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Abstract. We suggest a method of constructing decompositions of a topological
space X having an open subset homeomorphic to the space (Rn, τ), where n is an integer
≥ 1 and τ is any admissible extension of the Euclidean topology of Rn (in particular,
X can be a finite-dimensional separable metrizable manifold), into a countable family F
of sets (dense in X and zero-dimensional in the case of manifolds) such that the union of
each non-empty proper subfamily of F does not have the Baire property in X.

1. Introduction. Recall that a set A of a topological space X is said to
have the Baire property in X if A = (O \M)∪N , where O is an open set of
X and M,N are meager sets of X. Let 2X be the family of all subsets of X,
and Bp(X) the subfamily of 2X consisting of sets with the Baire property.
It is well known that the family Bp(X) is a σ-algebra of sets. However, in
the case when BCp (X) = 2X \ Bp(X) 6= ∅, the union of two sets from BCp (X)

does not need to belong to BCp (X).

In [Ch] (see also [ChN] for generalizations) it was shown that the
union of finitely many Vitali sets of the real line R (see [V]) contains
no set of type O \ M , where O is a non-empty open set and M a mea-
ger one. Since each Vitali set is not meager, this easily implies that such
unions do not have the Baire property. Let us note that these facts can-
not be extended to all countable unions of Vitali sets. It is easy to see
that a set A in R is the union of a (countable) family of Vitali sets iff
|A ∩ (x + Q)| 6= ∅ for each x ∈ R, where Q is the set of rational num-
bers, i.e. A contains a Vitali set. Moreover, such a family can be chosen
infinite and disjoint iff |A ∩ (x + Q)| = ℵ0 for each x ∈ R. This implies
that every element of Bp(R) with non-empty interior (in particular, any
non-empty open set) is the union of an infinite countable disjoint family of
Vitali sets.
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In [Ch] the following result was proved:
If S is a Vitali set of R and A is any non-empty proper subset of Q then

U(S,A) =
⋃
{r + S : r ∈ A} ∈ BCp (R).

However, the set U(S,A) can contain the difference O \M , where O is
a non-empty open subset of R and M is meager. This happens iff

ClR
⋃
{(r + S)′′ : r ∈ Q \ A} 6= R

(we recall the operation (·)′′ in the next section).
Note that for a Vitali set S such that S is dense in R and S = S′′

(see examples in [Ch]) we have ClR
⋃
{(r + S)′′ : r ∈ Q \ A} = R for each

non-empty proper subset A of Q. On the other hand for any Vitali set
S ⊂ (−1, 1) and A = Q ∩ (−2, 2) we have U(S,A) ⊃ (−1, 1).

In this paper we suggest a method of constructing decompositions of
a topological space X having an open subset homeomorphic to the space
(Rn, τ), where n is an integer ≥ 1 and τ is any admissible extension (see
Section 3 for the definition) of the Euclidean topology of Rn (in partic-
ular, X can be a finite-dimensional separable metrizable manifold) into a
countable family F of sets (dense in X and zero-dimensional in the case of
manifolds) such that the union of each non-empty proper subfamily of F
does not have the Baire property in X.

For the notions we refer to [E1] and [Ku].

2. Auxiliary results. We will use some notations from [Ch].
For each non-meager set R of a topological space X, OR = IntX(ClX R),

R′ = {x ∈ R ∩OR : there is an open neighborhood V of x such that V ∩R
is meager} and R′′ = (R ∩OR) \R′.

Let us observe that by ([Ku, Theorem 1, p. 87]) the set R′ is meager
in X. This implies, in particular, that the set R′′ is non-meager in X.

Remark 2.1. Recall [Ch, Theorem 2.1]:
Let X be a hereditarily Lindelöf topological space, A be a non-empty set

with |A| ≤ℵ0 and R(α) a non-meager subset of X for each α ∈ A. Then
U =

⋃
{R(α) : α ∈ A} ∈ Bp(X) iff OR′′(α) \ U is meager in X for each

α ∈ A.
Now we note that by the two sentences before this remark the equivalence

above holds in any topological space X. Moreover, one can see from the proof
that the necessity part is valid for any set A.

Proposition 2.2. Let X be a topological space, A a set with |A| ≥ 2
and for each α ∈ A, Xα a non-meager subset of X. Assume also that

(i) Xα1 ∩Xα2 = ∅ iff α1 6= α2, and
(ii)

⋃
α∈AOX′′α is connected.
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Then for any non-empty proper subset A′ of A the set Y =
⋃
α∈A′ Xα does

not have the Baire property.

Proof. We follow the idea of proof of [Ch, Theorem 4.1]. Assume that Y
has the Baire property. Then by Remark 2.1 the set OX′′α \ Y is meager for
each α ∈ A′. Further we will need the following statement.

Claim. For any α1 ∈ A′ and α2 ∈ A \ A′ we have OX′′α1
∩OX′′α2 = ∅.

Proof. Let V = OX′′α1
∩OX′′α2 6= ∅. It follows from [Ch, Corollary 2.1(iii)]

that the set V ∩X ′′α2
is non-meager. Since X ′′α2

⊂ Xα2 and Xα2 ∩ Y = ∅ by
the condition (i), we have V ∩X ′′α2

⊂ OX′′α1 \Y , where OX′′α1
\Y is supposed

to be meager. We have a contradiction which proves the Claim.

Put U1 =
⋃
α∈A′ OX′′α and U2 =

⋃
α∈A\A′ OX′′α . Note that the sets

U1, U2 are non-empty, open and by the Claim they are disjoint. So the set⋃
α∈AOX′′α = U1 ∪ U2 is disconnected. We have a contradiction with (ii).

Remark 2.3. We notice that the condition (ii) from Proposition 2.2
cannot be erased. On the other hand the condition is not necessary.

(i) Let X be the subspace {0, 1} of the real line R and A = {1, 2}. Set
X1 = {0} and X2 = {1}. Note that OX′′1 = X1 and OX′′2 = X2.
Hence OX′′1 ∩OX′′2 = ∅ and the sets X1, X2 are open in X.

(ii) Let X be the real line R, A = {1, 2} and S a Vitali set of R such that
S ⊂ (0, 1). Set X1 = S and X2 = 2 + S. Note that OX′′1 ∩ OX′′2 = ∅
and the sets X1, X2 do not have the Baire property.

LetH(X) be the group of homeomorphisms of the spaceX. The following
statement is trivial.

Lemma 2.4. Let h ∈ H(X) and A ⊂ X. Then

(i) A is meager iff h(A) is meager;
(ii) if A is non-meager then h(OA) = Oh(A), h(A′) = (h(A))′ and h(A′′)

= (h(A))′′.

Proposition 2.5. Let X be a topological space, H∗ a non-empty subset
of H(X) with |H∗| ≥ 2 and A a non-meager subset of X. Assume also that

(i) for any elements h1 6= h2 of H∗, h1(A) ∩ h2(A) = ∅, and
(ii)

⋃
h∈H∗ h(OA′′) is connected.

Then for any non-empty proper subset H′ of H∗ the set
⋃
h∈H′ h(A) does

not have the Baire property.

Proof. Since for each h ∈ H∗ the set h(A) is non-meager and h(OA′′) =
O(h(A))′′ by Lemma 2.4, the statement follows from Proposition 2.2.
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Proposition 2.6. Let X be a topological space of the second cathegory,
H∗ a non-empty countable subset of H(X) with |H∗| ≥ 2 and A a subset
of X. Assume also that

(i) for any elements h1 6= h2 of H∗, h1(A) ∩ h2(A) = ∅,
(ii) X \

⋃
h∈H∗ h(A) is meager, and

(iii)
⋃
h∈H∗ h(OA′′) is connected.

Then for any non-empty proper subset H′ of H∗ the set
⋃
h∈H′ h(A) does

not have the Baire property.

Proof. Since X \
⋃
h∈H∗ h(A) is meager and the space X is of second

category, the set A is non-meager. Applying Proposition 2.5 we get the
statement.

Let Q be a countable dense subgroup of the additive group of the real
numbers. One can consider the Vitali construction (see [V]) with the group
Q instead of the group Q of rational numbers (cf. [K]). The analogue of a
Vitali set with the respect to Q will be called a Vitali Q-selector of R.

Example 2.7 ([Ch, Theorem 4.1 for Q = Q]). Let X = R, H∗ be the
group of translations of R by numbers from Q and A a Vitali Q-selector.
Note that

(i) for any elements h1 6= h2 of H∗, h1(A) ∩ h2(A) = ∅;
(ii) R \

⋃
h∈H∗ h(A) = ∅;

(iii)
⋃
h∈H∗ h(OA′′) = R is connected.

Example 2.8 ([Ch, Remark 4.2 for Q = Q]). Let X = Rn, H∗ be the
group of translations of Rn by vectors with all coordinates from Q and A
a Vitali Q-selector of Rn, that is, A =

∏n
i=1Ai, where Ai is a Vitali Q-selec-

tor of R for each i ≤ n. Note that

(i) for any elements h1 6= h2 of H∗, h1(A) ∩ h2(A) = ∅;
(ii) Rn \

⋃
h∈H∗ h(A) = ∅;

(iii)
⋃
h∈H∗ h(OA′′) = Rn is connected.

3. A method of constructing countable families of sets without
the Baire property. Let τ1 be a topology on a set X.

Recall [ChN, Definition 3.1] that a topology τ2 on X is said to be an
admissible extension of τ1 if

(i) τ1 ⊂ τ2, and
(ii) τ1 is a π-base for τ2, i.e. for each non-empty element O of τ2 there

is a non-empty element V of τ1 which is a subset of O.

Let us denote the closure (resp. the interior or the boundary) of a subset
A of the set X in the space (X, τi) by Clτi A (resp. Intτi A or Bdτi A), where
i = 1, 2.
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Lemma 3.1. Let X be a set, τ1 and τ2 topologies on X such that τ2 is
an admissible extension of τ1, and O a non-empty element of τ2. Then the
set A = O\ Intτ1 O is nowhere dense in the space (X, τ1) (in particular, A is
a meager set in (X, τ1)).

Proof. Put V = Intτ1 O and note that V 6= ∅.

Claim. Clτ1 V ⊃ O.

Proof. Assume that W = O \ Clτ1 V 6= ∅. Since τ2 is an admissible
extension of τ1 and W ∈ τ2, there is ∅ 6= U ∈ τ1 such that U ⊂ W ⊂ O. It
is easy to see that U must be a subset of V . We have a contradiction which
proves the Claim.

It follows from the Claim that Bdτ1 V ⊃ A. Hence, the set A is nowhere
dense in the space (X, τ1).

Lemma 3.2. Let X be a set, τ1 and τ2 topologies on X such that τ2 is an
admissible extension of τ1, and A ⊂ X. Assume also that A has the Baire
property in the space (X, τ2). Then A has the Baire property in (X, τ1).

Proof. Suppose that A = (O \M) ∪N , where O is open in (X, τ2) and
M,N are meager in (X, τ2). Note that by [ChN, Proposition 3.4] the sets
M,N are also meager in (X, τ1). Moreover, by Lemma 3.1 the set O\Intτ1 O
is meager in (X, τ1). Observe that

A = (Intτ1 O \M) ∪ (((O \ Intτ1 O) \M) ∪N).

Hence, A has the Baire property in the space (X, τ1).

Let n be a positive integer. Denote by τS (resp. τ0) the Sorgenfrey topol-
ogy (resp. the Euclidean topology) on the set R of real numbers and by τnS
(resp. τn0 ) the product

∏n
i=1(τS)i (resp.

∏n
i=1(τ0)i), where (τS)i = τS (resp.

(τ0)i = τ0) for each i ≤ n.

Let now k,m be non-negative integers. Note that the topology τkS × τm0
on the set Rk+m is an admissible extension of the Euclidean topology τk+m0

on Rk+m. Let us also observe that if k ≥ 1 then (Rk+m, τkS × τm0 ) is discon-
nected and if k ≥ 2 then (Rk+m, τkS × τm0 ) is not normal.

Applying Example 2.8 and Lemma 3.2 we get the following statement.

Proposition 3.3. Let Q be a countable dense subgroup of the additive
group of real numbers. If S is a Vitali Q-selector of Rn for some integer
n ≥ 1 and A is any non-empty proper subset of Qn then

⋃
{r+S : r ∈ A} ∈

BCp ((Rn, τ)), where τ is any admissible extension of τn0 .

Remark 3.4. For the case n = 1, τ = τS and Q = Q the statement was
proved in [Ch, Corollary 4.1].
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Lemma 3.5. Let Y be a non-empty open subset of a space X. Then

(i) if M is a nowhere dense subset of X then M ∩Y is a nowhere dense
subset of Y ;

(ii) if M is a meager subset of X then M ∩ Y is a meager subset of Y .

Proof. (i) Let V = IntY ClY (M ∩ Y ) 6= ∅. Note that V ⊂ IntY (ClXM
∩ Y ) ⊂ IntX(ClXM ∩ Y ) ⊂ IntX ClXM . Hence, IntX ClXM 6= ∅.

(ii) follows evidently from (i).

Lemma 3.6. Let X be a space, Y a non-empty open subset of X and
A ⊂ X. Assume also that A has the Baire property in X. Then A ∩ Y has
the Baire property in Y .

Proof. Let A = (O\M)∪N , where O is open in X and M,N are meager
in X. Note that A∩ Y = ((O ∩ Y ) \ (M ∩ Y ))∪ (N ∩ Y ) and O ∩ Y is open
in Y and M ∩ Y,N ∩ Y are meager in Y (by Lemma 3.5).

Remark 3.7. Let us note that the openness of the set Y in the space
X in the lemmas is essential. Indeed, let X be the Euclidean plane with
the x, y-axes, Y the x-axis and A a Vitali set of Y . Note that Y is nowhere
dense in X. This implies that A is also nowhere dense in X. But A does not
have the Baire property in Y .

Theorem 3.8. Let X be a space and Y an open subset of X which is
homeomorphic to the space (Rn, τ) for some admissible extension τ of the
Euclidean topology τn0 , where n is a positive integer. Then there is an infinite
disjoint countable family F of sets in X such that

(i)
⋃
F = X, and

(ii) for each non-empty proper subfamily F ′ of F the set
⋃
F ′ does not

have the Baire property in X.

Moreover:

(a) if the set Y is dense in the space X or Z = X \ClX Y 6= ∅ and there
is a countable infinite disjoint family H = {Hi}∞i=1 of sets dense in
Z then each element of F can be chosen dense in X;

(b) if the space X is separable metrizable, τ = τn0 and the set X \ Y is
countable-dimensional then each element of F can be chosen zero-
dimensional.

Proof. By Proposition 3.3 there exists an infinite disjoint countable fam-
ily G = {Yi}∞i=1 of sets such that

⋃
G = Y , and for each non-empty proper

subfamily G′ of G the set
⋃
G′ does not have the Baire property in Y . Then

put X1 = Y1 ∪ (X \ Y ) and Xi = Yi, i ≥ 2. Let us notice that the countable
family F = {Xi}∞i=1 of sets is also disjoint and

⋃
F = X. Since for each

non-empty proper subfamily F ′ of F there is a non-empty proper subfamily
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G′ of G such that (
⋃
F ′)∩Y =

⋃
G′, it follows from Lemma 3.6 that the set⋃

F ′ does not have the Baire property in X.

Let us now prove (a). Observe that there is a Vitali set of R which is
dense in R (see [Ch, Proposition 3.3]), which implies the existense of a Vitali
set of Rn (see Example 2.8 for the definition) which is dense in Rn. So each
set of the family G can be chosen dense in the subspace Y of X. Further-
more, if Y is dense in X then each element of the family F defined above
will be dense in X. Assume now that Z = X \ ClX Y 6= ∅ and there is a
countable infinite disjoint family H = {Hi}∞i=1 of sets dense in Z. In this
case put X1 = Y1∪((X \Y )\

⋃∞
i=2Hi) and Xi = Yi∪Hi, i ≥ 2. Let us notice

that the countable family F = {Xi}∞i=1 of sets is disjoint and dense in X.
Moreover,

⋃
F = X. Since for each non-empty proper subfamily F ′ of F

there is a non-empty proper subfamily G′ of G such that (
⋃
F ′)∩Y =

⋃
G′,

it follows from Lemma 3.6 that
⋃
F ′ does not have the Baire property in X.

To prove (b), recall (cf. [E2]) that X \ Y =
⋃∞
i=1 Zi, where the sets

Z1, Z2, . . . are disjoint and dimZi = 0 for each i. Put Xi = Yi ∪ Zi for each
i ≥ 1. Since every set of the family G is also zero-dimensional it follows
from the sum theorem for the dimension dim that the sets X1, X2, . . . are
zero-dimensional.

Remark 3.9. Note that in each separable metrizable space each of
whose open non-empty subsets is uncountable there is an infinite count-
able disjoint family consisting of dense sets. In fact, let B = {Ui}∞i=1 be a
countable base for the space. For each integer i ≥ 1 choose in Ui a count-
able infinite set Ai = {aij : j ≥ 1} such that Ai ∩

⋃
j<iAj = ∅. Put now

Hj = {aij : i ≥ 1}, j ≥ 1, and note that the sets Hj , j ≥ 1, are dense in the
space and disjoint.

Corollary 3.10. Let X be an n-dimensional separable metrizable man-
ifold for some positive integer n. Then there exists an infinite disjoint count-
able family F of zero-dimensional, dense in X sets such that

(i)
⋃
F = X, and

(ii) for each non-empty proper subfamily F ′ of F the set
⋃
F ′ does not

have the Baire property in X.

Proof. Let Y be a subset of X which is homeomorphic to Rn, and let Yi,
i ≥ 1, be a family of dense zero-dimensional subsets of Y , which can be
obtained from Example 2.8 (see also the proof of Theorem 3.8(a)). Set B =
BdX Y and V = X \ ClX Y.

Assume first that V = ∅, and note that dimB = k < n. Let us decompose
the set B into k+1 disjoint zero-dimensional subsets Bi, i ≤ k+1. Put now
Xi = Yi ∪ Bi, i ≤ k + 1, and Xi = Yi, i ≥ k + 2. Observe that the sets Xi,
i ≥ 1, satisfy the corollary.
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Assume now that V = X \ ClX Y 6= ∅. Observe that for each point
x ∈ V there is an open neighborhood Ox of x which is homeomorphic to Rn.
Choose in V a countable base B = {Bi : i ≥ 1} for open sets with (n − 1)-
dimensional boundaries. Set V0 = V \

⋃∞
i=1 BdV (Bi). Notice that dimV0 = 0

and each open non-empty subset of V0 is uncountable. Decompose the set⋃∞
i=1 BdV (Bi) into n zero-dimensional disjoint sets V1, . . . , Vn. Note that

V0, . . . , Vn are dense in V . By Remark 3.9 we can decompose V0 into sets
V i
0 , i ≥ 1, dense in V0. Observe that V i

0 , i ≥ 1, are dense in V and zero-
dimensional. Now the argument can be finished as in the first case.

4. Concluding remarks. It is known that no Bernstein set of R has
the Baire property. We will show this fact with the help of Proposition 2.2.

Recall that a subset A of the real line R is called a Bernstein set if for
each Cantor set C ⊂ R we have A ∩ C 6= ∅ and (R \A) ∩ C 6= ∅.

Lemma 4.1. For each meager subset M of R there exists a Cantor set C
such that M∩C = ∅. In particular, each Bernstein set B of R is non-meager
and OB′′ = R.

Proof. We can suppose that M =
⋃
i=1Mi, where Mi is nowhere dense

and closed in R for each i. Hence, the set N = R \ M is topologically
complete.

If N contains a non-degenerate interval [a, b] then N contains a Cantor
set. Otherwise, N is zero-dimensional and nowhere locally compact. This im-
plies that N is homeomorphic to the space P of irrational numbers (cf. [vM]).
Hence, N must also contain a Cantor set.

Since B\B′′ is meager (see [Ch, Proposition 2.1]) and B′′ ⊂ B, the set B′′

must be dense in R by the main statement of this lemma. Hence OB′′ = R.

Proposition 4.2. No Bernstein set of R has the Baire property.

Proof. Let M be a Bernstein set of R. Note that R \M is also a Bern-
stein set and the sets M , R \ M are disjoint and non-meager. Moreover,
OM ′′ = O(R\M)′′ = R. By Proposition 2.2 the set M does not have the Baire
property.
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