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WEIGHTED BOUNDEDNESS OF TOEPLITZ TYPE OPERATORS
RELATED TO SINGULAR INTEGRAL OPERATORS WITH
NON-SMOOTH KERNEL

BY
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Abstract. Some weighted sharp maximal function inequalities for the Toeplitz type
operator Tp = » ", TR M, TR? are established, where T are a fixed singular integral
operator with non-smooth kernel or &1 (the identity operator), T%2 are linear operators
defined on the space of locally integrable functions, k = 1,...,m, and My(f) = bf. The
weighted boundedness of T, on Morrey spaces is obtained by using sharp maximal function
inequalities.

1. Introduction. Developing the thory of singular integral operators
(see |GRI, [S]), their commutators have been extensively studied. In [CRW],
[PER], [PT], the authors proved that commutators generated by singu-
lar integral operators and BMO functions were bounded on LP(R™) for
1 < p < oo. Chanillo [C] proved a similar result with singular integral
operators replaced by fractional integral operators. In [J], [PA], the bound-
edness of commutators generated by singular integral operators and Lip-
schitz functions on LP(R™) (1 < p < oo) and Triebel-Lizorkin spaces was
obtained. In [B], [HG], the boundedness of commutators generated by singu-
lar integral operators and weighted BMO and Lipschitz functions on LP(R™)
(1 < p < o0) was obtained (see also [HEW]). In [KRL], [LIL], [LM]|, some
Toeplitz type operators related to singular integral operators and strongly
singular integral operators were introduced, and the boundedness of their
commutators with BMO and Lipschitz functions was obtained. In [DUM],
[MA], some singular integral operators with non-smooth kernel were intro-
duced, and the boundedness of these operators and their commutators was
obtained (see [DEY], [DUM], [DY1], [DY?2], [LIU2], |[Z1]).

On the other hand, the classical Morrey spaces were introduced by Mor-
rey [MO)] to investigate the local behavior of solutions to second order elliptic
partial differential equations (see also [P]). As Morrey spaces may be con-
sidered as extensions of Lebesgue spaces, it is natural and important to
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study the boundedness of operators on Morrey spaces. The boundedness of
maximal operators, singular integral operators, fractional integral operators
and their commutators on Morrey spaces has been studied by many authors
(see [DR1], [DR2], [KOS], [MI]). In [KOS|, Komori and Shirai studied the
boundedness of these operators on weighted Morrey spaces.

Motivated by these, in this paper, we will study Toeplitz type operators
related to singular integral operators with non-smooth kernel and weighted
Lipschitz and BMO functions, and prove their weighted boundedness on
Morrey spaces.

2. Preliminaries. In this paper, we will study some singular integral
operators (see [DUM], [MA]).

DEFINITION 2.1. A family of operators Dy, t > 0, is said to be an ap-
proxzimation to the identity if, for every ¢ > 0, D, can be represented by a
kernel a;(x,y) in the following sense:

Di(f)(x) = | arl@.y)f(y)dy
R
for every f € LP(R™) with p > 1, and a:(z,y) satisfies
as(w, 9)| < ha(w,y) = CE"Pp(|e =y /1),
where p is a positive, bounded and decreasing function satisfying

lim r"Tp(r?) =0 for some € > 0.
r—00

DEFINITION 2.2. A linear operator T is called a singular integral operator
with non-smooth kernel if T is bounded on L?(R™) and associated with a
kernel K (z,y) such that

T(f)(z) = | K(z,y)f(y)dy
RTL
for every continuous function f with compact support, and for almost all
not in the support of f. Moreover, we assume:

(1) There exists an approximation to the identity {B;,t > 0} such that
T B; has kernel k¢(z,y) and there exist ¢, ¢z > 0 so that

S |K (z,y) — ke(x,y)|de < cg  for all y € R".
|z—y|>c1t1/2

(2) There exists an approximation to the identity {A:,¢ > 0} such that
AT has the associated kernel K;(z,y) which satisfies

|Ki(z,y)| < cat™/? if |z — y| < est'/?,
K (z,y) — Ki(z,y)| < cat®?|z —y|™"0  if [z —y| > est?/?,

for some § > 0 and c3,c4 > 0.
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Let b be a locally integrable function on R™ and T be a singular integral
operator with non-smooth kernel. A Toeplitz type operator associated to T
is defined by

m
Tb — Z 7‘!]6,1]\4171116,27
k=1
where each T%1! is either T or +1 (the identity operator), each T*2 is a linear

operator defined on the space of locally integrable functions, k = 1,...,m
and M(f) =bf.

Note that if m = 2, then T, = TV M, T2 + T?1 M, T?2; if one takes
TV =1, 742 =T, T = T and T*? = —1I, then T,(f) = M,T(f) —
TMy(f) =0T(f)—T(bf), which is the commutator [b, T](f) generated by T'
and b. Thus commutator can be considered a particular case of the Toeplitz
type operator Tj, and the latter is a non-trivial generalization. It is well
known that commutators are of great interest in harmonic analysis and
have been widely studied by many authors (see [PT]). In [DUM], [MA],
the boundedness of singular integral operators with non-smooth kernel was
obtained. In [DEY], [DUM], [DYT], [DY?2], [ZL], the boundedness of the com-
mutator associated to a singular integral operator with non-smooth kernel
was obtained. The main purpose of this paper is to prove sharp maximal
inequalities for Tp. As an application, we obtain the weighted boundedness
of Ty on Morrey spaces.

Now, let us introduce some notation. Throughout this paper, @ will
denote a cube in R™ with sides parallel to the axes. For any locally integrable
function f, let

M) = i}

For 1) > 0, let My(f)(x) = M(|f]")"/"(x).
For 0 <7 <n,1 < p< oo and a non-negative weight function w, set

1 1/p
Myl (o) = 510 ( {10t w)

We write M) pw(f) = Mpw(f) if n=0.
The sharp maximal function Mﬁ( f) associated with the approximation
to the identity {A:,t > 0} is defined by

M (f)(z) = Sup 1o ‘Q, V17) = A (H ()l dy,

where g = 1(Q)? and I(Q) denotes the side length of Q. For n > 0, let
M, (f) = ME (| f|m)M/.

V17 ()l dy.
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The set of A, weights is defined, for 1 < p < oo, by (see [GRI)

A, = {oe b (@) sup<‘Q|§ <>d:c)<‘Q,§w<x>—1/<p-”dx)p_l< ool

moreover,
Ay ={we Ll (R"): M(w)(z) < Cw(z), a.e.},
A = | Ap.
p=1

For 0 < 8 < 1 and a non-negative weight function w, the weighted
Lipschitz space Lipﬁ(w) is the space of functions b such that

1/p
1Bl Lip g (w) = sup ( S b(y) — bo|Pw(x) P dy> < 00,
w )B/n
Q w(Q Q

and the weighted BMO space BMO(w) is the space of functions b such that

1 1/p
b w) =sup| ——— |\ |b(y) — b pwxl_pd) < 00.
Ibllaxtow) Qp<w<@§2' (4) ~ bl (z)'* dy

REMARK. (1) It is known (see [G]) that for b € Lipg(w), w € Ay and
€ Q,
1b@ — baiql < Cil1bl|Lip, (uwyw(@)w (27 Q).
(2) It is known (see [G]) that for b € BMO(w), w € A; and = € Q,
bg — baig| < Cjl|bllBMo(w)w(T).
(3) Let b € Lipg(w) or b € BMO(w), and w € A;. By [G], [HG], we know

that the spaces Lipg(w) or BMO(w) coincide and the norms [|bf|rip,w) oF
[1blBMO(w) for different values 1 < p < oo are all equivalent.

Throughout this paper, ¢ will denote a positive, increasing function on
R* for which there exists a constant D > 0 such that

©(2t) < Dp(t) for t > 0.

Let w be a non-negative weight function on R™ and f be a locally integrable
function on R”. Set, for 1 < p < oo,

1 1/10
fllzpewy = sup ( fypwydy> 7
H HLP ‘/’( ) xeRn7d>0 sO(d) Q(§ d) ’ ( )’ ( )

where Q(z,d) = {y € R" : |x — y| < d}. The generalized weighted Morrey
space is defined by

LP#(R™, w) = {f € Ligc(R") ¢ [|fll oo () < 00}
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If o(d) = d°, 6 > 0, then LP¢(R", w) = LP°(R™, w), which is the classical
Morrey space (see [PEI], [PE2]). If ¢(d) = 1, then LP¥(R™ w) = LP(R™, w),
which is a weighted Lebesgue space (see [GR]).

3. Some lemmas. We begin with the following lemmas.

LEMMA 3.1 (see [GR] p. 485]). Let0 <p<g<ooandl/r=1/p—1/q.
For any function f > 0 define

I fllwre = sup A|{z € R" : f(x) > A}|M4,
A>0
Npq(f) = Sgp 1 fxqllze/lIxgllzr,

where the sup is taken over all measurable sets Q with 0 < |Q| < oo. Then

I lwze < Npg(F) < (a/ (@ =) P11 fllwers.

LEMMA 3.2 (see [DUM], [MA]). Let T be a singular integral operator
as in Definition 2.2. Then T is bounded on LP(R",w) for w € A, with
1 < p < oo, and weak (L', L') bounded.

LEMMA 3.3 (see [G], [GR]). Let 0 <np <n,1 <s<p<n/n 1/qg=
1/p—n/n and w € Ay. Then

My, 5.20 ()l Loy < ClNFll e (w)-

LEMMA 3.4 (see [DUM], [MA]). Let {As,t > 0} be an approzimation to
the identity. For any v > 0, there exists a constant C > 0 independent of v
such that

[{z € R™: M(f)(x) > DA, MY (f)(z) < yA}
< Cy{z € R™ : M(f)(z) > A}|
for A > 0, where D is a fized constant which only depends on n. Thus, for
felP(R"),1<p<oo,0<n<ooandw € Ay,

1My ()l 2wy < CIME (Pl o)

LEMMA 3.5. Let {Ay,t > 0} be an approzimation to the identity, 0 <
D < 2" and w € A1. Then
(@) 1 My(H)llzrew) < CHM,ﬁn(f)HLM’(w) for1 <p<oo,0<n<oo
and w € Ay;

() 1My sw()llzae@w) < Clfllpe@) for 0 <n<n, 1 <s<p<n/n,
1/¢=1/p—n/n and w € A;.

Proof. (a) For any cube Q = Q(z,d) in R", we know M (wxq) € A; for
any cube @ = Q(z,d) by [CR]. Then, by Lemma 3.4, we have
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VIM, () () Pwty) dy = | 1My(f) () Pwly)xe(y) dy
Q R

My (£) () PM (wxo)(y) dy < C | ML, (1)) P M (wxo)(y) dy
n R

= C{IMF (D) P M (wxQ) () dy

IN
B

Q
+C> M (D @)IPM(wxo)(y) dy
k=0 2k+1Q\2+Q

L@t | (P )

k=0241Q\25Q

)
Q
Sy (e dy+kzmng|MA NP a)
)
Q

<o({ Mt (nePee Y. | ME P a)

k=0 2k+1Q

< CHMAn pr(w 22 nk 2k+1d
k=0

< OIME (Do S @DV p(d) < CIME (DI 0D
k=0

8

thus
[ My ()l oo (w) < CHMﬁn(f)HLp,w(w).

This finishes the proof of (a).

The proof of (b) is similar to that of (a) by Lemma 3.3; we omit the
details. m

4. Results and their proofs

THEOREM 4.1. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, w € A1, 0<n<1,1<s< o0, 0< B <1 and
b € Lipg(w). If Ty =0 on L"(R") (1 < r < o0), then there exists a constant
C > 0 such that, for any f € C°(R") and & € R,

ME (To(H))(E) < ClblLip, yw(@) > Mg ow(TH(£))(E).
k=1
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Proof. 1t suffices to prove that for f € Cg°(R"),

1 1/n
<|@r ) ITo(f)(a >—AtQ<Tb<f>><m>|”dm>

< CHbHLlpB(w ZMBsw Tkz(f))(x)a
k=1

where tg = [(Q)? and [(Q) denotes the side length of Q. Without loss of
generality, we may assume 75! =T (k = 1,...,m). Fix a cube Q = Q(zo, d)
and T € Q. Since T1(g) = 0, we have

To(f) (@) = Tobog (1) (2) = Tlo—b3g)x00 (N (#) + Tlo—b2)x(2)c (/) (%)
= Ul(x) + U2($)

and

1 1/n
( LT @) — A, <Tb<f>><x>r”dx)
Q

@l
C 1/n C 1/n
Un@)"dz )+ (o7 A (U))@)) de

<|czrS 1 > <|@|§2 o >

1/n
(,Q| [ 1Ua() AtQ<U2><x>|"dm)

:Il+[2+f3.

For Iy, by the weak (L', L') boundedness of T' (see Lemma 3.2) and Kol-
mogorov’s inequality (see Lemma 3.1), we obtain

k.1 k.2 n 1/n
(!QI V1T Mg T (1) () diﬂ)

’Q‘l/n_l ||Tk71M(b—b2Q)X2QTk72(f)XQHL"
- \QW” Ix20ll Lrra—n

‘HTk M(b sz)XzQTkQ(f)HWLl S

=10

< 1 [ble) — baglue) T f) (1) >1/8d:c
Q)

<5 (§ o) =gt (e~ )

" (§ n@ruc) )"

< @HbHLipﬁ(w)w(%))1/5'+B/"w(262>1/8_5/"
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v 20 () 5w s
) <w(Q)1—s,B/n QSQ [T%2(f) (@) Pw(y) dy)

m“’ffngg,S,w(T’“?(f))(@

< CHb”LipB(w)w(i‘)Mﬁ,s,w(Tk’z(f))(j)a

< Ol

thus

m 1 1/n
120 (1 T Mg TN @) )

< ClbllLip () (E) Y Mps(TH () ().
k=1

For I, by the condition on ht, and noticing that if z € Q and y € 27F1Q \
27Q, then hy, (z,y) < Ctg n/2 p(220-1) | we have

1/n
[ 140 (7% Mgy bQQ)XQQT“(f))(:c)r"dx]

1
C[IQ

S
Q
C[l S(S g ()| T M sz)xQQTk’Q(f)(y)!dy)ndx]
Q150

[!QI

1/

IN

n
(1 gl DT Mg T2 0] )
R™

1/n

IA

1/
C[@S( S th(xvy)|Tk’1M(b—b2Q)X2QTk’2(f)(y)’dy)ndx]

—-n/2
<C S / |Tk 1M(b bZQ)XQQTkQ(f)(y)’ dy
2Q

+C Z té”/Qp(QZ(jfl)) S T M-ty )x00 T2 () (W) | dy
j=1 20+1Q\29Q
=1V + 1.

Since w € A1, w satisfies the reverse Holder inequality:

1 - 1/po C
<@’§2w(x) dac) < @’gw(az) dx

for all cubes @ and some 1 < pg < oo (see [GR]). Choose ¢ > 1 such
that r = (po —1)/¢+ 1 < s and let p > 1 with /s + 1/p+ 1/q = 1; then
(r—r/s—1/p)q = pp. We obtain, by Holder’s inequality and L"-boundedness



TOEPLITZ TYPE OPERATORS 261

of T (see Lemma 3.2),

1/r
12(1) (’Q| S |Tk1M(b b2Q)X2QTk’2(f)(y)|T dy)

1/r
= C<|Q| S ‘M(b*b2Q)X2QTk’2(f)(y)‘r dy)

/T
< C1QI(§ Ib(w)—bag wla) V7= (T2 (£) () P (y) ()17 dy)
2Q

1/pr
< QI (] 1b(y) — baolrw(y) " dy)
2Q

< (§ i wredy) (] wetmme )

2Q 2Q
< C1QI™TIbllLip, ) w(2Q)P P w(2Q) /5 2 o

v k2 - Yer1 - 1/qr
(w@@l_sﬂ/n;@w () <y>dy) (,QQ,ZL ) dy>

< Clbllip )[R~/ w(2Q) 7 w0(2Q)M* M 0 (T2 (f)) (2)

. 1 po/qr
< 20| /‘”(m| | ) dy)

< Clblipy o) ‘%ﬁwﬁww’“u))(x)

< CblLipy (uyw (@) Mg 6,00 (T2 (£)) (&),

and

00 1/r
2 in j— 1 r
1Y <0y 2 p(220 1>>( DEre] V7™ M) T2 (F) ()] dy)
j=1 R™

X

SN - 1 . r
<C E 27" p(220 1))<M S | Mb—by)x00 T2 (F) (W) dy)
Rn

j=1

<Oy PN @IQ)
j=1

< (1 1) — bagl" ()7 (52 (1) ) )l = dy)
2Q

[e.9]

<Y 200 @@Q) ™ (| bty ~ bagl i)' dy)

Jj=1 2Q

1/pr
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< (§ 2w ) (§ wiima)
2Q 2Q

< CY 20N @UQ)) T bl 0w (2Q)7 T w(2Q)

J=1

X Mps0(TH*(f))( )\2Q|1/qT<I2Q|

[e.e]

< Clluipy ) 2j"p<22<j—1>>(2]‘1(@))‘"/%(2@)”%(2@)1/8

j=1
59 1 1 po/qr
< My (TH2(1)) () 2Q) /q’"(w |t )
2Q S (n+e e+n/r
SCHbHLipﬁ(w |(2Q|)Mﬁsw T’k2 223 1)( +) 22(] 1))2 jletn/r)

7j=1

< OBl Lip () w(&) M 5,00 (TF? () (2),
where E;il 2(]’*1)(n+6)p(22(j*1))2*j(€+n/r) < 00 since hmr—>oo Tn+ep(r2) _ 0;
thus

m 1 1/n
2O (o M (T Mg T )
— Rn

< ClbllLipy () (E) Y Mpo(TH () ().
k=1

For I3, notice w € A1 C Ag; by the definition of Ag, we get, for x € @,
’Tk’lM(b—bQ)X@Q)CTk’z(f)(x) — A (Tk’lM(b—bQQ)X<2Q)ch’2(f))(w)|
< | bly) = bagl 1K (z — y) = Ky (z — )| I T (f) ()| dy
(2Q)¢

00 1)
e Dby — el TR )] dy

. . ' —2 n+o
J=12id<|y—mzo|<2i+1d 1y ol

IN

CZ W S 1b(y) — 52j+1Q + ijHQ — byg|
J=1 2i+1Q
X w( ) 1/8|Tk 2( )(y)|w(y)1/s dy
3 d6 1/s
C
L i)

IN

W( S 1b(y) — bza‘+1Q\S/w(y)l_sl dy)
25410
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<(§ @ rew )

2j+1Q
0o 5 /
d 1 /(s— 1/s
+C) W\bmﬂ@ - sz\( | w(y) /Y dy)
7=1 29+1Q

< (§ @ e )

2j+1Q
Z J“d 755 10l Lip g ()@ w(2ITLQ)Y/S By (271 Q) s=B/m
_ > X Mp,s,0(T"*(£))(2)
e Z (QJ'Jr?Z)NJré Hb”Lipg(w)w(f)jw(2j+1Q)5/nw<2j+1Q)1/s_g/n
j=1 x Mgs.(T"?(£))(2)

2*Q| 1 e
w(2j+1Q)1/s<!2j“Q\ | w)

20+1Q

y (1 S w(y)_l/(s_l)dy)(s—l)/s
ZHQl L7,

L w(PQ) s -
< ClIbllLipy () Y ém@)2 " Mp,s.0(TH()) ()
j=1
+ Cbllip (wyw(E) Y 527 Mg 5 (T (f))(F)
j=1
< OBl Lip (wyw (F) M 5,00 (TH?(£)) (),
thus

m

| IT M, e T2 (F)()
Qk=1
— Ay, (TH M

< Ol oy 0(E) S My (TE2())(2).
k=1

This completes the proof of Theorem 4.1. =

C
< —
— @l

b—b2Q)X(2Q)CTk’2(f))($) | dx

THEOREM 4.2. Let T be a singular integral operator with non-smooth
kernel as in Definition2.2, w € A;,0<n<1,1 < s < oo andb € BMO(w).
If Ty = 0 on L"(R™)(1 < r < o0), then there exists a constant C > 0 such
that, for any f € C3°(R™) and z € R™,

MF(To(H))(E) < Cllbllpmowyw(®) Y Mauw(TH(£))(E).
k=1
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Proof. 1t suffices to prove that for f € Cg°(R"),

L 1/n
(!QI ) 1T )_AtQ(Tb(f))(x)\"dm>

< Clbllpmoyw(E) > Mew(TH2(£))(&)),
k=1

where tg = 1(Q)? and 1(Q) denotes the side length of Q. Without loss of
generality, we may assume 7%! =T (k = 1,...,m). Fix a cube Q = Q(zo, d)
and Z € ). Similar to the proof of Theorem 4.1, we have

Ty (f)(@) = Tobog (F)(®) = Tip-b20)x00 () (@) + T(b—brg)x (20 (/) (@)
= Vi(x) 4+ Va(x)

and

1 1/n
(m } () (@) = A (Tb(f))(x)\"dx>
Q

= I4 =+ I5 -+ 16'
By using the same argument as in the proof of Theorem 4.1, we get

- =1 ||k k.2
I4 < CZ ‘Q|1/77 ' HT M(b_b2Q)X2QT (f)XQ”Ln

=1 |Q’1/77 ||XQ||L”7/(1*”7)
<C ‘Q‘ HTk 1Mb sz)szTkg(f)”WLl
k=1
— C k2
<310 Mgy T @) e
k=1 "% Rn
. C
<> Ql | [b(2) = baglw ()™ |T*2(f) (@) w(x)"* da
k=1"%2Q
< c s’ 1-s 1/’ k,2 s 1/s
< 3~ 157 (1 1b@) = baglw(@)!~ de) (| [T*2(1) (@)l w(z) o)
k=1 2Q 2Q
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, RN VZ
Z \2@] ( 1 ) S b(2) — bag|* w(x)'~* dx)

1/s
§ P dx)

k=1 R"

m oo 1/r
+C’;;anp(220—l))<|2j+1@| S |Tk le sz)XQQTk2( )( )|Tdy>
<oy QI

k=1

r 1/p—r|mk,2 r r/s r—r/s—1/p 1/r

% (] ly) = baql w(y) 7 ITH2(f) () () w(y) dy)

2Q
O3 2R

k=1 j=1

1/r
b(y) — bao|"w(y) 7 TH2(F) () M (y) Pwly)T TP dy)

X
7~ N\
[N~}
@L"o

1/pr

Ms

Q- 1/*( [ 1b(y) — baglP"w(y) " dy)
2Q

b
Il
—

T2()w) i) dy) (] ) 0ray)
2Q

[\~

/N
=

1/pr

n
Q
NE
M8

207 p(2207) (271(Q)) /" (| bly) — baqlw(y)' " dy)
2Q

2w dy) (] w0 ay)
2Q

Eonl
Il

_
<
I

—

1/qr

X
~
~
=
[

[\
@L,:

QI 1Bl a0y w(2Q) P w(2Q) Y My o (TH2(£)) (2)

Ms

T
I
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1/qr 1
* 126 (I2Q|

+C Z Z 207 p(2°U7 1) (271(Q)) " [bllBMo ) w (2Q) VP w(2Q) M

k=1 j=1

1/qr
< MA@ QT (o | wl dy)

2Q] ,

< CIbllBMO(u Z!Q\ Yrw(2Q) P w(2Q) Y My 1 (TF2(f))(2)
k=1
1 po/qr
\2@\“’“( | <y>dy)
+ 16l BMO ZZW" 220-)(271(Q)) ™" w(2Q) P w(2Q)"/*

2Q],
k=1 j=1
po/qr
S w(y) dy)

My (T(£))(2)

X My TH2(£))(@) 201 qr<|2cz|

w(2Q)
" 2@

w(2Q),,
2Q]

< CZ 16l BMO (w)

+CZHbHBMO(w sw(Tkg(f))(x)

k=1

% 22(] n+5) ))2—j(e+n/r)

m
< Clbllpvo)w(E) > Mew(TH?(£))(&),
k=1
and

16<oz D S B R T
k=

Q] 1 2kd<|y—ao|<2k+1d [0

| /\

o2 Z 27+1d — | b(y) = basrrg + basrrg — bagl
k=1j= 2i+1Q

w(y) TR () () lw(y) V* dy
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o> s s 1/s
<CYY g W( [ 16(5) = bassrglw(y) '~ dy)
kzl]:l 20+1Q
1/s
< (5 1T @) wy) dy)
2+1Q
- -1y 5\
+CZZ ]+1d n+5|b27+1Q b2¢2!< | wy) dy)
:lj:1 29+1Q
1/s
< (] TR @)y dy)
2j+1Q
< CZZ 2J+1d s Pl Byow) w27 Q) My w (TH2(£))(7)
k 1] 1
+ZZ 2j+1d n+5||b||BMO w(@)jw (2 Q)N My o (TH(f))(F)
k=1 j= 1
1291Q)| < 1 S 1/s
. o ey w(y) dy
w(20H1Q)V/s \ |2711Q)| 2itig
1 1(s-1) (s—1)/s
: (w ), dy)
2i+1Q
< Clbllpmoqww(E) > Mauw(TH(f Z]Q g
k=1

< CHbHBMO(w ZMs,w Tk2 (.%')
k=1

This completes the proof of Theorem 4.2. =

COROLLARY 4.3. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, w € A1, 0 < 8 <1 and b € Lipg(w), 1 <p <
n/B,1/q=1/p—F/nand 0 < D <2™. If Ty =0 on L"(R") (1 <r < 00)
and T%? are bounded linear operators on LP?(R™ w) for 1 < p < oo and
w € Ay (1 <k <m), then Ty, is bounded from LP¥(R", w) to L9¥(R",w'~9).

Proof. Choose 1 < s < p in Theorem 4.1 and notice w!~? € A;. Then,
by Lemma 3.5,

1T (F)l Lo r-ay < IMy(To(f))l| oo i-ay < CIME (To(H))l| Lase (i)

< COlbllipy(w) D 10Mp,s.00 (T () Lo (ur-a)
k=1
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= Ollbluip, () Y 1Mp,s,0 (T2 ()| oo ()
k=1

m
< CHb”LipB(w) Z ||Tk72(f)||LPv‘P(w) < C”bHLipB(w)HfHLP#’(w)' u
k=1
COROLLARY 4.4. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, w € A1, 0 < D < 2", 1 < p < o0 and b €
BMO(w). If Ty = 0 on L"(R™) (1 < r < o0) and T*? are bounded linear
operators on LP¥Y(R"™, w) for 1 <p < oo and w € A1 (1 <k <m), then Ty,
is bounded from LP¥(R"™ w) to LP¥(R"™ w!'~P).
Proof. Choose 1 < s < p in Theorem 4.2 and notice w'™ € A;. Then,
by Lemma 3.5,

”Tb(f)HLW(wlfp) < HMn(Tb(f))HLP»v(wlfp) < C”M,ﬁn(Tb(f))HLW(wlfp)

< C|1bllBMO(w) Z [0 Moo (T*2 ()] Lo (w019
=1

= O]l BMmO (w) Z | Mg, (T% (£)) | Lo )
=1

< Clbllsyoqw) Y ITH ()L w)
k=1

< Cllbllemo) I fll oo (w)- =
COROLLARY 4.5. Let [b,T|(f) =0T (f) —T(bf) be the commutator gen-
erated by the singular integral operator T with non-smooth kernel as in Def-

inition 2.2 and b. Then the conclusions of Theorems 4.1-4.2 and Corollaries
4.3-4.4 hold for [b,T] in place of Ty,.

5. Applications. In this section we shall apply Theorems 4.1-4.2 and
Corollaries 4.3-4.4 to the holomorphic functional calculus of linear ellip-
tic operators. First, we review some definitions regarding the holomorphic
functional calculus (see [DUM], [MA]). Given 0 < 6 < 7, define

Sop ={z € C:arg(z)| <0} uU{0}

and denote by S its interior. Set Sp = Sp\ {0}. A closed operator L on some
Banach space E is said to be of type 0 if its spectrum o (L) is contained in
Sy and for every v € (0, 7], there exists a constant C,, such that

(0l = L)~ < Coy ¢ Sp.
For v € (0, 7], let
HOO(SS) = {f: 8§ — C: f is holomorphic and || f||z=~ < oo},
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where || f[lze = sup{|f(2)| : z € S}}. Set
W(Sg) = {g € HOO(SS) : Js,¢ > 0 such that [g(z)] < Cl—l‘—Z’LQS}
If L is of type 6 and g € Hoo(S))), we define g(L) € L(E) by
g(L) = —2mi)~ {(nI — L) g(n) dn,
r
where I is the contour {¢ = re**® : r > 0} parameterized clockwise around
Sy with 0 < ¢ < p. If, in addition, L is one-one and has dense range, then,
for f € Hoo(S)),
F(L) = WL (FR)(L),
where h(z) = z(1+ z)~2. The operator L is said to have a bounded holomor-
phic functional calculus on the sector S, if
lg(D)]l < Nlgl Lo

for some N > 0 and for all g € Ho(S}).

Now, let L be a linear operator on L?(R") with § < 7/2 so that —L
generates a holomorphic semigroup e~*%, 0 < |arg(2)| < /2 — 6. Applying
Theorem 6 of [MA] and Theorems 4.1-4.2 and Corollaries 4.3-4.4, we get

COROLLARY 5.1. Assume the following conditions are satisfied:

(i) The holomorphic semigroup e~*F, 0 < |arg(z)| < m/2 — 0, is repre-
sented by the kernels a,(x,y) which satisfy, for all v > 0, an upper
bound

laz(z,y)| < cvhyy(z,y)
for x,y € R™ and 0 < |arg(z)| < w/2 — 6, where
hi(w,y) = Ct"s(|jx — y[* /1)
and s is a positive, bounded and decreasing function satisfying

lim 7""s(r?) = 0.
r—00
(ii) The operator L has a bounded holomorphic functional calculus in
L?(R™), that is, for all v > 6 and g € HOO(SB), the operator g(L)
satisfies
lg(L) ()2 < evllglizeellflz2-

Let g(L)y be the Toeplitz type operator associated to g(L). Then
the conclusion of Theorems 4.1-4.2 and Corollaries 4.3-4.4 hold for
g(L)p in place of Tp.
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