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NONCOMPACT GRASSMANNIANS
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PIOTR GRACZYK (Angers) and PATRICE SAWYER (Sudbury)

Abstract. We study the absolute continuity of the convolution δ\
eX

? δ\
eY

of two
orbital measures on the symmetric space SO0(p, q)/SO(p) × SO(q), q > p. We prove
sharp conditions on X,Y ∈ a for the existence of the density of the convolution measure.
This measure intervenes in the product formula for the spherical functions. We show that
the sharp criterion developed for SO0(p, q)/SO(p) × SO(q) also serves for the spaces
SU(p, q)/S(U(p) × U(q)) and Sp(p, q)/Sp(p) × Sp(q), q > p. We moreover apply our
results to the study of absolute continuity of convolution powers of an orbital measure δ\

eX
.

1. Introduction. The spaces SO0(p, q)/SO(p) × SO(q), where q > p
(which we will assume throughout the paper), are the noncompact duals
of real Grassmannians. They are Riemannian symmetric spaces of non-
compact type corresponding to root systems of type Bp. The harmonic
analysis on these spaces has been intensively developed in recent years
([1, 10, 12, 13, 14]).

We use throughout the paper the usual notations of the harmonic anal-
ysis on Riemannian symmetric spaces. The books [7, 8, 9] constitute a stan-
dard reference on these topics.

Let X,Y ∈ a and let mK denote the Haar measure of the group K. We
define

δ\
eX

= mK ? δeX ? mK .

The question of the absolute continuity of the convolution δ\
eX
? δ\

eY
of two

K-invariant orbital measures that we address in our paper has important
applications in harmonic analysis itself (the product formula for the spherical
functions) and in probability theory (random walks, I0 characterization of
Gaussian measures).

The spherical Fourier transform of the measure δ\
eX

is equal to the spher-

ical function φλ(eX), where λ is a complex-valued linear form on a. Thus the
product φλ(eX)φλ(eY ) is the spherical Fourier transform of the convolution

mX,Y = δ\
eX
? δ\

eY
.
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If we denote by µX,Y the projection of the measure mX,Y on a via the Cartan
decomposition G = KAK, then

φλ(eX)φλ(eY ) =
�

a

φλ(eH) dµX,Y (H).

Let δ be the density of the invariant measure on a in polar coordinates. The
existence of a kernel in the last product formula

(1) φλ(eX)φλ(eY ) =
�

a+

φλ(eH)k(H,X, Y )δ(H) dH

is equivalent to the absolute continuity of the measure µX,Y with respect to
the Lebesgue measure on a, and to the existence of the density of mX,Y on
G with respect to the invariant measure dg. When the formula (1) holds, we
say that we have a product formula for X,Y ∈ a. Provided that X,Y ∈ a+,
the product formula (1) has been shown previously (see [2] in the rank one
case, [3] in the complex case and [4] in the general case). In [4] we were
able to relax these conditions and show that µX,Y is absolutely continuous
provided one of X or Y is in a+ as long as the other is nonzero. The density
can however exist in some cases when both X and Y are singular. It is a
challenging problem to characterize all such pairs X and Y .

This problem was solved in [5] for symmetric spaces with root system of
type An. We solve it in this paper for the space SO0(p, q)/SO(p)× SO(q):
we give a definition of an eligible pair (X,Y ) (Definition 2.3) and next we
prove the necessity (Proposition 3.2) and the sufficiency (Proposition 4.4
and Theorem 4.8) of this property for the absolute continuity of mX,Y .

By [3, 4], the density k(H,X, Y ) exists if and only if the support SX,Y =
a(eXKeY ) of the measure µX,Y |a+ has nonempty interior. Similarly, the

density of the measure mX,Y exists if and only if its support KeXKeYK
has nonempty interior as seen in [5]. These facts are crucial in the proofs of
the results of this paper.

We show in Corollary 5.1 that the result for SO0(p, q)/SO(p) × SO(q)
also implies the result for the symmetric spaces SU(p, q)/S(U(p) ×U(q))
and Sp(p, q)/Sp(p)× Sp(q) of type BCp. We conclude the paper with two
further applications of our main result. One of them is a characterization
of an optimal convolution power l of the measure δ\

eX
, which is absolutely

continuous for any X 6= 0, X ∈ a. Theorem 5.3 solves, on noncompact
Grassmannians, a problem raised by Ragozin in [11].

2. Basic properties. We start by reviewing some useful information
on the Lie group SO0(p, q), its Lie algebra so(p, q) and the corresponding
root system. Most of this material was given in [14]. For the convenience of
the reader, we gather below the properties we will need.
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In this paper, Eij is a rectangular matrix with 0’s everywhere except at
position (i, j) where it is 1.

Recall that SO(p, q) is the group of matrices g ∈ SL(p+ q,R) such that
gT Ip,q g = Ip,q where

Ip,q =

[
−Ip 0p×q

0q×p Iq

]
.

Unless otherwise specified, all 2×2 block decompositions in this paper follow
the same pattern.

The group SO0(p, q) is the connected component of SO(p, q) containing
the identity. The Lie algebra so(p, q) of SO0(p, q) consists of the matrices[

A B

BT D

]
where A and D are skew-symmetric.

A very important element in our investigations is the Cartan decompo-
sition of so(p, q) and SO(p, q). The maximal compact subgroup K is the
subgroup of SO(p, q) consisting of the matrices[

A 0

0 D

]
of size (p + q) × (p + q) such that A ∈ SO(p) and D ∈ SO(q) (hence
K ' SO(p) × SO(q)). If k is the Lie algebra of K and p is the set of
matrices [

0 B

BT 0

]
then the Cartan decomposition is given by so(p, q) = k⊕p with corresponding
Cartan involution θ(X) = −XT .

The Cartan space a ⊂ p is the set of matrices

H =

 0p×p DH 0p×(q−p)

DH 0p×p 0p×(q−p)

0(q−p)×p 0(q−p)×p 0(q−p)×(q−p)


where DH = diag[H1, . . . ,Hp]. Its canonical basis is given by the matrices

Ai := Ei,p+i + Ep+i,i, 1 ≤ i ≤ p.
The restricted roots and associated root vectors for the Lie algebra so(p, q)
with respect to a are given in Table 1.

The positive roots can be chosen as α(H) = Hi±Hj , 1 ≤ i < j ≤ p, and
α(H) = Hi, i = 1, . . . , p. We therefore have the positive Weyl chamber

a+ = {H ∈ a : H1 > · · · > Hp > 0}.
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Table 1. Restricted roots and associated root vectors

Root α Multiplicity Root vectors Xα

α(H) = ±Hi q − p X±ir = Ei,2p+r + E2,p+ri ± (Ep+i,2p+r − E2p+r,p+i)

1 ≤ i ≤ p r = 1, . . . , q − p
α(H) = ±(Hi −Hj) 1 Y ±ij = ±(Eij − Eji + Ep+i,p+j − Ep+j,p+i)

1 ≤ i, j ≤ p, i < j + Ei,p+j + Ep+j,i + Ej,p+i + Ep+i,j

α(H) = ±(Hi +Hj) 1 Z±ij = ±(Eij − Eji − Ep+i,p+j + Ep+j,p+i)

1 ≤ i, j ≤ p, i < j − (Ei,p+j + Ep+j,i) + Ej,p+i + Ep+i,j

The simple roots are given by αi(H) = Hi − Hi+1, i = 1, . . . , p − 1, and
αp(H) = Hp.

The action of the Weyl group. The elements of the Weyl group W
act as permutations of the diagonal entries of DX with possible sign changes
of any number of these entries.

The Lie algebra k is generated by the vectors Xα + θXα. We will use the
notation

ktXα = et(Xα+θXα).

The linear space p has a basis formed by Ai ∈ a, 1 ≤ i ≤ p, and by the
symmetric matrices Xs

α := 1
2(Xα − θXα) which have the following form:

Xir := Ei,2p+r + E2p+r,i, 1 ≤ i ≤ p, 1 ≤ r ≤ q − p,
Yij := Ei,p+j + Ej,p+i + Ep+j,i + Ep+i,j , 1 ≤ i < j ≤ p,
Zij := Ei,p+j − Ej,p+i + Ep+j,i − Ep+i,j , 1 ≤ i < j ≤ p.

If we were to follow the notation of [5], we should write (X+
ir)

s etc., but we
simplify the symbols to Xir, Yij and Zij . If we write a matrix from the space
p in the form [

0 B

BT 0

]
=

 0 B1 B2

BT
1 0 0

BT
2 0 0


where B1 is a square p× p matrix and B2 is a p× (q − p) matrix, then the
matrices  0 B1 0

BT
1 0 0

0 0 0


are generated by the vectors Ai (for the diagonal entries of B1 and BT

1 ),
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Yij and Zij (for the nondiagonal entries), whereas the matrices 0 0 B2

0 0 0

BT
2 0 0


are spanned by the vectors Xir.

We now recall the useful matrix S ∈ SO(p + q) which allows us to
diagonalize simultaneously all the elements of a. Let

S =


√
2
2 Ip 0p×(q−p)

√
2
2 Jp

√
2
2 Ip 0p×(q−p) −

√
2
2 Jp

0(q−p)×p Iq−p 0(q−p)×p


where Jp = (δi,p+1−i) is a matrix of size p× p. If

H =

 0 DH 0

DH 0 0

0 0 0


with DH = diag[H1, . . . ,Hp] then

STHS = diag[H1, . . . ,Hp,

q−p︷ ︸︸ ︷
0, . . . , 0,−Hp, . . . ,−H1].

The “group” version of this result is as follows:

ST eHS = diag[eH1 , . . . , eHp ,

q−p︷ ︸︸ ︷
1, . . . , 1, e−Hp , . . . , e−H1 ].

Remark 2.1. The Cartan projection a(g) on the group SO0(p, q), de-
fined as usual by

g = k1e
a(g)k2, a(g) ∈ a+, k1, k2 ∈ K,

is related to the singular values of g ∈ SO(p, q) in the following way. Recall
that the singular values of g are defined as the nonnegative square roots of
the eigenvalues of gT g. Write H = a(g). We have

gT g = kT2 e
2Hk2 = (kT2 S)(ST e2HS)(STk2)

where ST e2HS is a diagonal matrix with nonzero entries

e2H1 , . . . , e2Hp ,

q−p︷ ︸︸ ︷
1, . . . , 1, e−2Hp , . . . , e−2H1 .

Write aj = eHj . Thus the set of p+q singular values of g contains the value 1
repeated q − p times and the 2p values a1, . . . , ap, a

−1
1 , . . . , a−1p .

Hence, in order to determine a(g), we can compute the p + q singular
values of gT g and omit q−p values 1 always appearing among them. The 2p
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remaining singular values may be ordered a1 ≥ · · · ≥ ap ≥ a−1p ≥ · · · ≥ a−11

with a1 ≥ · · · ≥ ap ≥ 1. Then

a(g) =

 0 Da(g) 0

Da(g) 0 0

0 0 0

 with Da(g) = diag[log a1, . . . , log ap].

Summarizing, if for g ∈ SO(p, q) ⊂ SL(p + q) the SL(p + q)-Cartan de-
composition reads g = k1e

ã(g)k2, k1, k2 ∈ SO(p+ q), then Da(g) = πp(ã(g)),
where πp denotes the projection πp(diag[h1, . . . , hp+q]) = diag[h1, . . . , hp].

Singular elements of a. In what follows, we will consider singular
elements X,Y ∈ ∂a+. As in [5], we need to control the irregularity of X
and Y , i.e. consider the simple positive roots annihilating X and Y . Special
attention must be paid to the last simple root αp, different from the roots αi,
i = 1, . . . , p− 1, that generate a root subsystem of type Ap−1. We introduce

the following definition of the configuration of X ∈ a+.

Definition 2.2. Let X ∈ a+. There exist nonnegative integers s1 ≥ 1,
. . . , sr ≥ 1, u ≥ 0 such that

DX = diag[

s1︷ ︸︸ ︷
x1, . . . , x1,

s2︷ ︸︸ ︷
x2, . . . , x2, . . . ,

sr︷ ︸︸ ︷
xr, . . . , xr,

u︷ ︸︸ ︷
0, . . . , 0 ]

with x1 > · · · > xr > 0 and
∑
si + u = p. We say that [s1, . . . , sr;u] is the

configuration of X. Writing s = (s1, . . . , sr), we will shorten the notation of
the configuration of X to [s;u]. We will also write X = X[s;u].

Note that X = 0 is equivalent to u = p and has configuration [0; p].
A regular X ∈ a+ has the configuration [1; 0] = [1p; 0]. We extend naturally
the definition of configuration to any X ∈ a, whose configuration is defined
as that of the projection π(X) of X on a+.

We will write max s = maxi si and max(s, u) = max(max s, u). We will
show that in the case of the symmetric spaces SO0(p, q)/SO(p) × SO(q),

q > p, the criterion for the existence of the density of the convolution δ\
eX
?δ\
eY

is given by the following definition of an eligible pair X,Y :

Definition 2.3. Let X = X[s;u] and Y = Y [t; v] be two elements of a.
We say that X and Y are eligible if

max(s, 2u) + max(t, 2v) ≤ 2p.

Observe that if X and Y are eligible, then X 6= 0 and Y 6= 0.

3. Necessity of the eligibility condition. In the proof of the neces-
sity of the eligibility condition we will use the result stated in [6, Step 1,
p. 1767]:
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Lemma 3.1. Consider two diagonal matrices U and V such that

U = diag[

r︷ ︸︸ ︷
u0, . . . , u0, u1, . . . , uN−r], V = diag[

N−s︷ ︸︸ ︷
v0, . . . , v0, v1, . . . , vs]

where s+ 1 ≤ r < N , s ≥ 1, and the ui’s and vj’s are arbitrary. Then each
element of ã(eUSU(N,F)eV ) has at least r − s entries equal to u0 + v0.

We will use Lemma 3.1 with N = p+ q in the proofs of Proposition 3.2
and Theorem 5.3.

Proposition 3.2. If X[s;u] and Y [t, v] are not eligible then the measure
µX,Y is not absolutely continuous with respect to the Lebesgue measure on a.

Proof. Suppose max(s, 2u) + max(t, 2v) > 2p and consider the matrices
a(eXkeY ), k ∈ SO(p) × SO(q). Applying Remark 2.1, the diagonal p × p
matrix Da(eXkeY ) contains the p largest diagonal terms of the matrix

ã(eXkeY ) = ã(

eS
TXS︷ ︸︸ ︷

(ST eXS)

∈SO(p+q)︷ ︸︸ ︷
(STkS)

eS
T Y S︷ ︸︸ ︷

(ST eY S)).

If u + v > p then there are r − s = r + (N − s) − N = (2u + q − p) +
(2v + q − p) − (p + q) = 2(u + v − p) + (q − p) repetitions of 0 + 0 = 0
in the coefficients of ã(eXkeY ). Therefore 0 occurs at least u + v − p > 0
times as a diagonal entry of DH for every H ∈ a(eXKeY ), which implies
that a(eXKeY ) has empty interior.

If 2u + max(t) > 2p denote t = max(t). Let Yi 6= 0 be repeated t times
in DY . Then there are r− s = r+ (N − s)−N = (2u+ q− p) + t− (p+ q) =
2u + t − 2p repetitions of Yi + 0 in the coefficients of ã(eXkeY ). Therefore
Yi occurs at least 2u+ t− 2p > 0 times as a diagonal entry of DH for every
H ∈ a(eXKeY ), which implies that a(eXKeY ) has empty interior.

4. Sufficiency of the eligibility condition. We use basic ideas and
some results and notations of [5, Section 3].

Proposition 4.1.

(i) The density of the measure mX,Y exists if and only if its support
KeXKeYK has nonempty interior.

(ii) Consider the analytic map T : K ×K ×K → SO0(p, q) defined by

T (k1, k2, k3) = k1e
Xk2e

Y k3.

If the derivative of T is surjective for some choice of k = (k1, k2, k3),
then the set T (K ×K ×K) = KeXKeYK contains an open set.

Proof. Part (i) follows for reasons explained in [4] in the case of the
support of the measure µX,Y , equal to a(eXKeY ). Part (ii) is justified for
example in [8, p. 479].
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Proposition 4.2. Let UZ = k + Ad(eZ)k. If there exists k ∈ K such
that

(2) U−X + Ad(k)UY = g

then the measure mX,Y is absolutely continuous.

Proof. We want to show that the derivative of T is surjective for some
choice of k = (k1, k2, k3).

Let A,B,C ∈ k. The derivative of T at k in the direction of (A,B,C)
equals

dTk(A,B,C) =
d

dt

∣∣∣∣
t=0

etAk1e
XetBk2e

Y etCk3(3)

= Ak1e
Xk2e

Y k3 + k1e
XBk2e

Y k3 + k1e
Xk2e

Y Ck3.

We now transform the space of all matrices of the form (3) without modifying
its dimension:

dim{Ak1eXk2eY k3 + k1e
XBk2e

Y k3 + k1e
Xk2e

Y Ck3 : A,B,C ∈ k}
= dim{k−11 Ak1e

Xk2e
Y + eXBk2e

Y + eXk2e
Y C : A,B,C ∈ k}

= dim{AeXk2eY + eXBk2e
Y + eXk2e

Y C : A,B,C ∈ k}
= dim{e−XAeX +B + k2e

Y Ce−Y k−12 : A,B,C ∈ k}.

The space in the last line equals k + Ad(e−X)(k) + Ad(k2)(Ad(eY )(k)) =
U−X + Ad(k2)UY .

In order to apply the condition (2), we will consider convenient root
vectors and their symmetrizations. For Z ∈ a, we define the space

VZ = span{Xs
α : α(Z) 6= 0},

where Xs
α = Xα − θXα. Note that this space would be called V S

Z in the
notation of [5].

Lemma 4.3. Let Z ∈ a. The vector space UZ = k + Ad(eZ)(k) contains
the root vectors Xα for which α(Z) 6= 0. Consequently, VZ = V−Z ⊂ U±Z .

Proof. Suppose α is a root such that α(Z) 6= 0. Note that [Z,Xα] =
α(Z)Xα and [Z, θ(Xα)] = −α(Z)θ(Xα). Let U = Xα + θ(Xα) ∈ k. Now,

Ad(eZ)U = eadZ(Xα + θ(Xα))

=
∞∑
k=0

(adZ)k

k!
(Xα + θ(Xα))

=

∞∑
k=0

(adZ)k

k!
Xα +

∞∑
k=0

(adZ)k

k!
θ(Xα)
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=

∞∑
k=0

(α(Z))k

k!
Xα +

∞∑
k=0

(−1)k(α(Z))k

k!
θ(Xα)

= eα(Z)Xα + e−α(Z)θ(Xα).

Therefore Xα = (eα(Z) − e−α(Z))−1(−e−α(Z)U + Ad(eZ)U) ∈ k + Ad(eZ)(k)
= UZ . The vector θXα is a root vector for the root −α, so we also have
θXα ∈ UZ .

Proposition 4.4. If there exists k ∈ K such that

(4) VX + Ad(k)VY = p

then the measure mX,Y is absolutely continuous.

Proof. We want to prove formula (2). By Lemma 4.3, we know that
VX = V−X ⊂ U−X and VY ⊂ UY . As k ⊂ UX , we see that (4) implies (2).

Later in this section, in Theorem 4.8, we will show that the hypotheses
of Proposition 4.4 are always satisfied for X and Y eligible. For technical
reasons, in order to make an induction proof work, we will show more, i.e.
that a “better” matrix k ∈ K exists such that the formula (4) holds. The
meaning of a “better” k will be similar to the notion of a total matrix given
in Definition 4.5. Here is a definition and a lemma about total matrices in K.
The reasonning of the proof of this lemma will be used in a more general
setting in Steps 2 and 3 of the proof of Theorem 4.8.

Definition 4.5. We say that a square n × n matrix k is total if by
removing any r < n rows and r columns of k we always obtain a nonsingular
matrix.

Note that this definition of totality is more restrictive than in [5, Defi-
nition 3.7].

Lemma 4.6. The set of matrices in SO(n) which are total is dense and
open in SO(n).

Proof. Consider first the set MI,J = M{i1,...,ir},{j1,...,jr} ⊂ SO(n) of
orthogonal matrices which remain nonsingular once the rows of indices
i1, . . . , ir and the columns of indices j1, . . . , jr are removed. To see that
such matrices exist, take the identity matrix (whose determinant is 1 if we
remove, say, the first r rows and columns). By taking convenient permuta-
tions of the rows and columns of the identity matrix, we obtain an element
of MI,J . Given that SO(n)\MI,J corresponds to the set of zeros of a certain
determinant function, it must be closed and nowhere dense in SO(n).

To conclude, it suffices to notice that the set of total matrices in SO(n)
is the finite intersection of all the sets MI,J .
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In the proof of the main Theorem 4.8 we will need the following technical
lemma.

Lemma 4.7.

(i) For the root vectors X+
ir , Z+

ij , Y +
ij , we have

Ad(et(X
+
ir+θX

+
ir))(Xir) = cos(2t)Xir + 2 sin(2t)Ai,

Ad(et(Y
+
ij +θY

+
ij ))(Yij) = cos(4t)Yij + 2 sin(4t)(Ai −Aj),

Ad(et(Z
+
ij+θZ

+
ij))(Zij) = cos(4t)Zij + 2 sin(4t)(Ai +Aj).

(ii) The functions Ad(et(X
+
ir+θX

+
ir)), Ad(et(Y

+
ij +θY

+
ij )) and Ad(et(Z

+
ij+θZ

+
ij))

applied to the other symmetrized root vectors do not produce any
components in a.

Proof. This is just a matter of carefully evaluating

Ad(et(Z+θZ))(W ) = et ad(Z+θZ)(W ) =
∞∑
k=0

(ad(Z + θZ))k(W )
tk

k!
.

For (ii), use the well known properties of the root system: [gα, gβ] ∈ gα+β
and [Xα, θXα] ∈ a.

By Proposition 4.4, in order to justify the sufficiency of the eligibility
condition, it is enough to prove the following theorem. This is the main
result of this section.

Theorem 4.8. Let G = SO0(p, q) and let X,Y ∈ a. If X and Y are
eligible then there exists a matrix k ∈ K such that

(5) VX + Ad(k)VY = p.

Proof. We will assume that X = X[s;u] and Y = Y [t; v]. Observe that
the spaces VX and VY depend on the Weyl chambers where X and Y belong.
However (see [5, Lemma 3.3 and Reduction 1, p. 759]), the property (5) is
equivalent to Vw1X + Ad(k′)Vw2Y = p for any w1, w2 ∈W and a convenient
k′ ∈ K. Throughout the proof we will assume that the diagonal entries of
DX and DY are nonnegative and we will arrange (permute) them suitably.

To lighten the notation, for a matrix c of size p× q, we will consider the
(p+ q)× (p+ q) symmetric matrix

cs =

[
0 c

cT 0

]
∈ p.

The proof will be organized in the following way:

1. Proof for q = p+ 1 using induction on p:

(a) Proof for p = 2 and q = 3.
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(b) Proof of the induction step:

(i) Proof in the case u > 0 or v > 0.
(ii) Proof in the case X[p; 0], Y [p; 0].

2. Proof that the case (p, q) implies the case (p, q + 1).

1. Proof for q = p+ 1 using induction on p

(a) Proof for p = 2 and q = 3. This corresponds to the space SO0(2, 3).
Only two configurations [2; 0] and [1; 1] may be realized by singular nonzero
X and Y . When Z ∈ a+, we have DZ[1;1] = diag[z, 0], and DZ[2;0] =
diag[z, z], z 6= 0. It is easy to check that in all three possible cases:

(i) X[2; 0], Y [2; 0],
(ii) X[2; 0], Y [1; 1] or X[1; 1], Y [2; 0],

(iii) X[1; 1], Y [1; 1],

both X and Y are eligible. Note that

p =

{ [
h1 a b

c h2 d

]s
: h1, h2, a, b, c, d ∈ R

}
,

VZ[2;0] =

{[
0 a b

−a 0 c

]s
: a, b, c ∈ R

}
, VZ[1;1] =

{[
0 a c

b 0 0

]s
: a, b, c ∈ R

}
.

If

k1 =



√
2/2 −

√
2/2 0 0 0√

2/2
√

2/2 0 0 0

0 0 1 0 0

0 0 0
√

2/2 −
√

2/2

0 0 0
√

2/2
√

2/2


then

Ad(k1)VZ[2;0] =

{ [ √
2
2 a

1
2(a− b+ c) 1

2(a+ b− c)
−
√
2
2 a

1
2(a− b− c) 1

2(a+ b+ c)

]s
: a, b, c ∈ R

}
,

Ad(k1)VZ[1;1] =

{ [
−
√
2
2 b

1
2(a− c) 1

2(a+ c)
√
2
2 b

1
2(a− c) 1

2(a+ c)

]s
: a, b, c ∈ R

}
.

If

k2 =



√
2/2 −

√
2/2 0 0 0√

2/2
√

2/2 0 0 0

0 0
√

2/2 0 −
√

2/2

0 0 0 1 0

0 0
√

2/2 0
√

2/2


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then

Ad(k2)VZ[1;1] =

{ [
−1

2(b+ c)
√
2
2 a

1
2(−b+ c)

1
2(b− c)

√
2
2 a

1
2(b+ c)

]s
: a, b, c ∈ R

}
.

We easily verify that in the cases (i) and (iii) we have VX + Ad(k1)VY = p.
For X[2; 0] and Y [1; 1], we can see that VX + Ad(k2)VY = p.

(b) Proof of the induction step

(i) Proof in the case u > 0 or v > 0. We consider the space

SO0(p, p+ 1)/SO(p)× SO(p+ 1)

with p > 2 and the case when X[s;u] and Y [t; v] with u > 0 or v > 0. We
assume u≥v. We choose the predecessors in SO0(p−1, p)/SO(p−1)×SO(p)
in the following way:

X ′ = X ′[s;u− 1], Y ′ = Y ′[t′; v]

where t′ means that we suppress one term from the longest block of size
max t. Note that if p > 2 then t′ is not the zero partition (otherwise, t would
have been the partition [1] meaning that u ≥ v = p− 1, which would make
X and Y ineligible).

We arrange X, X ′, Y , Y ′ in the following way.
1. The first diagonal entry of DX is zero and all the other zeros are at

the end. The diagonal entries of DX′ are those of DX without the first zero:

DX = diag[0,

6=0︷ ︸︸ ︷
x1, . . . , xp−u,

u−1︷ ︸︸ ︷
0, . . . , 0 ], DX′ = diag[

6=0︷ ︸︸ ︷
x1, . . . , xp−u,

u−1︷ ︸︸ ︷
0, . . . , 0 ].

2. We put a longest block of size t of equal diagonal entries y1 of DY in
the beginning of Y . The diagonal entries of DY ′ are those of DY with the
first entry omitted:

DY = diag[

t︷ ︸︸ ︷
y1, . . . , y1, y2, . . . , ys], DY ′ = diag[

t−1︷ ︸︸ ︷
y1, . . . , y1, y2, . . . , ys].

It is easy to check that if X, Y are eligible in SO0(p, p+ 1) then X ′, Y ′

are eligible in SO0(p− 1, p).

Step 1. By the induction hypothesis, there is k0 ∈ SO(p− 1)× SO(p)
such that

(6) VX′ + Ad(k0)VY ′ = p′.

We embed K ′ = SO(p− 1)× SO(p) in SO(p)× SO(p+ 1):

K ′ =


1

SO(p− 1)

1

SO(p)

 ⊂
[
SO(p)

SO(p+ 1)

]
.
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Hence, we have (taking the natural embedding of p′ into p)

(7) V1 := VX′ + Ad(k0)VY ′ = p′ =

[
0 B′

B′T 0

]
where

B′ =

[
01×1 01×p

0p×1 B′′(p−1)×p

]
and B′′ is arbitrary (note that p′ is of dimension (p − 1)p). We must show
that for some k ∈ K, the space VX + Ad(k)VY equals p, i.e.

(i) VX + Ad(k)VY contains p′ embedded into p as in (7);
(ii) VX + Ad(k)VY contains all the matrices of the form

C =


∗ ∗ · · · ∗
∗
... 0(p−1)×p

∗


s

.

New vectors in VX and VY . In order to prove the induction conclusion,
we must now use the elements of VX and VY which do not come from VX′
or VY ′ . They appear by the interaction of, respectively, the first diagonal
entry of DX with the others of DX and the interaction of the first diagonal
entry of DY with the others of DY . We see that the new independent root
vectors in VX and VY are respectively

NX = {Y1j , Z1j : , j = 2, . . . , p+ 1− u},
NY = {X1, Y1i, Z1j : i = t+ 1, . . . , p, j = 2 . . . , p}

where t = max t ≥ 1 and we wrote X1 for X11. Note that NX has 2p − 2u
elements while NY has 2p− t.

Step 2. We show that there exists k′0 ∈ SO(p − 1) × SO(p) for which
(6) holds, and with the following property:

The space V2 := Ad(k′0)span(NY ) is of dimension 2p−t and its elements
can be written in the form

(8)



0 σ1 . . . σr a1 . . . ap−r

τ1
...
τs 0

ap−r+1
...

a2p−t



s
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with r = [(t − 1)/2], s = t − 1 − r, ai ∈ R arbitrary, σi = σi(a1, . . . , a2p−t)
and τj = τj(a1, . . . , a2p−t), i ≤ r, j ≤ s.

We will not need to write explicitly the functions σi and τj . Note that
s = r if t is odd and s = r + 1 if t is even.

To justify Step 2, we write

k0 =


1

k01

1

k02


where k01 ∈ SO(p−1) and k02 ∈ SO(p). Let α1, . . . , αp−1 be the columns of
the matrix k01 and β1, . . . , βp the columns of the matrix k02. A simple block
multiplication to compute the action of Ad(k0) on the elements of NY gives
the linearly independent matrices

(9)

Ad(k0)X1 =

[
0 βTp

0 0

]s
, Ad(k0)Y1i =

[
0 βTi−1

αi−1 0

]s
, i = t+ 1, . . . , p,

Ad(k0)Z1i =

[
0 βTi−1

−αi−1 0

]s
, i = 2, . . . , p.

Let us write β′i for a column βi from which we have removed the first r
entries, and α′i for a column αi with the first s entries omitted. In order to
prove the statement of Step 2, we must show that the matrices obtained by
replacing βi by β′i and αi by α′i in (9) are still linearly independent. This is
equivalent to the linear independence of the matrices

(10)

[
0 β′Ti

−α′i 0

]s
, i = 1, . . . , t− 1,[

0 β′Ti

0 0

]s
, i = t, . . . , p,

[
0 0

α′i 0

]s
, i = t, . . . , p− 1.

We will reason in the same way as in Lemma 4.6.

It is enough to show that there exists at least one choice of matrices k01
and k02 such that the matrices in (10) are linearly independent. Then, as
in Lemma 4.6, it will follow that such matrices form a dense open subset
in SO(p − 1) × SO(p). By choosing k′0 with the matrices in (10) linearly
independent and close enough to k0, property (6) will be preserved for k′0.

Pick k01 = Ip−1, which implies that α′i = 0 for i = 1, . . . , s and α′i = ei−s
for i > s. With this choice, (10) becomes
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0 β′Ti

0 0

]s
, i = 1, . . . , s,

[
0 β′Ti

−ei−s 0

]s
, i = s+ 1, . . . , t− 1,[

0 β′Ti

0 0

]s
, i = t, . . . , p,

[
0 0

ei−s 0

]s
, i = t, . . . , p− 1,

which are linearly independent provided that[
0 β′Ti

0 0

]s
, i = 1, . . . , s,

[
0 β′Ti

0 0

]s
, i = t, . . . , p,

are linearly independent. This is the case for a total matrix k02 ∈ SO(p) or
by taking convenient permutations of the rows and columns of the identity
matrix Ip.

Step 3. We show that there is a proper subset N ′X of NX such that if

V3 := span(N ′X) + VX′ + Ad(k′0)VY = span(N ′X) + V1 + V2,

then dimV3 = pq − 1 = dim p− 1 and V3 is given by

(11) V3 =




0 a1 a2 . . . ap

ap+1

... p′

a2p−1


s

: a1, . . . a2p−1 ∈ R

 .

Note that in matrices from the space V2, there are r = [(t − 1)/2] pairs
(σi, τi) plus possibly an extra τs if t is even and therefore s = r + 1. Note
also that t+2u ≤ 2p implies that p−u ≥ s ≥ r. For j ≤ r ≤ p−u, each pair

Y1j =

[
0 eTj−1

ej−1 0

]s
, Z1j =

[
0 eTj−1

−ej−1 0

]s
of elements of NX allows us to replace σj and τj by independent variables. If
t is odd, all the σj ’s and τj ’s will be taken care of and at least two elements
of NX will remain off N ′X . If t is even, all the σj ’s and τj ’s, 1 ≤ j ≤ r, will be
replaced by independent variables and only τs will remain. Now, letting the
coefficient a1 “vis-à-vis” the remaining τs be equal to 1 and all the other vari-
ables ai equal to 0, we get either τs = 1 or −1 or τs 6= ±1. If τs = 1 then
Z1s allows us to introduce the missing independent variable, if τs = −1 then
adding Y1s toN ′X will do the trick. In the case τs 6= ±1 we choose indifferently
between Y1s and Z1s. In all cases the set NX \N ′X has at least one element.

Step 4. Let v1 be the positive root vector corresponding to an element
of NX \N ′X . We denote kt1 = ktv1. There exists ε > 0 such that for t ∈ (0, ε),

V t
4 := Ad(kt1)(span(N ′X) + VX′) + Ad(k′0)VY = V3.
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Observe that v1 is equal to Z+
1j or Y +

1j for one of the remaining Z1j or

Y1j that was not used in the preceding step. We have V t
4 ⊂ V 0

4 for all t
according to Lemma 4.7(ii).

Recall the definition of ktXα = et(Xα+θXα), t > 0. Let d(t) = dimV t
4 ; for

t = 0 we have k01 = Id, and Ad(k01)(span(N ′X) + VX′) + Ad(k′0)VY = V3 is of
dimension pq− 1, so d(0) = pq− 1. The equality d(t) = d(0) is equivalent to
nonnullity of an appropriate determinant continuous in t. Thus d(t) = pq−1
holds for t ∈ (0, ε) for some ε > 0. As V t

4 ⊂ V 0
4 , the statement of Step 4

follows.

Step 5. Generation of A1. By Lemma 4.7, we have Ad(kt1)v
s
1 = atv

s
1 +

btA1 + ctAj with j 6= 1 and bt 6= 0 for t ∈ (0, ε) with ε small enough.
Consequently,

Ad(kt1)span(vs1) + V t
4 = p.

Conclusion. We have p = Ad(kt1)(Rvs1+span(N ′X)+VX′)+Ad(k′0)VY ⊂
Ad(kt1)VX + Ad(k′0)VY , so Ad(kt1)VX + Ad(k′0)VY = p. It follows that

VX + Ad((kt1)
−1k′0)VY = p.

(ii) Proof in the case X[p; 0], Y [p; 0]. This case must be treated sepa-
rately because the predecessors X ′, Y ′ and consequently the sets NX and
NY are different from those in case (i). The structure of the induction proof
is identical as in (i), with Steps 2 and 3 executed together.

We choose both predecessors X ′[p− 1; 0], Y ′[p− 1; 0] and arrange X,X ′,
Y, Y ′ in the same way we did in the first part of the proof with Y [t; v] and
Y ′[t′; v]. In that case,

NX = {X1, Z12, . . . , Z1p} = NY

and the space Ad(k′0)(NY ) is generated by

(12)

[
0 βTi

−αi 0

]s
, i = 1, . . . , p− 1, and

[
0 βTp

0 0

]s
.

Recall that

(13) Z1j =

[
0 eTj−1

−ej−1 0

]s
, j = 2, . . . , p.

We want to show that the matrices in (12) together with those of (13) are
linearly independent for a k′0 ∈ SO(p − 1) × SO(p) for which the equality
(6) holds. Note that if

k′0 =

[
−Ip−1 0

0 Ip

]
(p odd) or k′0 =

[
Ip−1 0

0 −Ip

]
(p even)
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then the matrices (12) and (13) are linearly independent. Using once more
the reasoning in Lemma 4.6 we find that the set of matrices k′0 for which
this is true is open and dense in SO(p− 1)× SO(p).

We conclude that if N ′X = NX \ {X1} then span(N ′X +VX′) + Ad(k′0)VY
has the form given in (11).

We reproduce the previous Step 4 and Step 5 using v1 = X+
1 . The rest

follows.

2. Proof that the case (p, q) implies the case (p, q + 1). We will
show by induction that for any q > p, there exists a matrix k ∈ K such
that (5) holds. We know by the first part of the proof that this is true for
SO0(p, p+ 1).

Assume that X and Y are eligible in SO0(p, q+ 1). Their configurations
are eligible in SO0(p, q). We write X ′, Y ′ when we work in SO0(p, q).

We embed K ′ = SO(p) × SO(q) in K = SO(p) × SO(q + 1) in the
following way:

K ′ =

SO(p)

SO(q)

1

 ⊂ [SO(p)

SO(q + 1)

]
.

The space p′ is formed by the matrices[
0 B

BT 0

]
,

where B are p × q matrices. We embed p′ in p by adding a last column of
zeros to B.

Step 1. We suppose that there exists a matrix k0 ∈ K ′ such that

(14) VX′ + Ad(k0)VY ′ = p′.

Then, by [5, Lemma 3.3], for any permutations s1 and s2 of the diagonal
entries of DX′ = DX and DY ′ = DY , there exists k0 ∈ K ′ such that

Vs1X′ + Ad(k0)Vs2Y ′ = p′

so we can permute the elements of X ′ and Y ′ in a convenient way and still
have the equality (14). We will arrange them in the following way (where
the stars denote nonzero entries):

DX′ = diag[

u︷ ︸︸ ︷
0, . . . , 0, ?, . . . , ?], DY ′ = diag[?, . . . , ?,

v︷ ︸︸ ︷
0, . . . , 0 ].

Let us denote by k01 ∈ SO(p) and k02 ∈ SO(q) the matrices composing k0
corresponding in (14) to such X ′ and Y ′. We can suppose that the matrix
k01 is total.
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By the eligibility of X and Y , u+v ≤ p, so no two zeros in DX′ and DY ′
are at the same position.

Let N = {Xi,q+1}pi=1. We set

NX := VX ∩N = {Xu+1,q+1, . . . , Xp,q+1},
NY := VY ∩N = {X1,q+1, . . . , Xp−v,q+1}.

We have p− v ≥ u.

Step 2. Let

k1 =

k01 k02

1


where k01 ∈ SO(p) and k02 ∈ SO(q) are the blocks composing k0. We then
have

(15) VX′ + Ad(k1)VY ′ = [p′ 0]s.

The space VX + Ad(k1)VY contains, in addition to the matrices in (15),
the linear span of NX + Ad(k1)NY .

Denote the columns of the matrix k01 by c1, . . . , cp. By block multipli-
cation in SO0(p, q + 1), we obtain

Ad(k1)Xj,q+1 = [0p×q cj ]
s.

This implies that the linear span of NX + Ad(k1)NY contains the following
symmetric matrices:

[0p×q c1]
s, . . . , [0p×q cu]s, [0p×q eu+1]

s, . . . , [0p×q ep]
s,

which are linearly independent by the totality of k01. So VX + Ad(k1)VY
= p.

We conclude this section with an example to illustrate our proof.

Example 4.9. Consider X = X[2; 1], Y = Y [1, 1; 1] in so(3, 4). We
write X and Y in such a way that DX = diag[0, a, a] and DY = diag[b, c, 0].
Their predecessors in so(2, 3) are X ′ and Y ′ such that DX′ = diag[a, a] and
DY ′ = diag[c, 0].

Note that X and Y form an eligible pair and so are X ′ = X[2; 0] and
Y ′ = Y ′[1; 1]. In Step 1, we show that there exists a matrix

k0 =


1 0 0 0

0 k0,1 0 0

0 0 1 0

0 0 0 k02





PRODUCT FORMULA ON GRASSMANNIANS 163

with k01 ∈ SO(2) and k0,2 ∈ SO(3) such that

VX′ + Ad(k0)VY ′ =

0 0 0 0

0 ∗ ∗ ∗
0 ∗ ∗ ∗


s

where ∗ designates an arbitrary element. We have

NX = {Z12, Y12, Z13, Y13}, NY = {X1, Z12, Y12, Z13, Y13}.
In Step 2, we observe that

Ad(k0)span(NY ) =


 0 a1 a2 a3

a4

a5 0


s

: a1, . . . a6 ∈ R


since the matrices[

0 βT1

−α1 0

]s
,

[
0 βT1

α1 0

]s
,

[
0 βT2

−α2 0

]s
,

[
0 βT2

α2 0

]s
,

[
0 βT3

0 0

]s
are linearly independent. Note that in this case, there are no σi and no τi.

Now,

VX = span

NX︷ ︸︸ ︷
{Z12, Y12, Z13, Y13}∪VX′

while

VY = span

NY︷ ︸︸ ︷
{X1, Z12, Z13, Z14, Y13}∪VY ′ .

We can show that

Ad(et(Z
+
1,2+θZ

+
1,2))(VX′) + Ad(k0)(spanNY ∪ VY ′) =

0 ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


s

for t small enough (with t small enough, the dimension will not decrease).
Now,

Ad(et(Z
+
1,2+θZ

+
1,2))

⊂VX︷ ︸︸ ︷
(span{Z12} ∪ VX′) + Ad(k0)(

VY︷ ︸︸ ︷
spanNY ∪ VY ′)

=

∗ ∗ ∗ ∗∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


s

= p

for t close to 0 since

Ad(et(Z
+
12+θZ

+
12))(Z12) = cos(4t)Z12 + 2 sin(4t)(A1 +A2).
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Therefore,

VX + Ad(

k︷ ︸︸ ︷
e−t(Z

+
1,2+θZ

+
1,2)k0)VY = Ad(e−t(Z

+
1,2+θZ

+
1,2))p = p,

which means that the density exists.

5. Applications. We now extend our results to the symmetric spaces
of type BCp, i.e. to the complex and quaternion cases.

Recall that SU(p, q) is the subgroup of elements g ∈ SL(p + q,C) such
that g∗Ip,qg = Ip,q while Sp(p, q) is the subgroup of elements g ∈ SL(p+q,H)
such that g∗Ip,qg = Ip,q. Their respective maximal compact subgroups are
S(U(p)×U(q)) and Sp(p)× Sp(q) ≡ SU(p,H)× SU(q,H).

Their subspaces p can be described as[
0 B

B∗ 0

]
where B is an arbitrary complex (respectively quaternionic) matrix of size
p× q. The Cartan subalgebra a is chosen in the same way as for so(p, q).

Corollary 5.1. Consider the symmetric spaces SO0(p, q)/SO(p) ×
SO(q), SU(p, q)/S(U(p) ×U(q)) and Sp(p, q)/Sp(p) × Sp(q), q > p. Let

X,Y ∈ a. Then the measure δ\
eX
? δ\

eY
is absolutely continuous if and only

if X and Y are eligible, as defined in Definition 2.3.

Proof. Let X,Y ∈ a. If they are eligible then since

a(eX(SO(p)× SO(q))eY ) ⊂ a(eXS(U(p)×U(q))eY )

⊂ a(eX(Sp(p)× Sp(q))eY ),

it follows from Theorem 4.8 that these sets have nonempty interior. Hence
the density exists in all three cases.

On the other hand, given Lemma 3.1, one can reproduce Proposition 3.2
using F = C and F = H to show that the eligibility condition is necessary
in the complex and quaternionic cases.

We will conclude this paper with two further applications.

Proposition 5.2. Let X,Y ∈ a be such that (δ\
eX

)∗2 and (δ\
eY

)∗2 are

absolutely continuous. Then δ\
eX
∗ δ\

eY
is absolutely continuous.

Proof. LetX = X[s;u] and Y = Y [t; v]. We know that the couple (X,X)
is eligible; therefore

2 max{s, 2u} ≤ 2p.

In the same manner, max{t, 2v} ≤ p. Hence,

max{s, 2u}+ max{t, 2v} ≤ p+ p = 2p
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which means that X and Y are eligible. Consequently, δ\
eX
∗δ\

eY
is absolutely

continuous.

If X ∈ a and X 6= 0, it is important to know for which convolution pow-
ers l the measure (δ\

eX
)l is absolutely continuous. This problem is equivalent

to the study of the absolute continuity of convolution powers of uniform
orbital measures δ\g = mK ∗ δg ∗mK for g 6∈ K.

It was proved in [6, Corollary 7] that it is always the case for l ≥ r + 1,
where r is the rank of the symmetric space G/K. It was also conjectured ([6,
Conjecture 10]) that r+ 1 is optimal for this property, which was effectively
proved for symmetric spaces of type An([6, Corollary 18]). In the following
theorem, the conjecture is shown not to hold on symmetric spaces of type
Bp, where r = p. Thanks to the rich structure of the root system Bp, already
all pth powers of orbital measures are absolutely continuous and p is optimal
for this property.

Theorem 5.3. Consider the symmetric spaces SO0(p, q)/SO(p) ×
SO(q), SU(p, q)/S(U(p)×U(q)) and Sp(p, q)/Sp(p)× Sp(q), q > p.

Then, for every nonzero X ∈ a, the measure (δ\
eX

)p is absolutely contin-
uous. Moreover, p is the smallest value for which this is true: if X has the
configuration [1; p− 1] then the measure (δ\

eX
)p−1 is singular.

Proof. We will write SlX for the set a(eXKeX . . .KeX) where the factor

eX appears l times. Note that (δ\
eX

)l is absolutely continuous if and only if

SlX has nonempty interior.

We prove first that for l < p, the measure (δ\
eX

)l may not be absolutely
continuous. Let X = X[1; p−1]. Using Lemma 3.1 repeatedly, as in the proof
of Proposition 3.2, we show that for l < p, there are at least p− l diagonal
entries of DH which are equal to 0 for every H ∈ SlX . Consequently, SlX has

empty interior and (δ\
eX

)l is not absolutely continuous when l ≤ p− 1.

We will now show that (δ\
eX

)p has a density for every X 6= 0.

If X = X[s; 0] then the measure (δ\
eX

)2 is already absolutely continuous

(the couple (X,X) is eligible). Suppose then that X = X[s;u] ∈ a+, u > 0.

We remark that if H ∈ SlX then a(eXKeH) ⊂ Sl+1
X . Indeed, we have

eXk1e
X . . . kl−1e

X = kae
Hkb and therefore a(eXKeH) = a(eXKkae

Hkb)
= a(eXKeXk1 . . . kl−1e

X) ⊂ Sl+1
X .

We claim that there exists H∈Sp−1X such that H=H[1p−1; 1] or H∈a+.

We prove the claim using induction on p. If p = 2 then Sp−1X = {X} and
the result follows (in that case, u cannot be higher than 1 for X 6= 0).
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Suppose that the claim is true for p− 1 ≥ 2. Let

K0 =


SO(p− 1) 0 0 0

0 1 0 0

0 0 SO(q − 1) 0

0 0 0 1

 .
Consider the set B = a(eXK0e

X . . . eX) with p − 1 factors eX . By the in-
duction hypothesis, there exists H0 ∈ B with H0 = H0[1

p−2; 2] or H0 =
H0[1

p−1; 1]. In the second case, we are done.

If H0 = H0[1
p−2; 2] ∈ B, we can assume that the diagonal entries which

are 0 in DX and in H0 are at the end. We note that X and H0 considered
without their last entries are eligible in SO0(p − 1, q − 1), their configu-
rations being [s;u − 1] and [1p−2; 1] respectively. Hence a(eXK0e

H0) has
nonempty interior in the subspace a+ ∩ {Hp = 0}. Therefore, there exists

H ∈ a(eXK0e
H0) ⊂ Sp−1X with H = H[1p−1; 1], which proves the claim.

To conclude, we take H ∈ Sp−1X with H ∈ a+ or H = H[1p−1; 1]. In
both cases, X and H are eligible, so by Corollary 5.1 the set a(eXKeH) has
nonempty interior. As a(eXKeH) ⊂ SpX , this ends the proof.

6. Conclusion. With this paper and with [5], we have now obtained sharp

criteria on singular X and Y for the existence of the density of δ\
eX
? δ\

eY
for

the root systems of types An, Bp and BCp. Thanks to [6] and Theorem 5.3 of
the present paper, sharp criteria are now given for the lth convolution powers
(δ\
eX

)l to be absolutely continuous for any X 6= 0, X ∈ a.

Although there is considerable similarity between the criteria for both
types of spaces, a characterization of eligibility that would be applicable for
all Riemannian symmetric spaces of noncompact type has yet to emerge.
The solution of the second problem in Theorem 5.3 seems to indicate that
the answer may depend on the type of the symmetric space.
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