = 0 and for n ≥ 0 if k ≥ 1.

Proof. For 0 ≤ i ≤ n put

D(k, n)(i) =
(
n

i

)/(
2k + 2n
k + 2i

)
.

Then for n even, n ≥ 2, we have

D(k, n) =
n/2−1∑

i=0

2D(k, n)(i) +D(k, n)(n/2),

D(k, n+ 1) =
n/2−1∑

i=0

2D(k, n+ 1)(i) + 2D(k, n+ 1)(n/2),

D(k, n+ 2) =
n/2∑

i=0

2D(k, n+ 2)(i) +D(k, n+ 2)(n/2 + 1).

So it is sufficient to show that for n even, n ≥ 2, the following inequalities
hold:

(13) D(k, n)(i) ≥ D(k, n+ 1)(i)

≥ D(k, n+ 2)(i) for 0 ≤ i ≤ n/2, k ∈ N0;

(14) 2D(k, n)(n/2− 1) +D(k, n)(n/2)

≥ 2D(k, n+ 1)(n/2− 1) + 2D(k, n+ 1)(n/2) for n ≥ 2, k ∈ N0;

(15) 2D(k, n+ 1)(n/2) ≥ 2D(k, n+ 2)(n/2) +D(k, n+ 2)(n/2 + 1)

for n ≥ 2 if k = 0 and for n ≥ 0 if k ≥ 1;

(16) D(k, 0) ≥ D(k, 1) ≥ D(k, 2) for k ∈ N.
Proof of (13 ). The first inequality in (13) means that
(
n

i

)/(
2k + 2n
k + 2i

)
≥
(
n+ 1
i

)/(
2k + 2n+ 2
k + 2i

)
for i = 0, . . . , n/2.

Expanding the binomial coefficients and cancelling similar factors we get

1 ≥ (n+ 1)(2n+ k − 2i+ 1)(2n+ k − 2i+ 2)
(n− i+ 1)(2n+ 2k + 1)(2n+ 2k + 2)
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or equivalently(
1− k + 2i

2n+ 2k + 1

)(
1− k + 2i

2n+ 2k + 2

)
≤ 1− i

n+ 1
for i = 0, . . . , n/2.

Since the first factor is less than the second one, putting n = 2i + m it is
sufficient to show that for i, k,m ≥ 0,

(
1− k + 2i

2m+ 2k + 4i+ 2

)2

≤ 1− i

m+ 2i+ 1
or equivalently

k + 2i
m+ k + 2i+ 1

− 1
4

(
k + 2i

m+ k + 2i+ 1

)2

≥ i

m+ 2i+ 1
.

Put
x =

k + 2i
m+ k + 2i+ 1

.

Then 0 ≤ x < 1 and x− 1
4x

2 ≥ x/2. Since

x/2 =
k/2 + i

m+ k + 2i+ 1
≥ i

m+ 2i+ 1
for i, k,m ≥ 0

we are done.
The second inequality in (13) is proved in the same way.

Proof of (14 ). We have to prove that for k ∈ N0 and n even, n ≥ 2,

2
(

n
n/2−1

)
(2k+2n
k+n−2

) +

(
n
n/2

)
(2k+2n
k+n

) ≥
2
(
n+1
n/2−1

)
(2k+2n+2
k+n−2

) +
2
(
n+1
n/2

)
(2k+2n+2

k+n

) .

Expanding the binomial coefficients and cancelling similar factors we get
(k + n+ 1)(k + n+ 2)

n/2 + 1
+

(k + n− 1)(k + n)
n/2

≥ (n+ 1)(k + n+ 2)(k + n+ 3)(k + n+ 4)
(n/2 + 1)(n/2 + 2)(2k + 2n+ 1)

+
(n+ 1)(k + n− 1)(k + n)(k + n+ 2)

(n/2)(n/2 + 1)(2k + 2n+ 1)
,

which is equivalent to

2n5 + (6k + 9)n4 + (6k2 + 34k − 5)n3 + (2k3 + 41k2 + 33k − 42)n2

+ (16k3 + 46k2 − 14k)n+ 8k3 − 16k2 − 24k ≥ 0.

Clearly, the last inequality holds for k ∈ N0 if n ≥ 2.

Proof of (15 ). We have to prove that

2
(
n+1
n/2

)
(2k+2n+2

k+n

) ≥
2
(
n+2
n/2

)
(2k+2n+4

k+n

) +
2
(
n+2
n/2+1

)
(2k+2n+4
k+n+2

) .
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Expanding the binomial coefficients and cancelling similar factors we have
to show

1 ≥ (n+ 2)(k + n+ 3)(k + n+ 4)
(n/2 + 2)(2k + 2n+ 3)(2k + 2n+ 4)

+
(k + n+ 1)(k + n+ 2)

(2k + 2n+ 3)(2k + 2n+ 4)
,

which is equivalent to

n3 + (2k + 5)n2 + (k2 + 13k + 2)n+ 8k2 + 16k − 8 ≥ 0.

The last inequality holds for n ≥ 1 if k = 0 and for n ≥ 0 if k ≥ 1.

Proof of (16 ). We have

D(k, 0) =
k!k!
(2k)!

, D(k, 1) = 2
k!(k + 2)!
(2k + 2)!

,

D(k, 2) = 2
k!(k + 4) + (k + 2)!(k + 2)!

(2k + 4)!
.

So the first inequality of (16) is equivalent to k+2
2k+1 ≤ 1, which holds for

k ≥ 1. The second inequality is equivalent to

(k + 3)(k + 4) + (k + 1)(k + 2)
(2k + 3)(2k + 4)

≤ 1,

which is also true if k ≥ 1.

Lemma 3. For k, n ∈ N0 let C(k, n) be given by (4). Then

(17) C(k, n) =
bk/2c∑

i=0

α(k, i)D(2i, k + n− 2i),

where the coefficients α(k, i) satisfy the recurrence relations

(18) α(k, i) =





1 for k ∈ N0, i = 0,
(

2k
2i

)
−

i−1∑

j=0

(
k − 2j
i− j

)
α(k, j) for k ∈ N, 1 ≤ i ≤ bk/2c.

Proof. Assuming that
(
n
i

)
= 0 if i < 0 or i > n we shall prove inductively

that for any m ∈ {0, 1, . . . , bk/2c, bk/2c+ 1},

(19) C(k, n) =
m−1∑

i=0

α(k, i)D(2i, k+ n− 2i)

+
k+n−m∑

j=m

k−m∑

l=m

{(
2k
2l

)
−
m−1∑

i=0

α(k, i)
(
k − 2i
l − i

)}(
n

j − l

)/(
2k + 2n

2j

)
.

Note that if m = bk/2c+ 1 then the second summand reduces to zero and
we get (17).
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Clearly (19) holds trivially for m = 0. Now assume (19) for a fixed
m ∈ {0, 1, . . . , bk/2c}. Since

k−m∑

l=m

(
k − 2m
l −m

)(
n

j − l

)
=
k−2m∑

l=0

(
k − 2m

l

)(
n

j − l −m

)
=
(
k + n− 2m
j −m

)

and
k+n−m∑

j=m

(
k+n−2m
j−m

)
(2k+2n

2j

) =
k+n−2m∑

j=0

(
k+n−2m

j

)
(2k+2n

2j+2m

) = D(2m,k + n− 2m)

we derive
k+n−m∑

j=m

k−m∑

l=m

{(
2k
2l

)
−
m−1∑

i=0

α(k, i)
(
k − 2i
l − i

)}(
n

j − l

)/(
2k + 2n

2j

)

=
k+n−m∑

j=m

k−m∑

l=m

α(k,m)
(
k − 2m
l −m

)(
n

j − l

)/(
2k + 2n

2j

)

+
k+n−m∑

j=m

k−m∑

l=m

{(
2k
2l

)
−

m∑

i=0

α(k, i)
(
k − 2i
l − i

)}(
n

j − l

)/(
2k + 2n

2j

)

=α(k,m)D(2m,k + n− 2m)

+
k+n−m−1∑

j=m+1

k−m−1∑

l=m+1

{(
2k
2l

)
−

m∑

i=0

α(k, i)
(
k − 2i
l − i

)}(
n

j − l

)/(
2k + 2n

2j

)
.

Clearly, this implies (19) with m+ 1 in place of m.

Lemma 4. Let α(k, i), k, i ∈ N0, satisfy the recurrence relations (18).
Then

(20) α(k, i) = 4i
(
k

2i

)
for k ∈ N0, 0 ≤ i ≤ bk/2c.

Proof. By (18) and (20) it is sufficient to show that for i ≥ 1,
(

2k
2i

)
=

i∑

j=0

4j
(
k − 2j
i− j

)(
k

2j

)
.

To this end fix i ∈ N and observe that(
2k
2i

)
=
k(k − 1) · . . . · (k − i+ 1)

i!
· (2k − 1)(2k − 3) · . . . · (2k − 2i+ 1)

1 · 3 · . . . · (2i− 1)

is a polynomial in k of degree 2i with leading coefficient 22i/(2i)! =
2i/(i!(2i − 1)!!), vanishing at k = 0, 1/2, 1, . . . , i − 1, i − 1/2. Next note
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that for j = 1, . . . , i,

2j
(
k − 2j
i− j

)(
k

2j

)
= 2j · (k − i− j + 1) · . . . · (k − 2j)

(i− j)! · (k − 2j + 1) · . . . · k
(2j)!

=
(k − i+ 1) · . . . · k

i!
· (i− j + 1) · . . . · i

j!
· (k − i− j + 1) · . . . · (k − i)

(2j − 1)!!
vanishes at k = 0, 1, . . . , i− 1. So it is sufficient to show that

W (k) := 1 +
i∑

j=1

2j · (i− j + 1) · . . . · i
j!

· (k − i− j + 1) · . . . · (k − i)
(2j − 1)!!

is a polynomial of degree i with leading coefficient 2i/(2i − 1)!!, vanishing
for k = 1/2, 3/2, . . . , i−1/2. Since the first two statements are clear we shall
prove the third one. To this end put k = i− 1/2−m with m = 0, . . . , i− 1.
Then

W (k) = 1 +
i∑

j=1

(−1)j
(
i

j

)
(2m+ 1)(2m+ 3) · . . . · (2m+ 2j − 1)

(2j − 1)!!

= 1 +
i∑

j=1

(−1)j
(
i

j

)
(2j + 1)(2j + 3) · . . . · (2j + 2m− 1)

(2m− 1)!!
= 0

since
∑i
j=0(−1)i

(
i
j

)
P (j) = 0 for any polynomial P of degree ≤ i− 1.

4. Proof of the Main Lemma. Let k = 0. Then C(0, n) = D(0, n).
Since by Lemma 2, D(0, n + 1) ≤ D(0, n) for n ≥ 3 and D(0, 0) = 1,
D(0, 1) = 2, D(0, 2) = 2 1

3 , D(0, 3) = 2 2
5 we get the conclusion. If k = 1 then

C(1, n) = 2 +
n∑

i=1

(
n

i

)/(
2n+ 2

2i

)
+

n∑

i=1

(
n

i− 1

)/(
2n+ 2

2i

)
= C(0, n+ 1)

and we are reduced to the previous case. Now let k ≥ 2. Then by Lemmas
3 and 4,

C(k, n) = D(0, k + n) +
bk/2c∑

i=1

4i
(
k

2i

)
D(2i, k + n− 2i).

Since by Lemma 2, D(2i, n) ≥ D(2i, n+1) for n ≥ 0 if i ≥ 1 and for n ≥ 3 if
i = 0, this implies that C(k, n) ≥ C(k, n+ 1) for n ≥ 0 (for k = 2, n = 0 we
have C(2, 0) = 3 > C(2, 1) = 2 14

15 ). The final computation C(k, 0) = k + 1
completes the proof.

5. Proof of Theorem 1. Assuming that (2) is a formal power series
solution of (1) we easily get the recurrence relations (3) for ϕn. Next we
observe that ϕn can be written in the form
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(21) ϕn(x) =
1
n!

∞∑

k=0

(−1)n+kA(n, 2k)x2k, n ∈ N0,

where the coefficients A(n, 2k) satisfy

A(0, 2k) = c,
(22)

A(n+ 1, 2k) = (2k + 1)(2k + 2)A(n, 2k + 2)

−
n∑

i=0

(
n

i

) k∑

l=0

A(i, 2l)A(n− i, 2k − 2l).

Indeed, ϕ0(x) =
∑∞
k=0(−1)kcx2k and assuming (21) for a fixed n ∈ N0, by

(3) we easily get the second formula in (22).

Claim. We have

(23) c(2k + 1) · . . . · (2k + 2n)[1− ε(1, k + n− 1)− . . .− ε(n, k)]

≤ A(n, 2k) ≤ c(2k + 1) · . . . · (2k + 2n)

with ε(n, k), n ∈ N, k ∈ N0, defined by

(24) (2k + 2n− 1)(2k + 2n)ε(n, k) =
{

2.4c if k = 0, 1 and n ≥ 2,

c(k + 1) if k ≥ 2 or n = 1.

Furthermore, the assumption 0 < c < 2 implies

(25) ε(1, k + n− 1) + . . .+ ε(n, k) < 1.

Proof. Note that to prove (25) it is sufficient to show that for l ∈ N and
c < 2,

ε(l) := ε(1, l − 1) + . . .+ ε(l, 0) < 1.

We compute ε(1) = c/2 < 1 if c < 2; ε(2) = c 2+2.4
3·4 < 1 if c < 30

11 . Finally,
for l ≥ 3 we get

ε(l) = c
l + (l − 1) + . . .+ 3 + 2.4 + 2.4

(2l − 1)(2l)
= c

l(l + 1) + 3.6
4l(2l − 1)

< 1 if c <
50
13
.

To prove (23) observe that for n = 1 we have

A(1, 2k) = c(2k + 1)(2k + 2)− c2(k + 1) = c(2k + 1)(2k + 2)[1− ε(1, k)].

Now assume (23) for a fixed n ∈ N0. Since in (22) we subtract a positive
term (by (25)) we get

A(n+ 1, 2k) ≤ (2k+ 1)(2k+ 2)A(n, 2k+ 2) ≤ c(2k+ 1) · . . . · (2k+ 2n+ 2).

To estimate A(n+ 1, 2k) from below observe that by the inductive assump-
tion, the Main Lemma and the definition of ε(n+ 1, k) we have
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n∑

i=0

(
n

i

) k∑

l=0

A(i, 2l)A(n− i, 2k − 2l)

≤ c2
n∑

i=0

k∑

l=0

(
n

i

)
(2l + 2i)!

(2l)!
(2k + 2n− 2l − 2i)!

(2k − 2l)!

= c2
(2k + 2n)!

(2k)!

n∑

i=0

k∑

l=0

(
n

i

)(
2k
2l

)/(
2k + 2n
2l + 2i

)

≤ c(2k + 1) · . . . · (2k + 2n+ 2)ε(n+ 1, k).

So

A(n+ 1, 2k) ≥ c(2k+ 1) · . . . · (2k+ 2n+ 2)[1− ε(1, k+n)− . . .− ε(n+ 1, k)].

Now, to finish the proof of Theorem 1 take K = {0} in Definition 1.
Then

|ϕn(0)| = 1
n!
A(n, 0) ≥ c (2n)!

n!
[1− ε(1, n− 1)− . . .− ε(n, 0)],

which by (25) contradicts (6) for 0 ≤ s < 1 if 0 < c < 2.

6. Final remarks

Remark 2. By the method presented in the paper one can also prove
that the solution to the Cauchy problem

∂tu = ∆u+ u2,

u(0, x) =
c

1 + x2 , x ∈ Rd, d ≥ 2,

does not belong to Gs(Rd) in time for any 0 ≤ s < 1 and c small enough. In
this case the coefficient C(k, n) in the Main Lemma takes the form

C(k, n) =





n∑

i=0

k∑

l=0

(
n

i

)(
k

l

)2/(
k + n

l + i

)2

if d = 2,

n∑

i=0

k∑

l=0

(
n

i

)(
2k + 2
2l + 1

)/(
2k + 2n+ 2
2l + 2i+ 1

)
if d = 3,

and one can prove that C(k, n) is bounded by k + 3.

Remark 3. Our method can also be applied to the Cauchy problem for
the KdV equation

(26) ∂tu = ∂3
xu+ 2u · ∂xu, u(0, x) =

c

1 + x2 .

Namely, we can prove ([Ł]) that if 0 < c < 5 the solution to (26) does not
belong to Gs(R) in time for 0 ≤ s < 2. The counterpart of C(k, n) is
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C(k, n)

=





n∑

i=0

k+1−imod2∑

l=0

(
n

i

)(
2k + 2

2l + imod2

)/(
2k + 3n+ 2

2l + 3i+ imod2

)
if n is even,

n∑

i=0

k∑

l=0

(
n

i

)(
2k + 1

2l + imod2

)/(
2k + 3n+ 1

2l + 3i+ imod2

)
if n is odd,

and is bounded by 3 if k = 0 and by k + 2 if k ≥ 1.
Added in proof. In summer 2002 P. Byers and A. Himonas constructed, by another

method, a nonanalytic solution to the KdV equation for a globally analytic initial data.
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