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WEIGHTED BOUNDEDNESS OF TOEPLITZ TYPE OPERATORS
RELATED TO SINGULAR INTEGRAL OPERATORS WITH

NON-SMOOTH KERNEL

BY

XIAOSHA ZHOU and LANZHE LIU (Changsha)

Abstract. Some weighted sharp maximal function inequalities for the Toeplitz type
operator Tb =

∑m
k=1 T

k,1MbT
k,2 are established, where T k,1 are a fixed singular integral

operator with non-smooth kernel or ±I (the identity operator), T k,2 are linear operators
defined on the space of locally integrable functions, k = 1, . . . ,m, and Mb(f) = bf . The
weighted boundedness of Tb on Morrey spaces is obtained by using sharp maximal function
inequalities.

1. Introduction. Developing the thory of singular integral operators
(see [GR], [S]), their commutators have been extensively studied. In [CRW],
[PER], [PT], the authors proved that commutators generated by singu-
lar integral operators and BMO functions were bounded on Lp(Rn) for
1 < p < ∞. Chanillo [C] proved a similar result with singular integral
operators replaced by fractional integral operators. In [J], [PA], the bound-
edness of commutators generated by singular integral operators and Lip-
schitz functions on Lp(Rn) (1 < p < ∞) and Triebel–Lizorkin spaces was
obtained. In [B], [HG], the boundedness of commutators generated by singu-
lar integral operators and weighted BMO and Lipschitz functions on Lp(Rn)
(1 < p < ∞) was obtained (see also [HEW]). In [KRL], [LIL], [LM], some
Toeplitz type operators related to singular integral operators and strongly
singular integral operators were introduced, and the boundedness of their
commutators with BMO and Lipschitz functions was obtained. In [DUM],
[MA], some singular integral operators with non-smooth kernel were intro-
duced, and the boundedness of these operators and their commutators was
obtained (see [DEY], [DUM], [DY1], [DY2], [LIU2], [ZL]).

On the other hand, the classical Morrey spaces were introduced by Mor-
rey [MO] to investigate the local behavior of solutions to second order elliptic
partial differential equations (see also [P]). As Morrey spaces may be con-
sidered as extensions of Lebesgue spaces, it is natural and important to
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study the boundedness of operators on Morrey spaces. The boundedness of
maximal operators, singular integral operators, fractional integral operators
and their commutators on Morrey spaces has been studied by many authors
(see [DR1], [DR2], [KOS], [MI]). In [KOS], Komori and Shirai studied the
boundedness of these operators on weighted Morrey spaces.

Motivated by these, in this paper, we will study Toeplitz type operators
related to singular integral operators with non-smooth kernel and weighted
Lipschitz and BMO functions, and prove their weighted boundedness on
Morrey spaces.

2. Preliminaries. In this paper, we will study some singular integral
operators (see [DUM], [MA]).

Definition 2.1. A family of operators Dt, t > 0, is said to be an ap-
proximation to the identity if, for every t > 0, Dt can be represented by a
kernel at(x, y) in the following sense:

Dt(f)(x) =
�

Rn
at(x, y)f(y) dy

for every f ∈ Lp(Rn) with p ≥ 1, and at(x, y) satisfies

|at(x, y)| ≤ ht(x, y) = Ct−n/2ρ(|x− y|2/t),
where ρ is a positive, bounded and decreasing function satisfying

lim
r→∞

rn+ερ(r2) = 0 for some ε > 0.

Definition 2.2. A linear operator T is called a singular integral operator
with non-smooth kernel if T is bounded on L2(Rn) and associated with a
kernel K(x, y) such that

T (f)(x) =
�

Rn
K(x, y)f(y) dy

for every continuous function f with compact support, and for almost all x
not in the support of f . Moreover, we assume:

(1) There exists an approximation to the identity {Bt, t > 0} such that
TBt has kernel kt(x, y) and there exist c1, c2 > 0 so that�

|x−y|>c1t1/2
|K(x, y)− kt(x, y)| dx ≤ c2 for all y ∈ Rn.

(2) There exists an approximation to the identity {At, t > 0} such that
AtT has the associated kernel Kt(x, y) which satisfies

|Kt(x, y)| ≤ c4t−n/2 if |x− y| ≤ c3t1/2,
|K(x, y)−Kt(x, y)| ≤ c4tδ/2|x− y|−n−δ if |x− y| ≥ c3t1/2,

for some δ > 0 and c3, c4 > 0.
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Let b be a locally integrable function on Rn and T be a singular integral
operator with non-smooth kernel. A Toeplitz type operator associated to T
is defined by

Tb =
m∑
k=1

T k,1MbT
k,2,

where each T k,1 is either T or ±I (the identity operator), each T k,2 is a linear
operator defined on the space of locally integrable functions, k = 1, . . . ,m
and Mb(f) = bf .

Note that if m = 2, then Tb = T 1,1MbT
1,2 + T 2,1MbT

2,2; if one takes
T 1,1 = I, T 1,2 = T , T 2,1 = T and T 2,2 = −I, then Tb(f) = MbT (f) −
TMb(f) = bT (f)−T (bf), which is the commutator [b, T ](f) generated by T
and b. Thus commutator can be considered a particular case of the Toeplitz
type operator Tb, and the latter is a non-trivial generalization. It is well
known that commutators are of great interest in harmonic analysis and
have been widely studied by many authors (see [PT]). In [DUM], [MA],
the boundedness of singular integral operators with non-smooth kernel was
obtained. In [DEY], [DUM], [DY1], [DY2], [ZL], the boundedness of the com-
mutator associated to a singular integral operator with non-smooth kernel
was obtained. The main purpose of this paper is to prove sharp maximal
inequalities for Tb. As an application, we obtain the weighted boundedness
of Tb on Morrey spaces.

Now, let us introduce some notation. Throughout this paper, Q will
denote a cube in Rn with sides parallel to the axes. For any locally integrable
function f , let

M(f)(x) = sup
Q3x

1

|Q|

�

Q

|f(y)| dy.

For η > 0, let Mη(f)(x) = M(|f |η)1/η(x).
For 0 ≤ η < n, 1 ≤ p <∞ and a non-negative weight function w, set

Mη,p,w(f)(x) = sup
Q3x

(
1

w(Q)1−pη/n

�

Q

|f(y)|pw(y) dy

)1/p

.

We write Mη,p,w(f) = Mp,w(f) if η = 0.

The sharp maximal function M#
A (f) associated with the approximation

to the identity {At, t > 0} is defined by

M#
A (f)(x) = sup

x∈Q

1

|Q|

�

Q

|f(y)−AtQ(f)(y)| dy,

where tQ = l(Q)2 and l(Q) denotes the side length of Q. For η > 0, let

M#
A,η(f) = M#

A (|f |η)1/η.



256 X. S. ZHOU AND L. Z. LIU

The set of Ap weights is defined, for 1 < p <∞, by (see [GR])

Ap =

{
w∈L1

loc(Rn) : sup
Q

(
1

|Q|

�

Q

w(x) dx

)(
1

|Q|

�

Q

w(x)−1/(p−1) dx

)p−1
<∞

}
;

moreover,

A1 = {w ∈ Lploc(R
n) : M(w)(x) ≤ Cw(x), a.e.},

A∞ =
⋃
p≥1

Ap.

For 0 < β < 1 and a non-negative weight function w, the weighted
Lipschitz space Lipβ(w) is the space of functions b such that

‖b‖Lipβ(w) = sup
Q

1

w(Q)β/n

(
1

w(Q)

�

Q

|b(y)− bQ|pw(x)1−p dy

)1/p

<∞,

and the weighted BMO space BMO(w) is the space of functions b such that

‖b‖BMO(w) = sup
Q

(
1

w(Q)

�

Q

|b(y)− bQ|pw(x)1−p dy

)1/p

<∞.

Remark. (1) It is known (see [G]) that for b ∈ Lipβ(w), w ∈ A1 and
x ∈ Q,

|bQ − b2jQ| ≤ Cj‖b‖Lipβ(w)w(x)w(2jQ)β/n.

(2) It is known (see [G]) that for b ∈ BMO(w), w ∈ A1 and x ∈ Q,

|bQ − b2jQ| ≤ Cj‖b‖BMO(w)w(x).

(3) Let b ∈ Lipβ(w) or b ∈ BMO(w), and w ∈ A1. By [G], [HG], we know
that the spaces Lipβ(w) or BMO(w) coincide and the norms ‖b‖Lipβ(w) or

‖b‖BMO(w) for different values 1 ≤ p <∞ are all equivalent.

Throughout this paper, ϕ will denote a positive, increasing function on
R+ for which there exists a constant D > 0 such that

ϕ(2t) ≤ Dϕ(t) for t ≥ 0.

Let w be a non-negative weight function on Rn and f be a locally integrable
function on Rn. Set, for 1 ≤ p <∞,

‖f‖Lp,ϕ(w) = sup
x∈Rn, d>0

(
1

ϕ(d)

�

Q(x,d)

|f(y)|pw(y) dy

)1/p

,

where Q(x, d) = {y ∈ Rn : |x − y| < d}. The generalized weighted Morrey
space is defined by

Lp,ϕ(Rn, w) = {f ∈ L1
loc(Rn) : ‖f‖Lp,ϕ(w) <∞}.
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If ϕ(d) = dδ, δ > 0, then Lp,ϕ(Rn, w) = Lp,δ(Rn, w), which is the classical
Morrey space (see [PE1], [PE2]). If ϕ(d) = 1, then Lp,ϕ(Rn, w) = Lp(Rn, w),
which is a weighted Lebesgue space (see [GR]).

3. Some lemmas. We begin with the following lemmas.

Lemma 3.1 (see [GR, p. 485]). Let 0 < p < q <∞ and 1/r = 1/p−1/q.
For any function f ≥ 0 define

‖f‖WLq = sup
λ>0

λ|{x ∈ Rn : f(x) > λ}|1/q,

Np,q(f) = sup
Q
‖fχQ‖Lp/‖χQ‖Lr ,

where the sup is taken over all measurable sets Q with 0 < |Q| <∞. Then

‖f‖WLq ≤ Np,q(f) ≤ (q/(q − p))1/p‖f‖WLq .

Lemma 3.2 (see [DUM], [MA]). Let T be a singular integral operator
as in Definition 2.2. Then T is bounded on Lp(Rn, w) for w ∈ Ap with
1 < p <∞, and weak (L1, L1) bounded.

Lemma 3.3 (see [G], [GR]). Let 0 ≤ η < n, 1 ≤ s < p < n/η, 1/q =
1/p− η/n and w ∈ A1. Then

‖Mη,s,w(f)‖Lq(w) ≤ C‖f‖Lp(w).

Lemma 3.4 (see [DUM], [MA]). Let {At, t > 0} be an approximation to
the identity. For any γ > 0, there exists a constant C > 0 independent of γ
such that

|{x ∈ Rn : M(f)(x) > Dλ, M#
A (f)(x) ≤ γλ}|

≤ Cγ|{x ∈ Rn : M(f)(x) > λ}|

for λ > 0, where D is a fixed constant which only depends on n. Thus, for
f ∈ Lp(Rn), 1 < p <∞, 0 < η <∞ and w ∈ A1,

‖Mη(f)‖Lp(w) ≤ C‖M
#
A,η(f)‖Lp(w).

Lemma 3.5. Let {At, t > 0} be an approximation to the identity, 0 <
D < 2n and w ∈ A1. Then

(a) ‖Mη(f)‖Lp,ϕ(w) ≤ C‖M#
A,η(f)‖Lp,ϕ(w) for 1 < p < ∞, 0 < η < ∞

and w ∈ A1;
(b) ‖Mη,s,w(f)‖Lq,ϕ(w) ≤ C‖f‖Lp,ϕ(w) for 0 ≤ η < n, 1 ≤ s < p < n/η,

1/q = 1/p− η/n and w ∈ A1.

Proof. (a) For any cube Q = Q(x0, d) in Rn, we know M(wχQ) ∈ A1 for
any cube Q = Q(x, d) by [CR]. Then, by Lemma 3.4, we have
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�

Q

|Mη(f)(y)|pw(y) dy =
�

Rn
|Mη(f)(y)|pw(y)χQ(y) dy

≤
�

Rn
|Mη(f)(y)|pM(wχQ)(y) dy ≤ C

�

Rn
|M#

A,η(f)(y)|pM(wχQ)(y) dy

= C
�

Q

|M#
A,η(f)(y)|pM(wχQ)(y) dy

+ C
∞∑
k=0

�

2k+1Q\2kQ

|M#
A,η(f)(y)|pM(wχQ)(y) dy

≤ C
( �

Q

|M#
A,η(f)(y)|pw(y) dy +

∞∑
k=0

�

2k+1Q\2kQ

|M#
A,η(f)(y)|p w(Q)

|2k+1Q|
dy

)

≤ C
( �

Q

|M#
A,η(f)(y)|pw(y) dy +

∞∑
k=0

�

2k+1Q

|M#
A,η(f)(y)|pM(w)(y)

2n(k+1)
dy

)

≤ C
( �

Q

|M#
A,η(f)(y)|pw(y) dy +

∞∑
k=0

�

2k+1Q

|M#
A,η(f)(y)|pw(y)

2nk
dy

)

≤ C‖M#
A,η(f)‖pLp,ϕ(w)

∞∑
k=0

2−nkϕ(2k+1d)

≤ C‖M#
A,η(f)‖pLp,ϕ(w)

∞∑
k=0

(2−nD)kϕ(d) ≤ C‖M#
A,η(f)‖pLp,ϕ(w)ϕ(d),

thus

‖Mη(f)‖Lp,ϕ(w) ≤ C‖M
#
A,η(f)‖Lp,ϕ(w).

This finishes the proof of (a).

The proof of (b) is similar to that of (a) by Lemma 3.3; we omit the
details.

4. Results and their proofs

Theorem 4.1. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, w ∈ A1, 0 < η < 1, 1 < s < ∞, 0 < β < 1 and
b ∈ Lipβ(w). If T1 = 0 on Lr(Rn) (1 < r <∞), then there exists a constant
C > 0 such that, for any f ∈ C∞0 (Rn) and x̃ ∈ Rn,

M#
A,η(Tb(f))(x̃) ≤ C‖b‖Lipβ(w)w(x̃)

m∑
k=1

Mβ,s,w(T k,2(f))(x̃).
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Proof. It suffices to prove that for f ∈ C∞0 (Rn),(
1

|Q|

�

Q

|Tb(f)(x)−AtQ(Tb(f))(x)|η dx
)1/η

≤ C‖b‖Lipβ(w)w(x̃)
m∑
k=1

Mβ,s,w(T k,2(f))(x̃),

where tQ = l(Q)2 and l(Q) denotes the side length of Q. Without loss of
generality, we may assume T k,1 = T (k = 1, . . . ,m). Fix a cube Q = Q(x0, d)
and x̃ ∈ Q. Since T1(g) = 0, we have

Tb(f)(x) = Tb−b2Q(f)(x) = T(b−b2Q)χ2Q
(f)(x) + T(b−b2Q)χ(2Q)c

(f)(x)

= U1(x) + U2(x)

and(
1

|Q|

�

Q

|Tb(f)(x)−AtQ(Tb(f))(x)|η dx
)1/η

≤
(
C

|Q|

�

Q

|U1(x)|η dx
)1/η

+

(
C

|Q|

�

Q

|AtQ(U1)(x)|η dx
)1/η

+

(
C

|Q|

�

Q

|U2(x)−AtQ(U2)(x)|η dx
)1/η

= I1 + I2 + I3.

For I1, by the weak (L1, L1) boundedness of T (see Lemma 3.2) and Kol-
mogorov’s inequality (see Lemma 3.1), we obtain(

1

|Q|

�

Q

|T k,1M(b−b2Q)χ2Q
T k,2(f)(x)|η dx

)1/η

≤ |Q|
1/η−1

|Q|1/η
‖T k,1M(b−b2Q)χ2Q

T k,2(f)χQ‖Lη
‖χ2Q‖Lη/(1−η)

≤ C

|Q|
‖T k,1M(b−b2Q)χ2Q

T k,2(f)‖WL1 ≤
C

|Q|

�

Rn
|M(b−b2Q)χ2Q

T k,2(f)(x)| dx

≤ C

|Q|

�

2Q

|b(x)− b2Q|w(x)−1/s|T k,2(f)(x)|w(x)1/s dx

≤ C

|Q|

( �

2Q

|b(x)− b2Q|s
′
w(x)1−s

′
dx
)1/s′( �

2Q

|T k,2(f)(x)|sw(x) dx
)1/s

≤ C

|Q|
‖b‖Lipβ(w)w(2Q)1/s

′+β/nw(2Q)1/s−β/n
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×
(

1

w(Q)1−sβ/n

�

2Q

|T k,2(f)(x)|sw(y) dy

)1/s

≤ C‖b‖Lipβ(w)
w(2Q)

|2Q|
Mβ,s,w(T k,2(f))(x̃)

≤ C‖b‖Lipβ(w)w(x̃)Mβ,s,w(T k,2(f))(x̃),

thus

I1 ≤ C
m∑
k=1

(
1

|Q|

�

Q

|T k,1M(b−b2Q)χ2Q
T k,2(f)(x)|η dx

)1/η

≤ C‖b‖Lipβ(w)w(x̃)
m∑
k=1

Mβ,s,w(T k,2(f))(x̃).

For I2, by the condition on htQ and noticing that if x ∈ Q and y ∈ 2j+1Q \
2jQ, then htQ(x, y) ≤ Ct−n/2Q ρ(22(j−1)), we have[

1

|Q|

�

Q

|AtQ(T k,1M(b−b2Q)χ2Q
T k,2(f))(x)|η dx

]1/η

≤ C
[

1

|Q|

�

Q

( �

Rn
htQ(x, y)|T k,1M(b−b2Q)χ2Q

T k,2(f)(y)| dy
)η
dx

]1/η

≤ C
[

1

|Q|

�

Q

( �

2Q

htQ(x, y)|T k,1M(b−b2Q)χ2Q
T k,2(f)(y)| dy

)η
dx

]1/η

+ C

[
1

|Q|

�

Q

( �

(2Q)c

htQ(x, y)|T k,1M(b−b2Q)χ2Q
T k,2(f)(y)| dy

)η
dx

]1/η
≤ C

�

2Q

t
−n/2
Q |T k,1M(b−b2Q)χ2Q

T k,2(f)(y)| dy

+ C

∞∑
j=1

t
−n/2
Q ρ(22(j−1))

�

2j+1Q\2jQ

|T k,1M(b−b2Q)χ2Q
T k,2(f)(y)| dy

= I
(1)
2 + I

(2)
2 .

Since w ∈ A1, w satisfies the reverse Hölder inequality:(
1

|Q|

�

Q

w(x)p0 dx

)1/p0

≤ C

|Q|

�

Q

w(x) dx

for all cubes Q and some 1 < p0 < ∞ (see [GR]). Choose q > 1 such
that r = (p0 − 1)/q + 1 < s and let p > 1 with r/s + 1/p + 1/q = 1; then
(r−r/s−1/p)q = p0. We obtain, by Hölder’s inequality and Lr-boundedness
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of T (see Lemma 3.2),

I
(1)
2 ≤ C

(
1

|Q|

�

Rn
|T k,1M(b−b2Q)χ2Q

T k,2(f)(y)|r dy
)1/r

≤ C
(

1

|Q|

�

Rn
|M(b−b2Q)χ2Q

T k,2(f)(y)|r dy
)1/r

≤ C|Q|−1/r
( �
2Q

|b(y)−b2Q|rw(y)1/p−r|T k,2(f)(y)|rw(y)r/sw(y)r−r/s−1/p dy
)1/r

≤ C|Q|−1/r
( �

2Q

|b(y)− b2Q|prw(y)1−pr dy
)1/pr

×
( �

2Q

|T k,2(f)(y)|sw(y) dy
)1/s( �

2Q

w(y)(r−r/s−1/p)q dy
)1/qr

≤ C|Q|−1/r‖b‖Lipβ(w)w(2Q)β/n+1/prw(2Q)1/s−β/n|2Q|1/qr

×
(

1

w(2Q)1−sβ/n

�

2Q

|T k,2(f)(y)|sw(y) dy

)1/s( 1

|2Q|

�

2Q

w(y)p0 dy

)1/qr

≤ C‖b‖Lipβ(w)|Q|
−1/rw(2Q)1/prw(2Q)1/sMβ,s,w(T k,2(f))(x̃)

× |2Q|1/qr
(

1

|2Q|

�

2Q

w(y) dy

)p0/qr
≤ C‖b‖Lipβ(w)

w(2Q)

|2Q|
Mβ,s,w(T k,2(f))(x̃)

≤ C‖b‖Lipβ(w)w(x̃)Mβ,s,w(T k,2(f))(x̃),

and

I
(2)
2 ≤ C

∞∑
j=1

2jnρ(22(j−1))

(
1

|2j+1Q|

�

Rn
|T k,1M(b−b2Q)χ2Q

T k,2(f)(y)|r dy
)1/r

≤ C
∞∑
j=1

2jnρ(22(j−1))

(
1

|2j+1Q|

�

Rn
|M(b−b2Q)χ2Q

T k,2(f)(y)|r dy
)1/r

≤ C
∞∑
j=1

2jnρ(22(j−1))(2jl(Q))−n/r

×
( �

2Q

|b(y)− b2Q|rw(y)1/p−r|T k,2(f)(y)|rw(y)r/sw(y)r−r/s−1/p dy
)1/r

≤ C
∞∑
j=1

2jnρ(22(j−1))(2jl(Q))−n/r
( �

2Q

|b(y)− b2Q|prw(y)1−pr dy
)1/pr
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×
( �

2Q

|T k,2(f)(y)|sw(y) dy
)1/s( �

2Q

w(y)(r−r/s−1/p)q dy
)1/qr

≤ C
∞∑
j=1

2jnρ(22(j−1))(2jl(Q))−n/r‖b‖Lipβ(w)w(2Q)β/n+1/prw(2Q)1/s−β/n

×Mβ,s,w(T k,2(f))(x̃)|2Q|1/qr
(

1

|2Q|

�

2Q

w(y)p0 dy

)1/qr

≤ C‖b‖Lipβ(w)
∞∑
j=1

2jnρ(22(j−1))(2jl(Q))−n/rw(2Q)1/prw(2Q)1/s

×Mβ,s,w(T k,2(f))(x̃)|2Q|1/qr
(

1

|2Q|

�

2Q

w(y) dy

)p0/qr
≤ C‖b‖Lipβ(w)

w(2Q)

|2Q|
Mβ,s,w(T k,2(f))(x̃)

∞∑
j=1

2(j−1)(n+ε)ρ(22(j−1))2−j(ε+n/r)

≤ C‖b‖Lipβ(w)w(x̃)Mβ,s,w(T k,2(f))(x̃),

where
∑∞

j=1 2(j−1)(n+ε)ρ(22(j−1))2−j(ε+n/r)<∞ since limr→∞ r
n+ερ(r2) = 0;

thus

I2 ≤ C
m∑
k=1

(
1

|Q|

�

Rn
|AtQ(T k,1M(b−b2Q)χ2Q

T k,2(f))(x)|η dx
)1/η

≤ C‖b‖Lipβ(w)w(x̃)
m∑
k=1

Mβ,s,w(T k,2(f))(x̃).

For I3, notice w ∈ A1 ⊂ As; by the definition of As, we get, for x ∈ Q,

|T k,1M(b−bQ)χ(2Q)c
T k,2(f)(x)−AtQ(T k,1M(b−b2Q)χ(2Q)c

T k,2(f))(x)|

≤
�

(2Q)c

|b(y)− b2Q| |K(x− y)−KtQ(x− y)| |T k,2(f)(y)| dy

≤ C
∞∑
j=1

�

2jd≤|y−x0|<2j+1d

l(Q)δ

|y − x0|n+δ
|b(y)− b2Q| |T k,2(f)(y)| dy

≤ C
∞∑
j=1

dδ

(2j+1d)n+δ

�

2j+1Q

|b(y)− b2j+1Q + b2j+1Q − b2Q|

× w(y)−1/s|T k,2(f)(y)|w(y)1/s dy

≤ C
∞∑
j=1

dδ

(2j+1d)n+δ

( �

2j+1Q

|b(y)− b2j+1Q|s
′
w(y)1−s

′
dy
)1/s′
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×
( �

2j+1Q

|T k,2(f)(y)|sw(y) dy
)1/s

+ C

∞∑
j=1

dδ

(2j+1d)n+1
|b2j+1Q − b2Q|

( �

2j+1Q

w(y)−1/(s−1) dy
)1/s′

×
( �

2j+1Q

|T k,2(f)(y)|sw(y) dy
)1/s

≤ C
∞∑
j=1

dδ

(2j+1d)n+δ
‖b‖Lipβ(w)w(2j+1Q)1/s

′+β/nw(2j+1Q)1/s−β/n

×Mβ,s,w(T k,2(f))(x̃)

+C

∞∑
j=1

dδ

(2j+1d)n+δ
‖b‖Lipβ(w)w(x̃)jw(2j+1Q)β/nw(2j+1Q)1/s−β/n

×Mβ,s,w(T k,2(f))(x̃)

× |2j+1Q|
w(2j+1Q)1/s

(
1

|2j+1Q|

�

2j+1Q

w(y) dy

)1/s

×
(

1

|2j+1Q|

�

2j+1Q

w(y)−1/(s−1) dy

)(s−1)/s

≤ C‖b‖Lipβ(w)
∞∑
j=1

w(2j+1Q)

|2j+1Q|
2−δjMβ,s,w(T k,2(f))(x̃)

+ C‖b‖Lipβ(w)w(x̃)
∞∑
j=1

j2−δjMβ,s,w(T k,2(f))(x̃)

≤ C‖b‖Lipβ(w)w(x̃)Mβ,s,w(T k,2(f))(x̃),

thus

I3 ≤
C

|Q|

�

Q

m∑
k=1

|T k,1M(b−b2Q)χ(2Q)c
T k,2(f)(x)

−AtQ(T k,1M(b−b2Q)χ(2Q)c
T k,2(f))(x)| dx

≤ C‖b‖Lipβ(w)w(x̃)

m∑
k=1

Mβ,s,w(T k,2(f))(x̃).

This completes the proof of Theorem 4.1.

Theorem 4.2. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, w ∈ A1, 0 < η < 1, 1 < s <∞ and b ∈ BMO(w).
If T1 = 0 on Lr(Rn)(1 < r < ∞), then there exists a constant C > 0 such
that, for any f ∈ C∞0 (Rn) and x̃ ∈ Rn,

M#
A,η(Tb(f))(x̃) ≤ C‖b‖BMO(w)w(x̃)

m∑
k=1

Ms,w(T k,2(f))(x̃).
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Proof. It suffices to prove that for f ∈ C∞0 (Rn),(
1

|Q|

�

Q

|Tb(f)(x)−AtQ(Tb(f))(x)|η dx
)1/η

≤ C‖b‖BMO(w)w(x̃)
m∑
k=1

Ms,w(T k,2(f))(x̃)),

where tQ = l(Q)2 and l(Q) denotes the side length of Q. Without loss of
generality, we may assume T k,1 = T (k = 1, . . . ,m). Fix a cube Q = Q(x0, d)
and x̃ ∈ Q. Similar to the proof of Theorem 4.1, we have

Tb(f)(x) = Tb−b2Q(f)(x) = T(b−b2Q)χ2Q
(f)(x) + T(b−b2Q)χ(2Q)c

(f)(x)

= V1(x) + V2(x)

and(
1

|Q|

�

Q

|Tb(f)(x)−AtQ(Tb(f))(x)|η dx
)1/η

≤
(
C

|Q|

�

Q

|V1(x)|η dx
)1/η

+

(
C

|Q|

�

Q

|AtQ(V1)(x)|η dx
)1/η

+

(
C

|Q|

�

Q

|V2(x)−AtQ(V2)(x)|η dx
)1/η

= I4 + I5 + I6.

By using the same argument as in the proof of Theorem 4.1, we get

I4 ≤ C
m∑
k=1

|Q|1/η−1

|Q|1/η
‖T k,1M(b−b2Q)χ2Q

T k,2(f)χQ‖Lη
‖χQ‖Lη/(1−η)

≤ C
m∑
k=1

C

|Q|
‖T k,1M(b−b2Q)χ2Q

T k,2(f)‖WL1

≤
m∑
k=1

C

|Q|

�

Rn
|M(b−b2Q)χ2Q

T k,2(f)(x)| dx

≤
m∑
k=1

C

|Q|

�

2Q

|b(x)− b2Q|w(x)−1/s|T k,2(f)(x)|w(x)1/s dx

≤
m∑
k=1

C

|Q|

( �

2Q

|b(x)− b2Q|s
′
w(x)1−s

′
dx
)1/s′( �

2Q

|T k,2(f)(x)|sw(x) dx
)1/s
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≤ C
m∑
k=1

w(2Q)

|2Q|

(
1

w(2Q)

�

2Q

|b(x)− b2Q|s
′
w(x)1−s

′
dx

)1/s′

×
(

1

w(2Q)

�

2Q

|T k,2(f)(x)|sw(x) dx

)1/s

≤ C‖b‖BMO(w)w(x̃)

m∑
k=1

Ms,w(T k,2(f))(x̃),

and

I5 ≤ C
m∑
k=1

(
1

|Q|

�

Rn
|T k,1M(b−b2Q)χ2Q

T k,2(f)(y)|r dy
)1/r

+ C

m∑
k=1

∞∑
j=1

2jnρ(22(j−1))

(
1

|2j+1Q|

�

Rn
|T k,1M(b−b2Q)χ2Q

T k,2(f)(y)|r dy
)1/r

≤ C
m∑
k=1

|Q|−1/r

×
( �

2Q

|b(y)− b2Q|rw(y)1/p−r|T k,2(f)(y)|rw(y)r/sw(y)r−r/s−1/p dy
)1/r

+ C

m∑
k=1

∞∑
j=1

2jnρ(22(j−1))(2jl(Q))−n/r

×
( �

2Q

|b(y)− b2Q|rw(y)1/p−r|T k,2(f)(y)|rw(y)r/sw(y)r−r/s−1/p dy

)1/r

≤ C
m∑
k=1

|Q|−1/r
( �

2Q

|b(y)− b2Q|prw(y)1−pr dy

)1/pr

×
( �

2Q

|T k,2(f)(y)|sw(y) dy
)1/s( �

2Q

w(y)(r−r/s−1/p)q dy
)1/qr

+ C
m∑
k=1

∞∑
j=1

2jnρ(22(j−1))(2jl(Q))−n/r
( �

2Q

|b(y)− b2Q|prw(y)1−pr dy
)1/pr

×
( �

2Q

|T k,2(f)(y)|sw(y) dy
)1/s( �

2Q

w(y)(r−r/s−1/p)q dy
)1/qr

≤ C
m∑
k=1

|Q|−1/r‖b‖BMO(w)w(2Q)1/prw(2Q)1/sMs,w(T k,2(f))(x̃)
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× |2Q|1/qr
(

1

|2Q|

�

2Q

w(y)p0 dy

)1/qr

+ C

m∑
k=1

∞∑
j=1

2jnρ(22(j−1))(2jl(Q))−n/r‖b‖BMO(w)w(2Q)1/prw(2Q)1/s

×Ms,w(T k,2(f))(x̃)|2Q|1/qr
(

1

|2Q|

�

2Q

w(y)p0 dy

)1/qr

≤ C‖b‖BMO(w)

m∑
k=1

|Q|−1/rw(2Q)1/prw(2Q)1/sMs,w(T k,2(f))(x̃)

× |2Q|1/qr
(

1

|2Q|

�

2Q

w(y) dy

)p0/qr

+ C‖b‖BMO(w)

m∑
k=1

∞∑
j=1

2jnρ(22(j−1))(2jl(Q))−n/rw(2Q)1/prw(2Q)1/s

×Ms,w(T k,2(f))(x̃)|2Q|1/qr
(

1

|2Q|

�

2Q

w(y) dy

)p0/qr

≤ C
m∑
k=1

‖b‖BMO(w)
w(2Q)

|2Q|
Ms,w(T k,2(f))(x̃)

+ C

m∑
k=1

‖b‖BMO(w)
w(2Q)

|2Q|
Ms,w(T k,2(f))(x̃)

×
∞∑
j=1

2(j−1)(n+ε)ρ(22(j−1))2−j(ε+n/r)

≤ C‖b‖BMO(w)w(x̃)

m∑
k=1

Ms,w(T k,2(f))(x̃),

and

I6 ≤ C
m∑
k=1

1

|Q|

�

Q

∞∑
j=1

�

2kd≤|y−x0|<2k+1d

|b(y)− b2Q|
|x−x0|δ

|x0−y|n+δ
|T k,2(f)(y)| dy dx

≤ C
m∑
k=1

∞∑
j=1

dδ

(2j+1d)n+δ

�

2j+1Q

|b(y)− b2j+1Q + b2j+1Q − b2Q|

× w(y)−1/s|T k,2(f)(y)|w(y)1/s dy
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≤ C
m∑
k=1

∞∑
j=1

dδ

(2j+1d)n+δ

( �

2j+1Q

|b(y)− b2j+1Q|s
′
w(y)1−s

′
dy
)1/s′

×
( �

2j+1Q

|T j,2(f)(y)|sw(y) dy
)1/s

+ C

m∑
k=1

∞∑
j=1

dδ

(2j+1d)n+δ
|b2j+1Q − b2Q|

( �

2j+1Q

w(y)−1/(s−1) dy
)1/s′

×
( �

2j+1Q

|T k,2(f)(y)|sw(y) dy
)1/s

≤ C
m∑
k=1

∞∑
j=1

dδ

(2j+1d)n+δ
‖b‖BMO(w)w(2j+1Q)Ms,w(T k,2(f))(x̃)

+
m∑
k=1

∞∑
j=1

dδ

(2j+1d)n+δ
‖b‖BMO(w)w(x̃)jw(2j+1Q)1/sMs,w(T k,2(f))(x̃)

× |2j+1Q|
w(2j+1Q)1/s

(
1

|2j+1Q|

�

2j+1Q

w(y) dy

)1/s

×
(

1

|2j+1Q|

�

2j+1Q

w(y)−1/(s−1) dy

)(s−1)/s

≤ C‖b‖BMO(w)w(x̃)
m∑
k=1

Ms,w(T k,2(f))(x̃)
∞∑
j=1

j2−δj

≤ C‖b‖BMO(w)w(x̃)
m∑
k=1

Ms,w(T k,2(f))(x̃).

This completes the proof of Theorem 4.2.

Corollary 4.3. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, w ∈ A1, 0 < β < 1 and b ∈ Lipβ(w), 1 < p <
n/β, 1/q = 1/p− β/n and 0 < D < 2n. If T1 = 0 on Lr(Rn) (1 < r < ∞)
and T k,2 are bounded linear operators on Lp,ϕ(Rn, w) for 1 < p < ∞ and
w ∈ A1 (1 ≤ k ≤ m), then Tb is bounded from Lp,ϕ(Rn, w) to Lq,ϕ(Rn, w1−q).

Proof. Choose 1 < s < p in Theorem 4.1 and notice w1−q ∈ A1. Then,
by Lemma 3.5,

‖Tb(f)‖Lq,ϕ(w1−q) ≤ ‖Mη(Tb(f))‖Lq,ϕ(w1−q) ≤ C‖M
#
A,η(Tb(f))‖Lq,ϕ(w1−q)

≤ C‖b‖Lipβ(w)
m∑
k=1

‖wMβ,s,w(T k,2(f))‖Lq,ϕ(w1−q)
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= C‖b‖Lipβ(w)
m∑
k=1

‖Mβ,s,w(T k,2(f))‖Lq,ϕ(w)

≤ C‖b‖Lipβ(w)
m∑
k=1

‖T k,2(f)‖Lp,ϕ(w) ≤ C‖b‖Lipβ(w)‖f‖Lp,ϕ(w).

Corollary 4.4. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, w ∈ A1, 0 < D < 2n, 1 < p < ∞ and b ∈
BMO(w). If T1 = 0 on Lr(Rn) (1 < r < ∞) and T k,2 are bounded linear
operators on Lp,ϕ(Rn, w) for 1 < p < ∞ and w ∈ A1 (1 ≤ k ≤ m), then Tb
is bounded from Lp,ϕ(Rn, w) to Lp,ϕ(Rn, w1−p).

Proof. Choose 1 < s < p in Theorem 4.2 and notice w1−p ∈ A1. Then,
by Lemma 3.5,

‖Tb(f)‖Lp,ϕ(w1−p) ≤ ‖Mη(Tb(f))‖Lp,ϕ(w1−p) ≤ C‖M
#
A,η(Tb(f))‖Lp,ϕ(w1−p)

≤ C‖b‖BMO(w)

m∑
k=1

‖wMs,w(T k,2(f))‖Lp,ϕ(w1−p)

= C‖b‖BMO(w)

m∑
k=1

‖Ms,w(T k,2(f))‖Lp,ϕ(w)

≤ C‖b‖BMO(w)

m∑
k=1

‖T k,2(f)‖Lp,ϕ(w)

≤ C‖b‖BMO(w)‖f‖Lp,ϕ(w).
Corollary 4.5. Let [b, T ](f) = bT (f)− T (bf) be the commutator gen-

erated by the singular integral operator T with non-smooth kernel as in Def-
inition 2.2 and b. Then the conclusions of Theorems 4.1–4.2 and Corollaries
4.3–4.4 hold for [b, T ] in place of Tb.

5. Applications. In this section we shall apply Theorems 4.1–4.2 and
Corollaries 4.3–4.4 to the holomorphic functional calculus of linear ellip-
tic operators. First, we review some definitions regarding the holomorphic
functional calculus (see [DUM], [MA]). Given 0 ≤ θ < π, define

Sθ = {z ∈ C : |arg(z)| ≤ θ} ∪ {0}
and denote by S0

θ its interior. Set S̃θ = Sθ\{0}. A closed operator L on some
Banach space E is said to be of type θ if its spectrum σ(L) is contained in
Sθ and for every ν ∈ (θ, π], there exists a constant Cν such that

|η| ‖(ηI − L)−1‖ ≤ Cν , η /∈ S̃θ.
For ν ∈ (0, π], let

H∞(S0
µ) = {f : S0

θ → C : f is holomorphic and ‖f‖L∞ <∞},
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where ‖f‖L∞ = sup{|f(z)| : z ∈ S0
µ}. Set

Ψ(S0
µ) =

{
g ∈ H∞(S0

µ) : ∃s, c > 0 such that |g(z)| ≤ c |z|s

1 + |z|2s

}
.

If L is of type θ and g ∈ H∞(S0
µ), we define g(L) ∈ L(E) by

g(L) = −(2πi)−1
�

Γ

(ηI − L)−1g(η) dη,

where Γ is the contour {ξ = re±iφ : r ≥ 0} parameterized clockwise around
Sθ with θ < φ < µ. If, in addition, L is one-one and has dense range, then,
for f ∈ H∞(S0

µ),

f(L) = [h(L)]−1(fh)(L),

where h(z) = z(1+z)−2. The operator L is said to have a bounded holomor-
phic functional calculus on the sector Sµ if

‖g(L)‖ ≤ N‖g‖L∞
for some N > 0 and for all g ∈ H∞(S0

µ).

Now, let L be a linear operator on L2(Rn) with θ < π/2 so that −L
generates a holomorphic semigroup e−zL, 0 ≤ |arg(z)| < π/2− θ. Applying
Theorem 6 of [MA] and Theorems 4.1–4.2 and Corollaries 4.3–4.4, we get

Corollary 5.1. Assume the following conditions are satisfied:

(i) The holomorphic semigroup e−zL, 0 ≤ |arg(z)| < π/2 − θ, is repre-
sented by the kernels az(x, y) which satisfy, for all ν > θ, an upper
bound

|az(x, y)| ≤ cνh|z|(x, y)

for x, y ∈ Rn and 0 ≤ |arg(z)| < π/2− θ, where

ht(x, y) = Ct−n/2s(|x− y|2/t)
and s is a positive, bounded and decreasing function satisfying

lim
r→∞

rn+εs(r2) = 0.

(ii) The operator L has a bounded holomorphic functional calculus in
L2(Rn), that is, for all ν > θ and g ∈ H∞(S0

µ), the operator g(L)
satisfies

‖g(L)(f)‖L2 ≤ cν‖g‖L∞‖f‖L2 .

Let g(L)b be the Toeplitz type operator associated to g(L). Then
the conclusion of Theorems 4.1–4.2 and Corollaries 4.3–4.4 hold for
g(L)b in place of Tb.
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